Spectral Algorithms for Graph Partitioning

Luca Trevisan
U.C Berkeley

Based on work with Tsz Chiu Kwok, Lap Chi Lau, James Lee, Yin Tat Lee, and Shayan Oveis Gharan
spectral graph theory

Use *linear algebra* to

- understand/characterize *graph properties*
- design efficient *graph algorithms*
linear algebra and graphs

Take an undirected graph $G = (V, E)$, consider matrix

$$A[i, j] := \text{weight of edge } (i, j)$$
Take an undirected graph $G = (V, E)$, consider matrix

$$A[i, j] := \text{weight of edge } (i, j)$$

$$\begin{bmatrix}
0., & 1., & 0., & 0., & 1., & 1., & 0., & 0., & 0., & 0. \\
1., & 0., & 1., & 0., & 0., & 0., & 1., & 0., & 0., & 0. \\
0., & 1., & 0., & 1., & 0., & 0., & 0., & 1., & 0., & 0. \\
0., & 0., & 1., & 0., & 1., & 0., & 0., & 0., & 1., & 0. \\
1., & 0., & 0., & 1., & 0., & 0., & 0., & 0., & 0., & 1. \\
1., & 0., & 0., & 0., & 0., & 0., & 1., & 1., & 0., & 0. \\
0., & 1., & 0., & 0., & 0., & 0., & 1., & 1., & 0., & 0. \\
0., & 0., & 1., & 0., & 0., & 0., & 0., & 1., & 1., & 0. \\
0., & 0., & 0., & 1., & 0., & 0., & 0., & 0., & 0., & 1. \\
0., & 0., & 0., & 0., & 1., & 1., & 0., & 0., & 0., & 0. \\
0., & 0., & 0., & 0., & 1., & 1., & 0., & 0., & 0., & 0. \\
\end{bmatrix}$$
Take an undirected graph $G = (V, E)$, consider matrix $A[i, j] := \text{weight of edge } (i, j)$

\[
\begin{bmatrix}
0., 1., 0., 0., 1., 1., 0., 0., 0., 0. \\
1., 0., 1., 0., 0., 0., 1., 0., 0., 0. \\
0., 1., 0., 0., 0., 0., 0., 1., 0., 0. \\
0., 0., 1., 0., 1., 0., 0., 0., 1., 0. \\
1., 0., 0., 1., 0., 0., 0., 0., 0., 1. \\
1., 0., 0., 0., 0., 0., 0., 0., 1., 0. \\
0., 1., 0., 0., 0., 0., 0., 0., 1., 1. \\
0., 0., 1., 0., 0., 0., 0., 0., 1., 1. \\
0., 0., 1., 0., 0., 0., 0., 0., 0., 1. \\
0., 0., 0., 1., 0., 0., 0., 0., 0., 0. \\
0., 0., 0., 0., 1., 0., 1., 0., 0., 0. \\
0., 0., 0., 0., 0., 1., 0., 1., 0., 0. \\
0., 0., 0., 0., 0., 0., 1., 0., 0., 0. \\
0., 0., 0., 0., 0., 0., 0., 1., 0., 0. \\
0., 0., 0., 0., 0., 0., 0., 0., 1., 0. \\
0., 0., 0., 0., 0., 0., 0., 0., 0., 1.
\end{bmatrix}
\]

eigenvalues \rightarrow combinatorial properties

eigenvenctors \rightarrow algorithms for combinatorial problems
fundamental thm of spectral graph theory

\[G = (V, E) \text{ undirected, } A \text{ adjacency matrix, } d_v \text{ degree of } v, \ D \text{ diagonal matrix of degrees} \]

\[L := I - D^{-\frac{1}{2}} AD^{-\frac{1}{2}} \]
fundamental thm of spectral graph theory

\(G = (V, E) \) undirected, \(A \) adjacency matrix, \(d_v \) degree of \(v \), \(D \) diagonal matrix of degrees

\[
L := I - D^{-\frac{1}{2}} AD^{-\frac{1}{2}}
\]

\(L \) is symmetric, all its eigenvalues are real and
fundamental thm of spectral graph theory

\[G = (V, E) \text{ undirected, } A \text{ adjacency matrix, } d_v \text{ degree of } v, \ D \text{ diagonal matrix of degrees} \]

\[L := I - D^{-\frac{1}{2}} AD^{-\frac{1}{2}} \]

\(L \) is symmetric, all its eigenvalues are real and

- \(0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq 2 \)
fundamental thm of spectral graph theory

