CSE 291: Fourier analysis
Homework 2

1. **Total influence and noise sensitivity.** Compute (at least approximately) the total influence and noise sensitivity for the following functions:
 (a) **PARITY:** \(f(x) = x_1 \oplus \ldots \oplus x_n \).
 (b) **MAJORITY:** \(f(x) = \text{sign}(x_1 + \ldots + x_n) \).
 (c) **DICTATOR:** \(f(x) = x_1 \).
 (d) **TRIBES:** Assume \(n = w2^w \) and take \(f(x) = \text{TRIBES}_{w,2^w} = \text{AND}(\text{OR}(x_1,\ldots,x_w),\ldots,\text{OR}(x_{n-w+1},\ldots,x_n)) \).

2. **Robust Arrow’s theorem.** Consider a 3-candidate Condorcet election using a boolean function \(f : \{-1,1\}^n \rightarrow \{-1,1\} \). Assume that \(f \) is far from a dictator, in the sense that \(|\hat{f}(|i|)| \leq 1 - \varepsilon \) for all \(i \in [n] \). Prove that the probability of a Condorcet winner is at most \(1 - \delta \), where \(\delta = \delta(\varepsilon) \). What is the best bound you can give on \(\delta \)?

3. **Fourier granularity.** Let \(f : \{-1,1\}^n \rightarrow \mathbb{Z} \).
 (a) Prove that for any \(S \), \(\hat{f}(S) = \frac{a_S}{2^n} \) for some \(a_S \in \mathbb{Z} \).
 (b) Assume furthermore that \(\deg(f) = d \). Let \(S \) be a maximal monomial, i.e. \(|S| = d \).
 Let \(g : \{-1,1\}^d \rightarrow \mathbb{Z} \) be obtained by restricting \(f \) to the variables in \(S \), and fixing the rest arbitrarily. Argue that \(\hat{g}([d]) = \hat{f}(S) \). Conclude that \(\hat{f}(S) = \frac{a_S}{2^n} \) for some \(a_S \in \mathbb{Z} \).
 (c) Use this iteratively to show that if \(\deg(f) = d \) then for all \(S \) it holds that \(\hat{f}(S) = \frac{a_S}{2^n} \) for some \(a_S \in \mathbb{Z} \).
 (d) Assume now that \(f : \{-1,1\}^n \rightarrow \{-1,1\} \) has degree \(d \). Prove that \(f \) has at most \(2^{2d} \) nonzero Fourier coefficients.

4. **Exact learning.** Let \(f : \{-1,1\}^n \rightarrow \{-1,1\} \). Assume that \(\deg(f) = d \) (for example, \(f \) can be computed by a decision tree of depth \(d \)). We consider learning algorithms which need to compute \(f \) exactly (that is, with no error), and succeed with high probability (say, 99%).
 (a) Show that \(f \) can be learned exactly from \(\text{poly}(2^d,n) \) uniform samples in time \(n^d \cdot \text{poly}(2^d,n) \).
(b) Show that f can be learned exactly using $\text{poly}(2^d, n)$ membership queries in time $\text{poly}(2^d, n)$ (hint: use Q2).

(c) Prove that learning a d-junta exactly requires at least 2^d membership queries.

Open Problem. Consider the problem of learning d-juntas (or more generally, depth d decision trees) for $d = O(\log n)$, say. Both types of learning algorithms (using uniform samples, or using membership queries) both require near optimal number of samples / queries, but they differ in their time complexity. It is unknown whether learning from uniform samples really requires n^d time, or whether it can be improved to $\text{poly}(2^d, n)$ time.