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ABSTRACT

Today’s cloud-based services integrate globally disteture-
sources into seamless computing platforms. Provisionimbae-
counting for the resource usage of these Internet-scalecappns
presents a challenging technical problem. This paper pteske
design and implementation of distributed rate limitersichtwork
together to enforce a global rate limit across traffic aggresg) at
multiple sites, enabling the coordinated policing of a cldnased
service’s network traffic. Our abstraction not only enfaragylobal
limit, but also ensures that congestion-responsive tamtsayer
flows behave as if they traversed a single, shared limiter. We
present two designs—one general purpose, and one optirfuzed
TCP—that allow service operators to explicitly trade offveeen
communication costs and system accuracy, efficiency, aaldlst
ity. Both designs are capable of rate limiting thousands @4l
with negligible overhead (less than 3% in the tested conditium).
We demonstrate that our TCP-centric design is scalablertdrieds
of nodes while robust to both loss and communication delak-m
ing it practical for deployment in nationwide service piais.

Categories and Subject Descriptors

C.2.3 [Computer Communication Networks]: Network manage-
ment

General Terms
Algorithms, Management, Performance

Keywords
Rate Limiting, Token Bucket, CDN

1. INTRODUCTION

Yesterday's version of distributed computing was a self-
contained, co-located server farm. Today, applicatiopsrareas-
ingly deployed on third-party resources hosted across riter-I
net. Indeed, the rapid spread of open protocols and stamdard
like Web 2.0 has fueled an explosion of compound services tha
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script together third-party components to deliver a sdjfsited
service [27, 29]. These specialized services are just thimbiag:
flagship consumer and enterprise applications are incrgigdbe-
ing delivered in the software-as-a-service model [9]. Bameple,
Google Documents, Groove Office, and Windows Live are early e
amples of desktop applications provided in a hosted ernwieon,
and represent the beginning of a much larger trend.

Aside from the functionality and management benefits Web-
based services afford the end user, hosted platforms pregen
nificant benefits to the service provider as well. Rather tifen
ploy each component of a multi-tiered application withinaatje-
ular data center, so-called “cloud-based services” carsparently
leverage widely distributed computing infrastructuresoo@e’s
service, for example, reportedly runs on nearly half-diamil
servers distributed around the world [8]. Potential woxlide scale
need not be limited to a few large corporations, however.eRec
offerings like Amazon’s Elastic Compute Cloud (EC2) proenis
provide practically infinite resources to anyone willingo@y [3].

One of the key barriers to moving traditional applicationste
cloud, however, is the loss of cost control [17]. In the cldnaded
services model, cost recovery is typically accomplishaoubh
metered pricing. Indeed, Amazon's EC2 charges incremgntal
per gigabyte of traffic consumed [3]. Experience has showw;:h
ever, that ISP customers prefer flat fees to usage-baseédg30].
Similarly, at a corporate level, IT expenditures are geheraan-
aged as fixed-cost overheads, not incremental expenses [{7]
flat-fee model requires the ability for a provider to limitnsump-
tion to control costs. Limiting global resource consumptio a
distributed environment, however, presents a significacttriical
challenge. Ideally, resource providers would not requaevises
to specify the resource demands of each distributed conmpane
priori; such fine-grained measurement and modeling can be chal-
lenging for rapidly evolving services. Instead, they skiquiovide
a fixed price for an aggregate, global usage, and allow sEs\i@
consume resources dynamically across various locatiahfgdt to
the specified aggregate limit.

In this paper, we focus on a specific instance of this problem:
controlling the aggregate network bandwidth used by a clmgbd
service, or distributed rate limiting (DRL). Our goal is ttoav a set
of distributed traffic rate limiters to collaborate to sutija class of
network traffic (for example, the traffic of a particular ctbhased
service) to a single, aggregate global limit. While traffidiping is
common in data centers and widespread in today’s netwouk$, s
limiters typically enforce policy independently at eacbdtion [1].
For example, a resource provider with 10 hosting centerswisty
to limit the total amount of traffic it carries for a particulservice
to 100 Mbps. Its current options are to either limit the segwvio
100 Mbps at each hosting center (running the risk that theyatia



use this limit simultaneously, resulting in 1 Gbps of totaffic), or
to limit each center to a fixed portion (i.e., 10 Mbps) whicteev
constrains the service traffic aggregate and is unlikelyllcovethe
service to consume its allocated budget unless traffic ifegiy
balanced across the cloud.

The key challenge of distributed rate limiting is to allowdin
vidual flows to compete dynamically for bandwidth not onlyttwi
flows traversing the same limiter, but with flows traversinbes
limiters as well. Thus, flows arriving at different limitesiould
achieve the same rates as they would if they all were travgisi
single, shared rate limiter. Fairness between flows insittaffic
aggregate depends critically on accurate limiter assigimsne/hich
in turn depend upon the local packet arrival rates, numtdhsves,
and up/down-stream bottleneck capacities. We addressshis by
presenting the illusion of passing all of the traffic throwagkingle
token-bucket rate limiter, allowing flows to compete agaisch
other for bandwidth in the manner prescribed by the trarigpor
tocol(s) in use. For example, TCP flows in a traffic aggregate w
share bandwidth in a flow-fair manner [6]. The key technitelle
lenge to providing this abstraction is measuring the dentdride
aggregate at each limiter, and apportioning capacity ipgmion
to that demand. This paper makes three primary contribsttion
Rate Limiting Cloud-based ServicesWe identify a key challenge
facing the practical deployment of cloud-based servicesiden-
tify the chief engineering difficulties: how to effectivebalance

accuracy (how well the system bounds demand to the aggregate

rate limit), responsivenegdow quickly limiters respond to varying
traffic demands), andommunicatiorbetween the limiters. A dis-
tributed limiter cannot be simultaneously perfectly aaterand re-
sponsive; the communication latency between limiters Heulmow
quickly one limiter can adapt to changing demand at another.

Distributed Rate Limiter Design. We present the design and im-
plementation of two distributed rate limiting algorithnisirst, we
consider an approaclglobal random drop(GRD), that approxi-
mates the number, but not the precise timing, of packet di®ps-
ond, we observe that applications deployed using Web ssvidl
almost exclusively use TCP. By incorporating knowledge uabo
TCP’s congestion control behavior, we design another nréshm
flow proportional shar€FPS), that provides improved scalability.