\(G = (V, E) \) undirected, \(A \) adjacency matrix, \(d_v \) degree of \(v \), \(D \) diagonal matrix of degrees

\[
L := I - D^{-\frac{1}{2}} AD^{-\frac{1}{2}}
\]

\(L \) is symmetric, all its eigenvalues are real and

- \(0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq 2 \)
- \(\lambda_k = 0 \) iff \(G \) has \(\geq k \) connected components
- \(\lambda_n = 2 \) iff \(G \) has a bipartite connected component
0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{5}{3}, \frac{5}{3},
0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}
0, 0, .69, .69, 1.5, 1.5, 1.8, 1.8
0, 0, .69, .69, 1.5, 1.5, 1.8, 1.8
0, $\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2$
0, $\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{4}{3}, \frac{4}{3}, \frac{4}{3}, 2$
If \(M \in \mathbb{R}^{n \times n} \) is symmetric, and

\[\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \]

are eigenvalues counted with multiplicities, then

\[\lambda_k = \min_{A \text{ a } k-\text{dim subspace of } \mathbb{R}^V} \max_{x \in A} \frac{x^T M x}{x^T x} \]

and eigenvectors of \(\lambda_1, \ldots, \lambda_k \) are basis of \(\text{opt } A \)
why eigenvalues relate to connected components

If $G = (V, E)$ is undirected and L is Laplacian, then

$$\frac{x^T L x}{x^T x} = \frac{\sum_{(u,v) \in E} |x_u - x_v|^2}{\sum_v d_v \cdot x_v^2}$$

Note: $\sum_{(u,v) \in E} |x_u - x_v|^2 = 0$ iff x constant on connected components
why eigenvalues relate to connected components

If \(G = (V, E) \) is undirected and \(L \) is Laplacian, then

\[
\frac{x^T L x}{x^T x} = \frac{\sum_{(u,v) \in E} |x_u - x_v|^2}{\sum_v d_v \cdot x_v^2}
\]

If \(\lambda_1 \leq \lambda_2 \leq \cdots \lambda_n \) are eigenvalues of \(L \) with multiplicities,

\[
\lambda_k = \min_A \max_{x \in A} R(x)
\]

where

\[
R(x) := \frac{\sum_{(u,v) \in E} |x_u - x_v|^2}{\sum_v d_v \cdot x_v^2}
\]

Note: \(\sum_{(u,v) \in E} |x_u - x_v|^2 = 0 \) iff \(x \) constant on connected components
why eigenvalues relate to connected components

If $G = (V, E)$ is undirected and L is Laplacian, then

$$x^T L x \over x^T x = \sum_{(u,v) \in E} |x_u - x_v|^2 \over \sum_v d_v \cdot x_v^2$$

If $\lambda_1 \leq \lambda_2 \leq \cdots \lambda_n$ are eigenvalues of L with multiplicities,

$$\lambda_k = \min_{A \ k- \text{dim subspace of } \mathbb{R}^V} \max_{x \in A} R(x)$$

where

$$R(x) := \sum_{(u,v) \in E} |x_u - x_v|^2 \over \sum_v d_v \cdot x_v^2$$

Note: $\sum_{(u,v) \in E} |x_u - x_v|^2 = 0$ iff x constant on connected components
if G has $\geq k$ connected components

$$\lambda_k = \min_{A \ k-\text{dim subspace of } \mathbb{R}^V} \max_{x \in A} \frac{\sum_{(u,v) \in E} |x_u - x_v|^2}{\sum_v d_v \cdot x_v^2}$$
if G has $\geq k$ connected components

$$\lambda_k = \min_{A \text{ a } k-\text{dim subspace of } \mathbb{R}^V} \max_{x \in A} \frac{\sum_{(u,v) \in E} |x_u - x_v|^2}{\sum_v d_v \cdot x_v^2}$$

Consider the space of all vectors that are constant in each connected component; it has dimension at least k and so it witnesses $\lambda_k = 0$.
If \(\lambda_k = 0 \) there is a \(k \)-dimensional space \(A \) of vectors, each constant on connected components. The graph must have \(\geq k \) connected components.
If $\lambda_k = 0$ there is a k-dimensional space A of vectors, each constant on connected components.
If $\lambda_k = 0$, there is a k-dimensional space A of vectors, each constant on connected components.

The graph must have $\geq k$ connected components.
\[\text{vol}(S) := \sum_{v \in S} d_v \]

\[\phi(S) := \frac{E(S, \bar{S})}{\text{vol}(S)} \]

\[\phi(G) := \min_{S \subseteq V: 0 < \text{vol}(S) \leq \frac{1}{2} \text{vol}(V)} \phi(S) \]

In regular graphs, same as \textit{edge expansion} and, up to factor of 2 \textit{non-uniform sparsest cut}
conductance

\[0, 0, .69, .69, 1.5, 1.5, 1.8, 1.8\]

\[\phi(G) = \phi(\{0, 1, 2\}) = \frac{0}{6} = 0\]
conductance

$0, .055, .055, .211, \ldots$

$\phi(G) = \frac{2}{18}$
conductance

\[0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3} \]

\[\phi(G) = \frac{5}{15} \]
finding S of small conductance

- G is a social network
finding S of small conductance

- G is a social network
 - S is a set of users more likely to be friends with each other than anyone else
finding S of small conductance

- G is a social network
 - S is a set of users more likely to be friends with each other than anyone else

- G is a similarity graph on items of a data sets
finding S of small conductance

- G is a social network
 - S is a set of users more likely to be friends with each other than anyone else

- G is a similarity graph on items of a data sets
 - S are items more similar to each other than to other items
 - [Shi, Malik]: image segmentation
finding S of small conductance

- G is a social network
 - S is a set of users more likely to be friends with each other than anyone else

- G is a similarity graph on items of a data sets
 - S are items more similar to each other than to other items
 - [Shi, Malik]: image segmentation

- G is an input of a NP-hard optimization problem
 - Recurse on S, $V - S$, use dynamic programming to combine in time $2^{O(|E(S,\bar{S})|)}$
conductance versus λ_2

Recall:

$\lambda_2 = 0 \iff G \text{ disconnected}$
Recall:
\[
\lambda_2 = 0 \iff G \text{ disconnected} \iff \phi(G) = 0
\]
conductance versus λ_2

Recall:

$$\lambda_2 = 0 \iff G \text{ disconnected} \iff \phi(G) = 0$$

Cheeger inequality (Alon, Milman, Dodziuk, mid-1980s):

$$\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}$$
Cheeger inequality

\[
\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}
\]
Cheeger inequality

\[\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2} \]

Constructive proof of \(\phi(G) \leq \sqrt{2\lambda_2} \):
- given eigenvector \(x \) of \(\lambda_2 \).
- sort vertices \(v \) according to \(x_v \)
- a set of vertices \(S \) occurring as initial segment or final segment of sorted order has

\[\phi(S) \leq \sqrt{2\lambda_2} \]
Cheeger inequality

\[\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2} \]

Constructive proof of \(\phi(G) \leq \sqrt{2\lambda_2} \):

- given eigenvector \(x \) of \(\lambda_2 \).
- sort vertices \(v \) according to \(x_v \)
- a set of vertices \(S \) occurring as initial segment or final segment of sorted order has

\[\phi(S) \leq \sqrt{2\lambda_2} \leq 2\sqrt{\phi(G)} \]

Fiedler’s sweep algorithm can be implemented in \(\tilde{O}(|V| + |E|) \) time
\[
\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}
\]

applications
\[
\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}
\]

- rigorous analysis of *sweep algorithm*
 (practical performance usually better than worst-case analysis)
applications

\[\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2}\lambda_2 \]

- rigorous analysis of sweep algorithm
 (practical performance usually better than worst-case analysis)

- to certify \(\phi \geq \Omega(1) \), enough to certify \(\lambda_2 \geq \Omega(1) \)
\[
\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}
\]

- rigorous analysis of sweep algorithm
 (practical performance usually better than worst-case analysis)

- to certify \(\phi \geq \Omega(1) \), enough to certify \(\lambda_2 \geq \Omega(1) \)

- mixing time of random walk is \(O\left(\frac{1}{\lambda_2} \log |V|\right) \) and so also

\[
O\left(\frac{1}{\phi^2(G)} \log |V|\right)
\]
A similar theory for other eigenvectors, with algorithmic applications

One intended application: Like Cheeger’s inequality is worst case analysis of Fiedler’s algorithm, develop worst-case analysis of spectral clustering
spectral clustering

The following algorithm works well in practice. (But to solve what problem?)