Evaluation and Methodology. We develop a methodology to eval-
uate distributed rate limiters under a variety of traffic @eats and
deployment scenarios using both a local-area testbed ahdean

net testbed, PlanetLab. We demonstrate that both GRD and FP
exhibit long-term behavior similar to a centralized linnifer both
mixed and homogeneous TCP traffic in low-loss environments.
Furthermore, we show that FPS scales well, maintaining ideat
50-Mbps rate enforcement and fairness up to 490 limiterh wit
modest communication budget of 23 Kbps per limiter.

2. CLASSES OF CLOUDS

Cloud-based services come in varying degrees of complexity
as the constituent services become more numerous and dynami
resource provisioning becomes more challenging. We obdéeat
the distributed rate limiting problem arises in any sergomposed
of geographically distributed sites. In this section wectiee three
increasingly mundane applications, each illustrating BdRL em-
powers service providers to enforce heretofore unredbézabffic
policies, and how it offers a new service model to customers.

2.1 Limiting cloud-based services

Cloud-based services promise a “utility” computing abtiom
in which clients see a unified service and are unaware thatythe
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tem stitches together independent physical sites to peasydles,
bandwidth, and storage for a uniform purpose. In this cantez
are interested in rate-based resources that clients sfsaroe sin-
gle provider across many sites or hosting centers.

For clouds, distributed rate limiting provides the critiedility
for resource providers to control the use of network baruagtif it
were all sourced from a single site. A provider runs DRL aslits
sites, setting global limits on the total network usage ofipalar
traffic classes or clients. Providers are no longer requtioeahi-
grate requests to accomodate static bandwidth limitsedastthe
available bandwidth gravitates towards the sites with tlestrde-
mand. Alternatively, clients may deploy DRL to control agggte
usage across providers as they see fit. DRL removes theiattific
separation of access metering and geography that res@icass
cost for the client and/or wasted resources for serviceigeos.

2.2 Content distribution networks

While full-scale cloud-based computing is in its infandmpgle
cloud-based services such as content-distribution n&sN(@DNSs)
are prevalent today and can benefit from distributed rat&itig
CDNs such as Akamai provide content replication servicélsitd-
party Web sites. By serving Web content from numerous gebgra
ically diverse locations, CDNs improve the performance)auil-
ity, and reliability of Web sites. In many scenarios, CDN &ters
may wish to limit resource usage either based on the conteved
or the requesting identity. Independent rate limiters msefficient,
however, as content can be served from any of numerous mirror
around the world according to fluctuating demand.

Using DRL, a content distribution network can set per-cor&o
limits based upon service-level agreements. The CDN pes\éér-
vice to all sites as before, but simply applies DRL to all botind
traffic for each site. In this way, the bandwidth consumed bys
tomer is constrained, as is the budget required to fund didawy
the need for CDNs to remove content for customers who cannot
pay for their popularity. Alternatively, the CDN can use DRL as a
protective mechanism. For instance, the CoDeeN contetrifuis
tion network was forced to deploy an ad-hoc approach to iaieé |
nefarious users across proxies [37]. DRL makes it simplémii |
the damage on the CDN due to such behavior by rate limitirifidra
from an identified set of users. In summary, DRL provides CDNs
with a powerful tool for managing access to their clientsitemnt.

Internet testbeds

Planetlab supports the deployment of long-lived serviagagsr
types. Each Planetlab service runs isliae—essentially a fraction
of the entire global testbed consisting bfN of each machine.
Currently Planetlab provides work-conserving bandwidttits at
each individual site, but the system cannot coordinate \attid
demands across multiple machines [18].

DRL dynamically apportions bandwidth based upon demand, al
lowing Planetlab administrators to set bandwidth limitseoper-
slice granularity, independent of which nodes a slice useshe
context of a single Planetlab service, the service admatmtmay
limit service to a particular user. In Section 5.7 we show DRL
provides effective limits for a Planetlab service disttéaliacross
North America. In addition, while we focus upon network riate
iting in this paper, we have begun to apply our techniquesdrol
other important rate-based resources such as CPU.

!For example, Akamai customers are typically not rate lichitad
billed in arrears for actual aggregate usage, leaving theem ¢o
potentially large bills. If demand dramatically exceedpestation
and/or their willingness to pay, manual intervention isuieed [2].



2.4 Assumptions and scope

Like centralized rate limiting mechanisms, distributeterém-
iting does not provide QoS guarantees. Thus, when custquagrs
for a given level of service, providers must ensure the akdity of
adequate resources for the customer to attain its given limthe
extreme, a provider may need to provision each limiter withuegh
capacity to support a service’s entire aggregate limit.exneless,
we expect many deployments to enjoy considerable benedits fr
statistical multiplexing. Determining the most effectpvision-
ing strategy, however, is outside the scope of this paper.

GRD-HANDLE-PACKET(P: Packe}
"

demand— > r;
7

bytecount— bytecount-LENGTH(P)
if demand> limit then
dropprob«— (demand- limit) / demand
if RAND() < dropprobthen
DROP(P)
return
FORWARD(P)

o ~NO O WN P

Furthermore, we assume that mechanisms are already in place

to quickly and easily identify traffic belonging to a parti@user-
vice [25]. In many cases such facilities, such as simpleesidor
protocol-based classifiers, already exist and can be yeadidpted
for use in a distributed rate limiter. In others, we can lagerre-
cent work on network capabilities [32, 39] to provide unfeable
means of attribution. Finally, without loss of generalitie discuss
our solutions in the context of a single service; multiplevees
can be limited in the same fashion.

3. LIMITER DESIGN

We are concerned with coordinating a set of topologicalk di
tributed limiters to enforce an aggregate traffic limit vehiétaining
the behavior of a centralized limiter. That is, a receiverudt not
be able to tell whether the rate limit is enforced at one oryrian
cations simultaneously. Specifically, we aim to approxaraten-
tralized token-bucket traffic-policing mechanism. We ctwa to-
ken bucket as a reference mechanism for a number of reas@s: i
simple, reasonably well understood, and commonly deployé&u
ternet routers. Most importantly, it makes instantaneasibns
about a packet's fate—packets are either forwarded or éxdpp
and so does not introduce any additional queuing.

We do not assume anything about the distribution of traffioss
limiters. Thus, traffic may arrive at any or all of the limisemt any
time. We use a peer-to-peer limiter architecture: eachtdimis
functionally identical and operates independently. Thek taf a
limiter can be split into three separate subtasks: estimatom-
munication, and allocation. Every limiter collects peimdea-
surements of the local traffic arrival rate and dissemintites to
the other limiters. Upon receipt of updates from other larst each
limiter computes its own estimate of the global aggregatwadr
rate that it uses to determine how to best service its loqalashel
to enforce the global rate limit.

3.1 Estimation and communication

Figure 1: Pseudocode for GRD. Each value; corresponds to
the current estimate of the rate at limiter .

“epidemic” protocols have been widely studied for disttémico-
ordination; they require little to no communication sturet, and
are robust to link and node failures [10]. At the end of each es
timate interval, limiters select a fixed number of randontipgen
limiters to update; limiters use any received updates tatgtheir
global demand estimates. The number of limiters contacted—
gossip branching factor—is a parameter of the system. We com
municate updates via a UDP-based protocol that is resiiieloss
and reordering; for now we ignore failures in the commundgat
fabric and revisit the issue in Section 5.6. Each update gicisk
48 bytes, including IP and UDP headers. More sophisticabed c
munication fabrics may reduce coordination costs usingctired
approaches [16]; we defer an investigation to future work.

3.2 Allocation

Having addressed estimation and communication mechanisms
we now consider how each limiter can combine local measure-

ments with global estimates to determine an appropriatd looit
to enforce. A natural approach is to build a global token ktick
(GTB) limiter that emulates the fine-grained behavior of atc-
ized token bucket. Recall that arriving bytes require tekenbe
allowed passage; if there are insufficient tokens, the tditaket
drops packets. The rate at which the bucket regeneratesstolie
tates the traffic limit. In GTB, each limiter maintains itsioglobal
estimate and uses reported arrival demands at other Isndesti-
mate the rate of drain of tokens due to competing traffic.
Specifically, each limiter's token bucket refreshes tokenthe
global rate limit, but removes tokens both when bytes atdeally
and to account for expected arrivals at other limiters. /At émd
of every estimate interval, each limiter computes its |caival
rate and sends this value to other limiters via the commtibita
fabric. Each limiter sums the most recent values it has veddior

We measure traffic demand in terms of bytes per unit time. Each the other limiters and removes tokens from its own buckehiat t

limiter maintains an estimate of both local and global dedndts-
timating local arrival rates is well-studied [15, 34]; we goy a
strategy that computes the average arrival rate over fixae in-
tervals and applies a standard exponentially-weightedimgoav-
erage (EWMA) filter to these rates to smooth out short-termcflu
tuations. The estimate interval length and EWMA smoothiag p
rameter directly affect the ability of a limiter to quicklyack and
communicate local rate changes; we determine appropettiags
in Section 5.

At the end of each estimate interval, local changes are rderge

with the current global estimate. In addition, each limitarst dis-
seminate changes in local arrival rate to the other limit€he sim-
plest form of communication fabric is a broadcast mesh. @/faist
and robust, a full mesh is also extremely bandwidth-intengie-

“global” rate until a new update arrives. As shown in Secton
however, GTB is highly sensitive to stale observations titat-
tinue to remove tokens at an outdated rate, making it imjmadb
implement at large scale or in lossy networks.

3.2.1 Global random drop

Instead of emulating the precise behavior of a centralinkdrt
bucket, we observe that one may instead emulate the higter-o
behavior of a central limiter. For example, we can ensuregdte
of drops over some period of time is the same as in the cerachli
case, as opposed to capturing the burstiness of packet-éinps
this way, we emulate the rate enforcement of a token bucketdiu
its burst limiting. Figure 1 presents the pseudocode foobajlran-
dom drop (GRD) limiter that takes this approach. Like GTB,[ER

quiring O(N?) update messages per estimate interval). Instead, we monitors the aggregate global input demand, but uses iltalete

implement a gossip protocol inspired by Kemgteal. [22]. Such

a packet drop probability. GRD drops packets with a proligbil



proportional to the excess global traffic demand in the pievin-
terval (line 4). Thus, the number of drops is expected to bestme
as in a single token bucket; the aggregate forwarding rateldloe
no greater than the global limit.

GRD somewhat resembles RED queuing in that it increases its
drop probability as the input demand exceeds some threghé]d
Because there are no queues in our limiter, however, GRDOresqu
no tuning parameters of its own (besides the estimator's AWM
and estimate interval length). In contrast to GTB, whickmits to
reproduce the packet-level behavior of a centralized #miGRD
tries to achieve accuracy by reproducing the number of tosger
longer periods of time. It does not, however, capture stesrtx
effects. For inherently bursty protocols like TCP, we caipiiave
short-term fairness and responsiveness by exploitingrimdition
about the protocol’s congestion control behavior.

3.2.2 Flow proportional share

One of the key properties of a centralized token bucket is tha
it retains inter-flow fairness inherent to transport protecsuch
as TCP. Given the prevalence of TCP in the Internet, and espe-
cially in modern cloud-based services, we design a flow propo
tional share (FPS) limiter that uses domain-specific kndgde
about TCP to emulate a centralized limiter without mairitajrde-
tailed packet arrival rates. Each FPS limiter uses a tokekdiu
for rate limiting—thus, each limiter has lacal rate limit. Un-
like GTB, which renews tokens at the global rate, FPS dynami-
cally adjusts its local rate limit in proportion to a set of iglgs
computed every estimate interval. These weights are bgsea u
the number of live flows at each limiter and serve as a proxy for
demand; the weights are then used to enforce max-min failves
tween congestion-responsive flows [6].

The primary challenge in FPS is estimating TCP demand. In the
previous designs, each rate limiter estimates demand bguriag
packets’ sizes and the rate at which it receives them; tloigrately
reflects the byte-level demand of the traffic sources. Inrasht
FPS must determine demand in terms of the number of TCP flows
present, which is independent of arrival rate. Furthermsirece
TCP always attempts to increase its rate, a single flow coimgum
all of a limiter’s rate is nearly indistinguishable from 16uvils doing
the samé. However, we would like that a 10-flow aggregate receive
10 times the weight of a single flow.