Compute k eigenvectors $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(k)}$ of k smallest eigenvalues of L

Define mapping $F : V \rightarrow \mathbb{R}^k$

$$F(v) := (x_v^{(1)}, x_v^{(2)}, \ldots, x_v^{(k)})$$

Apply k-means to the points that vertices are mapped to
spectral embedding of a random graph

$k = 3$
When λ_k is small
From fundamental theorem of spectral graph theory:

- $\lambda_k = 0 \iff G \text{ has } \geq k \text{ connected components}$
From fundamental theorem of spectral graph theory:

- $\lambda_k = 0 \iff G$ has $\geq k$ connected components

We prove:

- λ_k small $\iff G$ has $\geq k$ disjoint sets of small conductance
Define order-\(k\) conductance

\[\phi_k(G) := \min_{S_1, \ldots, S_k \text{ disjoint}} \max_{i=1, \ldots, k} \phi(S_i) \]

Note:

- \(\phi(G) = \phi_2(G)\)
- \(\phi_k(G) = 0 \iff G \text{ has } \geq k \text{ connected components}\)
0, 0, .69, .69, 1.5, 1.5, 1.8, 1.8
\[\phi_3(G) = \max \left\{ 0, \frac{2}{6}, \frac{2}{4} \right\} = \frac{1}{2} \]
\[\phi_3(G) = \max \left\{ \frac{2}{12}, \frac{2}{12}, \frac{2}{14} \right\} = \frac{1}{6} \]
\[\lambda_k = 0 \iff \phi_k = 0 \]
\(\lambda_k = 0 \iff \phi_k = 0 \)

\[
\frac{\lambda_k}{2} \leq \phi_k(G) \leq O(k^2) \cdot \sqrt{\lambda_k}
\]

(Lee, Oveis Gharan, T, 2012)

Upper bound is constructive: in nearly-linear time we can find \(k \) disjoint sets each of expansion at most \(O(k^2) \sqrt{\lambda_k} \).
\[\frac{\lambda_k}{2} \leq \phi_k(G) \leq O(k^2) \cdot \sqrt{\lambda_k} \]
\[
\frac{\lambda_k}{2} \leq \phi_k(G) \leq O(k^2) \cdot \sqrt{\lambda_k}
\]

\[
\phi_k(G) \leq O(\sqrt{\log k} \cdot \lambda_{1.1k})
\]

(Lee, Oveis Gharan, T, 2012)

\[
\phi_k(G) \leq O(\sqrt{\log k} \cdot \lambda_{O(k)})
\]

(Louis, Raghavendra, Tetali, Vempala, 2012)

Factor $O(\sqrt{\log k})$ is tight
\[\phi_k(G) \leq O(\sqrt{\log k} \cdot \lambda_O(k)) \]

(Louis, Raghavendra, Tetali, Vempala, 2012)
(Lee, Oveis Gharan, T, 2012)

Miclo 2013:
- Analog for infinite-dimensional Markov process.
- Application: every hyper-bounded operator has a spectral gap.
- Solves 40+ year old open problem
Recall spectral clustering algorithm

1. Compute k eigenvectors $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(k)}$ of k smallest eigenvalues of L
2. Define mapping $F : V \rightarrow \mathbb{R}^k$

 $$F(v) := (x_v^{(1)}, x_v^{(2)}, \ldots, x_v^{(k)})$$
3. Apply k-means to the points that vertices are mapped to
Recall spectral clustering algorithm

1. Compute k eigenvectors $x^{(1)}, \ldots, x^{(k)}$ of k smallest eigenvalues of L
2. Define mapping $F : V \rightarrow \mathbb{R}^k$
 $$F(v) := (x^{(1)}_v, x^{(2)}_v, \ldots, x^{(k)}_v)$$
3. Apply k-means to the points that vertices are mapped to

LOT algorithms and LRTV algorithm find k low-conductance sets if they exist

First step is spectral embedding

Then geometric partitioning but not k-means
When λ_k is large
The Cheeger inequality states:

\[
\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}
\]

Nearly-linear time sweep algorithm finds \(S \) such that, for every \(k \),

\[
\phi(S) \leq \phi(G) \cdot O(k) \sqrt{\lambda_k}
\]

(Kwok, Lau, Lee, Oveis Gharan, 2013)
Cheeger inequality

\[\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2} \]

\[\phi(G) \leq O(k) \cdot \frac{\lambda_2}{\sqrt{\lambda_k}} \]

(Kwok, Lau, Lee, Oveis Gharan, T, 2013)

and the upper bound holds for the sweep algorithm
Cheeger inequality

\[\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2} \]

\[\phi(G) \leq O(k) \cdot \frac{\lambda_2}{\sqrt{\lambda_k}} \]

(Kwok, Lau, Lee, Oveis Gharan, T, 2013)

and the upper bound holds for the sweep algorithm

Nearly-linear time sweep algorithm finds \(S \) such that, for every \(k \),

\[\phi(S) \leq \phi(G) \cdot O \left(\frac{k}{\sqrt{\lambda_k}} \right) \]
Cheeger inequality

$$\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}$$
Cheeger inequality

$$\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}$$

$$\phi(G) \leq O(k) \cdot \frac{\lambda_2}{\sqrt{\lambda_k}}$$

(Kwok, Lau, Lee, Oveis Gharan, T, 2013)