Our approach to demand estimation in FPS is shown in Fig-
ure 2. Flow aggregates are in one of two states. If the agtgega
under-utilizes the allotted rate (local limit) at a limitéren all con-
stituent flows must béottlenecked In other words, the flows are
all constrained elsewhere. On the other hand, if the agtgega
ther meets or exceeds the local limit, we say that one or mbre o
the constituent flows isinbottleneckee-for these flows the lim-
iter is the bottleneck. We calculate flow weights with thedtion
FPS-ETIMATE. If flows were max-min fair, then each unbottle-
necked flow would receive approximately the same rate. Wethe
fore count a weight of 1 for every unbottlenecked flow at every
limiter. Thus, if all flows were unbottlenecked, then the deah at
each limiter is directly proportional to its current flow ¢du Set-
ting the local weight to this number results in max-min fdioea-
tions. We use the computed weight on line 10 of FPSFMATE
to proportionally set the local rate limit.

2There is a slight difference between these scenarios: riéiaye
aggregates have smaller demand oscillations when desynchr
nized [4]. Since TCP is periodic, we considered distingnigi CP
flow aggregates based upon the component frequencies imythe a
gregate via the FFT. However, we found that the signal preduc
by TCP demands is not sufficiently stationary.

FPS-ESTIMATE()
1 for each flow f in sample set
2 ESTIMATE(f)
3 localdemand— r;
4 if localdemand> locallimit then
5 maxflowrate— MAX RATE(sample set)
6 idealweight— locallimit / maxflowrate
7 else
8 remoteweights— an wj
JF1
9 idealweight. caldemendemoteneighis
10 locallimit — o e gt
11  PrRoPAGATHidealweight)
FPS-HANDLE-PACKET(P: Packe}
1 if RAND() < resampleprolthen
2 add FLow(P) to sample set
3 TOKEN-BUCKET-LIMIT(P)

Figure 2: Pseudocode for FPSw; corresponds to the weight
at each limiter ¢ that represents the normalized flow count (as
opposed to rates; as in GRD).

A seemingly natural approach to weight computation is taxtou
TCP flows at each limiter. However, flow counting fails to ameb
for the demands of TCP flows that are bottlenecked: 10 bottle-
necked flows that share a modem do not exert the same demands
upon a limiter as a single flow on an OC-3. Thus, FPS must com-
pute the equivalent number of unbottlenecked TCP flows that a
aggregate demand represents. Our primary insight is thatanwe
use TCP itself to estimate demand: in an aggregate of TCP,flows
each flow will eventually converge to its fair-share transsion
rate. This approach leads to the first of two operating regime

Local arrival rate > local rate limit. When there is at least one
unbottlenecked flow at the limiter, the aggregate inputisa&zjual

to (or slightly more than) the local rate limit. In this casee
compute the weight by dividing the local rate limit by the diexgy

rate of an unbottlenecked flow, as shown on lines 5 and 6 of FPS-
ESTIMATE. Intuitively, this allows us to use a TCP flow's knowl-
edge of congestion to determine the amount of competing déma

In particular, if all the flows at the provider are unbottleked, this
yields a flow count without actual flow counting.

Thus, to compute the weight, a limiter must estimate an ul&hot
necked flow rate. We can avoid per-flow state by sampling gacke
at a limiter and maintaining byte counters for a constang-fliow
set. We assume that the flow with the maximum sending rate is
unbottlenecked. However, it is possible that our samplenslét
contain only bottlenecked flows. Thus, we continuously mesa
ple and discard small flows from our set, thereby ensuringthea
sample set contains an unbottlenecked flow. Itis likely tmatvill
select an unbottlenecked flow in the long run for two reasbirst,
since we uniformly sample packets, an unbottlenecked flonoie
likely to be picked than a bottlenecked flow. Second, a sarsgte
that contains only bottlenecked flows results in the weighib@
overestimated, which increases the local rate limit, causeot-
tlenecked flows to grow, and makes them more likely to be ahose
subsequently.

To account for bottlenecked flows, FPS implicitly normatdiziee
weight by scaling down the contribution of such flows projoral
to their sending rates. A bottlenecked flow only contribtdsac-
tion equal to its sending rate divided by that of an unboéted
flow. For example, if a bottlenecked flow sends at 10 Kbps, had t



fair share of an unbottlenecked flow is 20 Kbps, the bottlkaedc
flow counts for half the weight of an unbottlenecked flow.

Local arrival rate < local rate limit. When all flows at the limiter
are bottlenecked, there is no unbottlenecked flow whosesatbe
used to compute the weight. Since the flow aggregate is utable
use all the rate available at the limiter, we compute a wetigdt,
based on current information, sets the local rate limit tedpeal to
the local demand (line 9 of FPSSEIMATE).

A limiter may oscillate between the two regimes: entering th
second typically returns the system to the first, since tlyeeamte
may become unbottlenecked due to the change in local raie lim
As a result, the local rate limit is increased during the raixtca-
tion, and the cycle repeats. We note that this oscillatioetessary
to allow bottlenecked flows to become unbottlenecked shadid
ditional capacity become available elsewhere in the nétwldee
the estimator, we apply an EWMA to smooth this oscillatione W
have proved that FPS is stable—given stable input demariis, F
remains at the correct allocation of weights among limiterse it
arrives in that state. (We include the proof in the Appendiklt.
remains an open question, however, whether FPS converges un
all conditions, and if so, how quickly.

Finally, TCP’s slow start behavior complicates demandnessti
tion. Consider the arrival of a flow at a limiter that has a entr
rate limit of zero. Without buffering, the flow's SYN will beost
and the flow cannot establish its demand. Thus, we allow ibgrst
of the token bucket when the local rate limit is zero to alloWGP
flow in slow start to send a few packets before losses occuenVh
the allocator detects nonzero input demand, it treats thadd as
a bottlenecked flow for the first estimate interval. As a re$tPS
allocates rate to the flow equivalent to its instantaneotgsdaring
the beginning of slow start, thus allowing it to continue to\g.

4. EVALUATION METHODOLOGY

Our notion of a good distributed rate limiter is one that aately
replicates centralized limiter behavior. Traffic policimgecha-
nisms can affect packets and flows on several time scales¢-par
ularly, we can aim to emulate packet-level behavior or flewel
behavior. However, packet-level behavior is non-inteitigince
applications typically operate at the flow level. Even in ag&
limiter, any one measure of packet-level behavior flucwdiee to
randomness in the physical system, though transport-tégyes
may achieve the same relative fairness and throughput. iffhis
plies a weaker, but tractable goal of functionally equikaleehav-
ior. To this end, we measure limiter performance using aggee
metrics over real transport-layer protocols.

4.1 Metrics

We study three metrics to determine the fidelity of limiter de
signs: utilization, flow fairness, and responsiveness. beséc goal
of a distributed rate limiter is to hold aggregate throughgmross
all limiters below a specified global limit. To establish filewe
need to consider utilization over different time scaleshi@gable
throughput in the centralized case depends critically enttthffic
mix. Different flow arrivals, durations, round trip timesychproto-
cols imply that aggregate throughput will vary on many tiroalss.
For example, TCP’s burstiness causes its instantanecusgtput
over small time scales to vary greatly. A limiter's longftebe-
havior may yield equivalent aggregate throughput, but magtb
on short time scales. Note that, since our limiters do nougue
packets, some short-term excess is unavoidable to mailotagn
term throughput. Particularly, we aim to achieve fairnagsat to
or better than that of a centralized token bucket limiter.

Fairness describes the distribution of rate across flowsewe
ploy Jain’s fairness index to quantify the fairness acrogtow
set [20]. The index considefsflows where the throughput of flow
1 is z;. The fairness indeX is between 0 and 1, where 1 is com-
pletely fair (all flows share bandwidth equally):

(Z§:1 m’i)2

We must be careful when using this metric to ascertain floxgtle
fidelity. Consider a set of identical TCP flows traversing ragk
limiter. Between runs, the fairness index will show consitiée
variation; establishing the flow-level behavior for one armlim-
iters requires us to measure the distribution of the indeaxsscmul-
tiple experiments. Additional care must be taken when nraagu
Jain’s index across multiple limiters. Though the indexrapphes
1 as flows receive their fair share, skewed throughput tigions
can yield seemingly high indices. For example, consider G4l
where 9 achieve similar throughput while 1 gets nothings tie-
sults in the seemingly high fairness index of 0.9. If we cdasthe
distribution of flows across limiters—the 9 flows go througteo
limiter and the 1 flow through another—the fairness indexsduat
capture the poor behavior of the algorithm. Neverthelessh &
metric is necessary to help establish the flow-level bemafiour
limiters, and therefore we use it as a standard measureroes
with the above caveat. We point out discrepancies when tligg.a

4.2 Implementation

To perform rate limiting on real flows without proxying, weeus
user-space queuingirpt abl es on Linux to capture full IP pack-
ets and pass them to the designated rate limiter withouivtp
them to proceed through kernel packet processing. Eachirretier
either drops the packet or forwards it on to the destinatiwough
a raw socket. We use similar, but more restricted functignal
for VNET raw sockets in PlanetLab to capture and transmit ful
IP packets. Rate limiters communicate with each other vid?UD
Each gossip message sent over the communication fabriainent
a sequence number in addition to rate updates; the recdiriitgr
uses the sequence number to determine if an update is lokif an
so, compensates by scaling the value and weight of the neypest
date by the number of lost packets. Note that all of our expenis
rate limit traffic in one direction; limiters forward retung TCP
ACKSs irrespective of any rate limits.

f:

4.3 Evaluation framework

We evaluate our limiters primarily on a local-area emulatio
testbed using ModelNet [35], which we use only to emulatk lin
latencies. A ModelNet emulation tests real, deployabletgsro
types over unmodified, commodity operating systems andar&tw
stacks, while providing a level of repeatability unachlgeain an
Internet experiment. Running our experiments in a coredoéin-
vironment helps us gain intuition, ensures that transiemvark
congestion, failures, and unknown intermediate bottlktieks do
not confuse our results, and allows direct comparison a@gger-
iments. We run the rate limiters, traffic sources, and traffiks on
separate endpoints in our ModelNet network topology. Allrse,
sink, and rate limiter machines run Linux 2.6.9. TCP sources
New Reno with SACK enabled. We use a simple mesh topology
to connect limiters and route each source and sink pair grau
single limiter. The virtual topology connects all hodesngsl00-
Mbps links.
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5. EVALUATION

Our evaluation has two goals. The first is to establish thityabi
of our algorithms to reproduce the behavior of a single kmih
meeting the global limit and delivering flow-level fairnesehese

seconds (enough time for TCP to stabilize), the estimatrvat
is 50 ms, and the 1-second EWMA parameter is 0.1; we consider
alternative values in the next section.

Figure 3 plots the packet forwarding rate at each limiter a w

experiments use only 2 limiters and a set of homogeneous TCPas the achieved throughput of the flow aggregate. In all céises

flows. Next we relax this idealized workload to establishlftglén
more realistic settings. These experiments help achievsemond
goal: to determine the effective operating regimes for efesign.
For each system we consider responsiveness, performarass ac
various traffic compositions, and scaling, and vary therithstion

of flows across limiters, flow start times, protocol mix, anafftc
characteristics. Finally, as a proof of concept, we deplaylion-
iters across PlanetLab to control a mock-up of a simple clmgkd
service.

5.1 Baseline

The baseline experiment consists of two limiters configured
enforce a 10-Mbps global limit. We load the limiters with 18-u
bottlenecked TCP flows; 3 flows arrive at one limiter while 7 ar
rive at the other. We choose a 3-to-7 flow skew to avoid scesari
that would result in apparent fairness even if the algorifaits.
The reference point is a centralized token-bucket limi@FR)
servicing all 10 flows. We fix flow and inter-limiter round trip

aggregate utilization is approximately 10 Mbps. We lookaaler
time scales to determine the extent to which the limit is so€d.
Figure 4 shows histograms of delivered “instantaneousi#od-
ing rates computed over two different time periods, thusashg
whether a limiter is bursty or consistent in its limiting. 1Ale-
signs deliver the global limit over 1-second intervals; h&TB
and GRD, however, are bursty in the short term. By contrdB§ F
closely matches the rates of CTB at both time scales. Weueelie
this is because FPS uses a token bucket to enforce locas limit
appears that when enforcing the same aggregate limit, thafd-
ing rate of multiple token buckets approximates that of alsin
token bucket even at short time scales.