Liu 2014: analog for Riemann manifolds. Applications to bounding eigenvalue gaps
We find a $2k$-valued vector y such that

$$\|x - y\|^2 \leq O\left(\frac{\lambda_2}{\lambda_k}\right)$$

where x is eigenvector of λ_2
proof structure

1. We find a \(2k \)-valued vector \(y \) such that

\[
||x - y||^2 \leq O \left(\frac{\lambda_2}{\lambda_k} \right)
\]

where \(x \) is eigenvector of \(\lambda_2 \)

2. For every \(k \)-valued vector \(y \), applying the sweep algorithm to \(x \) finds a set \(S \) such that

\[
\phi(S) \leq O(k) \cdot \left(\lambda_2 + \sqrt{\lambda_2} \cdot ||x - y|| \right)
\]
1. We find a $2k$-valued vector y such that

$$||x - y||^2 \leq O\left(\frac{\lambda_2}{\lambda_k}\right)$$

where x is eigenvector of λ_2

2. For every k-valued vector y, applying the sweep algorithm to x finds a set S such that

$$\phi(S) \leq O(k) \cdot \left(\lambda_2 + \sqrt{\lambda_2} \cdot ||x - y||\right)$$

So the sweep algorithm finds S

$$\phi(S) \leq O(k) \cdot \lambda_2 \cdot \frac{1}{\sqrt{\lambda_k}}$$
If λ_k is large,

then a cut of approximately minimal conductance can be found in time exponential in k

using spectral methods [ABS]

or convex relaxations [BRS, GS]
If λ_k is large,

then a cut of approximately minimal conductance

can be found in time exponential in k

using spectral methods [ABS]
or convex relaxations [BRS, GS]

[Kwok, Lau, Lee, Oveis-Gharan, T]: the nearly-linear time sweep algorithm finds good approximation if λ_k is large
bounded threshold rank

If λ_k is large,

[Kwok, Lau, Lee, Oveis-Gharan, T]: the nearly-linear time sweep algorithm finds good approximation
bounded threshold rank

If λ_k is large,

[Kwok, Lau, Lee, Oveis-Gharan, T]: the nearly-linear time sweep algorithm finds good approximation

[Oveis-Gharan, T]: the Goemans-Linial relaxation (solvable in polynomial time independent of k) can be rounded better than in the Arora-Rao-Vazirani analysis
If λ_k is large,

[Kwok, Lau, Lee, Oveis-Gharan, T]: the nearly-linear time sweep algorithm finds good approximation

[Oveis-Gharan, T]: the Goemans-Linial relaxation (solvable in polynomial time independent of k) can be rounded better than in the Arora-Rao-Vazirani analysis

[Oveis-Gharan, T]: the graph satisfies a *weak regularity lemma* in the sense of Frieze and Kannan
If λ_k is large, the graph is an easy instance for several algorithms. Two types of results:

- There is a near-optimal combinatorial solution with a simple structure

 Find it by brute force

- The optimum of a relaxation has a special structure

 Improved rounding algorithm that uses the special structure
When λ_{k+1} is large and λ_k is small
• if \(\lambda_k = 0 \) and \(\lambda_{k+1} > 0 \) then \(G \) has exactly \(k \) connected components;

\[\text{eigenvalue gap} \]
• if $\lambda_k = 0$ and $\lambda_{k+1} > 0$ then G has exactly k connected components;

• [Tanaka 2012] If $\lambda_{k+1} > 5^k \sqrt{\lambda_k}$, then vertices of G can be partitioned into k sets of small conductance, each inducing a subgraph of large conductance. [Non-algorithmic proof]
• if $\lambda_k = 0$ and $\lambda_{k+1} > 0$ then G has exactly k connected components;

• [Tanaka 2012] If $\lambda_{k+1} > 5^k \sqrt{\lambda_k}$, then vertices of G can be partitioned into k sets of small conductance, each inducing a subgraph of large conductance. [Non-algorithmic proof]

• [Oveis-Gharan, T 2013] Sufficient $\phi_{k+1}(G) > (1 + \epsilon)\phi_k(G)$; if $\lambda_{k+1} > O(k^2)\sqrt{\lambda_k}$, then partition can be found algorithmically
In Summary

\(\lambda_k\) is small: There are \(k\) disjoint non-expanding sets; they can be found efficiently.

\(\lambda_k\) is large: Easy instance for various algorithms.

\(\lambda_k\) is small and \(\lambda_{k+1}\) is large: Nodes can be partitioned into \(k\) sets, each with high internal expansion and small external expansion.