Returning to Figure 3, the aggregate forwarding rate shbald
apportioned between limiters in about a 3-to-7 split. GT&acly
fails to deliver in this regard, but both GRD and FPS appear ap
proximately correct upon visual inspection. We use Jagiisiess
index to quantify the fairness of the allocation. For each of
an experiment, we compute one fairness value across all,flows
respective of the limiter at which they arrive. Repeatinig #x-

times (RTTs) to 40 ms, and token bucket depth to 75,000 bytes— periment 10 times yields a distribution of fairness valué& use

slightly greater than the bandwidth-delay product, and,niow,
use a loss-free communication fabric. Each experimens &8t

quantile-quantile plots to compare the fairness distidnubf each
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Figure 6: Time series of forwarding rate for a flow join experiment. Every 10 seconds, a flow joins at an unused limiter.

limiter to the centralized token bucket (CTB). Recall thatim-
portant benchmark of our designs is their ability to repasa
distribution of flow fairness at least as good as that of CTEdy
do, their points will closely follow the = y line; points below the
line are less fair, indicating poor limiter behavior andmieiabove
the line indicate that the rate limiting algorithm produdsetter
fairness than CTB.

Figure 5 compares distributions for all algorithms in ousdsa
line experiment. GTB has fairness values around 0.7, whictee
sponds to the 7-flow aggregate unfairly dominating the 3-thow
gregate. This behavior is clearly visible in Figure 3(b).enthe
7-flow limiter receives almost all the bandwidth. GRD and FPS
on the other hand, exhibit distributions that are at or atibaé of
CTB. GRD, in fact, has a fairness index close to 1.0—much bet-
ter than CTB. We verify this counter-intuitive result by cpaning
the performance of CTB with that of a single GRD limiter (l&uk
“Central Random Drop” in the figure). It is not surprisingeth

that FPS is less fair than GRD, since it uses a token buckeicht e
limiter to enforce the local rate limit.

Additionally, with homogeneous flows across a wide range of
parameters—estimate intervals from 10 ms to 500 ms and EWMA
from 0 to 0.75—we find that GTB and GRD are sensitive to esti-
mate intervals, as they attempt to track packet-level Heraywe
omit the details for space). In general, GTB exhibits poanéss
for almost all choices of EWMA and estimate interval, and-per
forms well only when the estimate interval is small and theNE&
is set to 0 (no filter). We conjecture that GTB needs to saniye t
short-term behavior of TCP in congestion avoidance, sinosid-
ering solely aggregate demand over long time intervals faitap-
ture the increased aggressiveness of a larger flow aggretéte

%In future work, we plan to experiment with a local GRD-likera
dom drop mechanism instead of a token bucket in FPS; this will
improve the fairness of FPS in many scenarios.
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verified that GTB provides better fairness if we lengthen BCP
periodic behavior by growing its RTT. Since all results shitwat
GTB fails with anything but the smallest estimate interved do
not consider it further.

GRD is sensitive to the estimate interval, but in terms ofrsho
term utilization, not flow fairness, since it maintains tlaen& drop
probability until it receives new updates. Thus, it occaaity
drops at a higher-than-desired rate, causing congestgponsive
flows to back off significantly. While its long-term fairnessnains
high even for 500-ms estimate intervals, short-term watilan be-
comes exceedingly poor. By contrast, for homogeneous flBRS,
appears insensitive to the estimate interval, since flewtgemand
is constant. Both GRD and FPS require an EWMA to smooth input
demand to avoid over-reacting to short-term burstitess.

5.2 Flow dynamics

We now investigate responsiveness (time to convergencstand
bility) by observing the system as flows arrive and depart. We
sequentially add flows to a system of 5 limiters and obseree th
convergence to fair share of each flow. Figure 6(a) showsehe r
erence time-series behavior for a centralized token buckiete
that even through a single token bucket, the system is not com
pletely fair or stable as flows arrive or depart due to TCPistiu
ness. With a 500-ms estimate interval, GRD (Figure 6(b)s fai
to capture the behavior of the central token bucket. Only it
order-of-magnitude smaller estimate interval (Figure)a&cGRD
able to approximate the central token bucket, albeit withaéased
fairness. FPS (Figure 6(d)), on the other hand, exhibitdetst
amount of variation in forwarded rate even with a 500-maeste
interval, since flow-level demand is sufficiently constantohalf-
second intervals. This experiment illustrates that thebiein GRD
must observe occurs at a packet-level time scale: largmaigtiin-
tervals cause GRD to lose track of the global demand, resgyilti
chaotic packet drops. FPS, on the other hand, only requidstes
as flows arrive, depart, or change their behavior.

“Though neither are particularly sensitive to EWMA, we erapir
cally determined that a reasonable setting of the 1-sectvi&
is 0.1. We use this value unless otherwise noted.

| CIB | GRD | FPS |

Goodput (bulk mean] 6900.90] 7257.87] 6989.76
(stddev)| 125.45| 75.87 | 219.55

Goodput (web mean) 1796.06| 1974.35| 2090.25
(stddev)| 104.32 | 93.90 57.98
Web rate (h-mean) [0,5000) 28.17 25.84 25.71
[5000, 50000)| 276.18 | 342.96 | 335.80
[50000, 500000), 472.09 | 612.08 | 571.40
[500000,00) | 695.40 | 751.98 | 765.26

[ Fairness (bulk mean) 0.971 | 0.997 | 0.962 ]

Table 1: Goodput and delivered rates (Kbps), and fairness fo
bulk flows over 10 runs of the Web flow experiment. We use
mean values for goodput across experiments and use the har-
monic mean of rates (Kbps) delivered to Web flows of size (in
bytes) within the specified ranges.

5.3 Traffic distributions

While TCP dominates cloud-based service traffic, the flows
themselves are far from regular in their size, distributiand du-
ration. Here we evaluate the effects of varying traffic dedsan
by considering Web requests that contend with long-runfliGg
flows for limiter bandwidth. To see whether our rate limitiag
gorithms can detect and react to Web-service demand, wgnassi
10 long-lived (bulk) flows to one limiter and the service regts to
the other; this represents the effective worst-case for BREte
short and long flows cannot exert ordinary congestive pressu
upon each other when isolated. We are interested in thetyabili
of both traffic pools to attain the correct aggregate utiiag the
long-term fairness of the stable flows, and the service fatethe
Web flows.

Since we do not have access to traffic traces from deployed
cloud-based services, we use a prior technique to derivsta-di
bution of Web object sizes from a CAIDA Web trace for a high-
speed OC-48 MFN (Metropolitan Fiber Network) Backbone k lin
(San Jose to Seattle) that follows a heavy-tailed disiobui36].

We fetch objects in parallel from an Apache Web server using
ht t per f via a limiter. We distribute requests uniformly over ob-
jects in the trace distribution. Requests arrive accorting Pois-
son process with averageof 15.

Table 1 gives the delivered rates for the Web flows of differen
sizes and the delivered rates for the 10-flow aggregatesdh ea
scenario across 10 runs. This shows that the 10-flow aggregat
achieved a comparable allocation in each scenario. Whenisee
conjunction with the Web download service rates, it alsadaiets
that the Web traffic aggregate in the other limiter receieridor-
rect allocation. Considering the Web flow service rates glove
see that both GRD and FPS exhibit service rates close to tlzat o
single token bucket, even for flows of significantly differsizes.
The fairness index of the long-lived flows once again shows th
GRD exhibits higher fairness than either CTB or FPS. FPS does
not benefit from the fact that it samples flow-level behawvidrich,
in this context, is no more stable than the packet-level iehab-
served by GRD.

5.4 Bottlenecked TCP flows

So far, the limiters represent the bottleneck link for ea&PT
flow. Here we demonstrate the ability of FPS to correctlycite
rate across aggregates of bottlenecked and unbottlendicies!
The experiment in Figure 7 begins as our baseline 3-to-7 fkaws
experiment where 2 limiters enforce a 10 Mbps limit. Arourid 1
seconds, the 7-flow aggregate experiences an upstream 2dbp
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| [CTB [ GRD [ FPS]

Aggregate (Mbps)] 10.57] 10.63| 10.43
Short RTT (Mbps)[ 1.41 | 1.35 | 0.92
(stddev)| 0.16 | 0.71 | 0.15
Long RTT (Mbps)| 0.10 | 0.16 | 0.57
(stddev)| 0.01 | 0.03 | 0.05

Table 2: Average throughput for 7 short (10-ms RTT) flows and
3 long (100 ms) RTT flows distributed across 2 limiters.

tleneck, and FPS quickly re-apportions the remaining 8 Mifps
rate across the 3 flows at limiter 1. Then, at time 31, a single u
bottlenecked flow arrives at limiter 2. FPS realizes thatraottle-
necked flow exists at limiter 2, and increases the allocdtiothe
(7+1)-flow aggregate. In a single pipe, the 4 unbottlenedlmus
would now share the remaining 8 Mbps. Thus, limiter 2 should
get 40% of the global limit, 2 Mbps from the 7 bottlenecked fow
and 2 Mbps from the single unbottlenecked flow. By time 39, FPS
apportions the rate in this ratio.

5.5 Mixed TCP flow round-trip times

TCP is known to be unfair to long-RTT flows. In particular,
short-RTT flows tend to dominate flows with longer RTTs when
competing at the same bottleneck, as their tighter corbaps al-
low them to more quickly increase their transmission raf€xS, on
the other hand, makes no attempt to model this bias. Thusy) whe
the distribution of flow RTTs across limiters is highly skelyene
might be concerned that limiters with short-RTT flows woutd a
tificially throttle them to the rate achieved by longer-RTadwk at
other limiters. We conduct a slight variant of the baselirpes-
iment, with two limiters and a 3-to-7 flow split. In this insize,
however, all 7 flows traversing limiter 2 are “short” (10-m3$H,
and the 3 flows traversing limiter 1 are “long” (100-ms RTBp+
resenting a worst-case scenario. Table 2 shows the aggrdgat
livered throughput, as well as the average throughput fortsind
long-RTT flows for the different allocators. As expected SH#to-
vides a higher degree of fairness between RTTs, but all fhree
iters deliver equivalent aggregate rates.

5.6 Scaling

We explore scalability along two primary dimensions: thenau
ber of flows, and the number of limiters. First we consider a 2-
limiter setup similar to the baseline experiment, but withl@bal
rate limit of 50 Mbps. We send 5000 flows to the two limiters in
a 3-7 ratio: 1500 flows to the first and 3500 to the second. GRD
and FPS produce utilization of 53 and 46 Mbps and flow fairness
of 0.44 and 0.33 respectively. This is roughly equal to tHah o
single token bucket with 5000 flows (which yielded 51 Mbps and
0.34). This poor fairness is not surprising, as each flow h&s10
Kbps, and prior work has shown that TCP is unfair under such co

ditions [28]. Nevertheless, our limiters continue to periowvell
with many flows.

Next, we investigate rate limiting with a large number ofitiens
and different inter-limiter communication budgets, in awvieon-
ment in which gossip updates can be lost. We consider a tgpolo
with up to 490 limiters; our testbed contains 7 physical niraeh
with 70 limiters each. Flows travel from the source througfed
ent limiter nodes, which then forward the traffic to the sirfe
consider TCP flows here and use symmetric paths for the fdrwar
and reverse directions of a flow.) We set the global rate Itmit
50 Mbps and the inter-limiter and source-sink RTTs to 40 m&:. O
experiment setup has the number of flows arriving at eachidimi
chosen uniformly at random from 0 to 5. For experiments whith t
same number of limiters, the distribution and number of flasvs
the same. We start 1 random flow from the above distributienyev
100 ms; each flow lives for 60 seconds.

To explore the effect of communication budget, we vary the
branching factor lfr) of the gossip protocol from 1 to 7; for a
given value, each extra limiter incurs a fixed communicatiost.
Figure 8 shows the behavior of FPS in this scaling experiment
At its extreme there are 1249 flows traversing 490 limitei/e (
stop at 490 not due to a limitation of FPS, but due to a lack of
testbed resources.) Whdmr = 3, each extra limiter consumes
48 x 20 x 3 2.88 Kbps. Thus, at 490 limiters, the entire
system consumes a total of 1.4 Mbps of bandwidth for control
communication—Iless than 3% overhead relative to the globél

We find that beyond a branching factor of 3, there is littleddin
either in fairness or utilization. Indeed, extremely higharxhing
factors lead to message and ultimately information losyoBe 50
limiters, GRD fails to limit the aggregate rate (not showm)t this
is not assuaged by an increasing communication budgeegsirg
br). Instead it indicates GRD’s dependence on swiftly corverg
global arrival rate estimates. In contrast, FPS, becausepénds
on more slowly moving estimates of the number of flows at each
limiter, maintains the limit even at 490 limiters.

This experiment shows that limiters rely upon up-to-date-su
maries of global information, and these summaries may becom
stale when delayed or dropped by the network. In particalar,
concern lies with stale under-estimates that cause themysi
overshoot the global rate; a completely disconnected isystdue
to either congestion, failure, or attack—could over-subscthe
global limit by a factor ofN. We can avoid these scenarios by ini-
tializing limiters with the number of peerd/, and running a light-
weight membership protocol [24] to monitor the current nemb
of connected peers. For each disconnected peer, the licaitere-
duce the global limit byt , and set each stale estimate to zero. This
conservative policy drives the limiters towardj-iglimiter (where
each limiter enforces an equal fraction of the global agate)gas
disconnections occur. More generally, though, we defelyaizeof
DRL under adversarial or Byzantine conditions to future kvor
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Figure 8: Fairness and delivered rate vs. number of limiterdgn the scaling experiment.

5.7 Limiting cloud-based services

Finally, we subject FPS to inter-limiter delays, losses] acP
arrivals and flow lengths similar to those experienced byoad:!
based service. As in Section 5.3, we are not concerned wéth th
actual service being provided by the cloud or its computatio
load—we are only interested in its traffic demands. Hence, we
emulate a cloud-based service by using generic Web reqassts
a stand-in for actual service calls. We co-locate distetutate
limiters with 10 PlanetLab nodes distributed across Nontefica
configured to act as component servers. Without loss of gétyer
we focus on limiting only out-bound traffic from the servevee
could just as easily limit in-bound traffic as well, but thabwid
complicate our experimental infrastructure. Each Plaalethode
runs Apache and serves a series of Web objects; an off-éeist-b
client machine generates requests for these objects ugjag.
The rate limiters enforce an aggregate global rate limit Mtips
on the response traffic using a 100-ms estimate interval @yusa
sip branching factor of 4, resulting in a total control baidiv of
38.4 Kbps. The inter-limiter control traffic experienced ™ loss
during the course of the experiment.

Figure 9 shows the resulting time-series plot. Initiallgleaon-
tent server has demands to serve 3 requests simultaneoudg f
seconds, and then the total system load shifts to focus gn4onl
servers for 30 seconds, emulating a change in the servieggest
load, perhaps due to a phase transition in the service, osh fla

network, regardless of the available capacity at the irsgpesgress
points.

Distributed rate limiting can be viewed as a continuous fofm
distributed admission control. Distributed admissiontoairallows
participants to test for and acquire capacity across a settefork
paths [21, 40]; each edge router performs flow-admissias tes
ensure that no shared hop is over-committed. While our dirsit
similarly “admit” traffic until the virtual limiter has reded capac-
ity, they do so in an instantaneous, reservation-free dashi

Ensuring fairness across limiters can be viewed as a dis&ib
instance of the link-sharing problem [15]. A number of packe
scheduling techniques have been developed to enforcetiaking
policies, which provide bandwidth guarantees for différeasses
of traffic sharing a single link. These techniques, such aghted
fair queuing [11], apportion link capacity among traffic sdas
according to some fixed weights. These approaches diffen fro
ours in two key respects. First, by approximating geneedligro-
cessor sharing [31], they allocate excess bandwidth atracis-
logged classes in a max-min fair manner; we avoid enforcimg a
explicit type of fairness between limiters, though FPSstttie en-
sure max-min fairness between flows. Second, most clagsibas
fair-queuing schemes aim to provide isolation between g@obf
different classes. In contrast, we expose traffic at eacitdirto all
other traffic in the system, preserving whatever implicitioro of
fairness would have existed in the single-limiter case. idsubsed

static% limiting policy cannot take advantage of unused capacity
at the other 6 sites. In contrast, FPS, while occasionaligting
above the limit, accommodates the demand swing and detiers
full rate limit.

6. RELATED WORK

The problem of online, distributed resource allocationds &
new one, but to our knowledge we are the first to present a etancr
realization of distributed traffic rate limiting. While tteehas been
considerable work to determine the optimal allocation oficsa
width between end-point pairs in virtual private network®{s),
the goal is fundamentally different. In the VPN hose modé&][2
the challenge is to meet various quality-of-service guaes by
provisioning links in the network to support any traffic distition
that does not exceed the bandwidth guarantees at each ewtd poi
in the VPN. Conversely, the distributed rate limiting prerol is
to control the aggregate bandwidth utilization at all liengt in the

of a single limiter. There are a broad range of active queusage:
ment schemes that could serve equally well as a centralefed r
ence [13, 14]. Determining whether similar distributedsiens of
these sophisticated AQM schemes exist is a subject of futark.
The general problem of using and efficiently computing aggre
gates across a distributed set of nodes has been studiediintzen
of other contexts. These include distributed monitoring] [trig-
gering [19], counting [33, 38], and data stream querying2fs].
Two systems in particular also estimate aggregate demaag-to
portion shared resources at multiple points in a networle fliist
is a token-based admission architecture that considensrtidem
of parallel flow admissions across edge routers [7]. Thedt goto
divide the total capacity fairly across allocations at edgeers by
setting an edge router’s local allocation quota in proporto its
share of the request load. However they must revert to acinste
first-served allocation model if ever forced to “revoke” Hamndth
to maintain the right shares. Zhat al. use a similar protocol to
enforce service level agreements between server clugtéfs A
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rate limiter. Every 30 seconds total demand shifts to four severs and then back to all 10 nodes. The top line represents agegate

throughput; other lines represent the served rates at eacthirhiter.

set of layer-7 switches employ a “coordinated” request ngeal-
gorithm to distribute service requests in proportion todaggregate
sum of switch queue lengths.

7. CONCLUSION

As cloud-based services transition from marketing vapoeva
real, deployed systems, the demands on traditional Wetilgos
and Internet service providers are likely to shift dramaltic In
particular, current models of resource provisioning ancoant-
ing lack the flexibility to effectively support the dynamiorapo-
sition and rapidly shifting load enabled by the software a&ela
vice paradigm. We have identified one key aspect of this prabl
namely the need to rate limit network traffic in a distributashion,
and provided two novel algorithms to address this pressasgin

that UDP-based protocols deployed in a cloud will have tbein
congestion-control algorithms. Hence, FPS could be exend
calculate a flow weight for these as well.
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w1 _ I
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The weights computed given this starting state are, for éach
(U-% +Bi)-a
(U-%+Bi)— B’

Thus, considering the allocation at limiter 1,

W; =

Ua1+AB
w 1U 1

Wi+ -+ w,

T TaitABy | .. UantABy’
v Tt U

which is equal to
UCL1 +AB1 _ Il
Ua + AB1+ -+ Uan + ABy, L+ +1,’

the ideal allocation fraction for limiter 1. The allocat®at other
limiters are analogous.




