CSE 190, Great ideas in algorithms: Polynomial multiplication and FFT

1 Polynomial multiplication

A univariate polynomial is

$$f(x) = \sum_{i=0}^{n} f_i x^i.$$

The degree of a polynomial is the maximal i such that $f_i \neq 0$. The product of two polynomials f,g of degree n each is given by

$$f(x)g(x) = \left(\sum_{i=0}^{n} f_i x^i \right) \left(\sum_{j=0}^{n} g_j x^j \right) = \sum_{i=0}^{n} \sum_{j=0}^{n} f_i g_j x^{i+j} = \sum_{i=0}^{2n} \left(\sum_{j=0}^{\min(i,n)} f_j g_{i-j} \right) x^i.$$

So, in order to compute the coefficients of fg, we need to compute $\sum_{j=0}^{\min(i,n)} f_j g_{i-j}$ for all $0 \leq i \leq 2n$. This trivially takes time $O(n^2)$. We will see how to do it in time $O(n \log n)$, using a variant of the Fast Fourier Transform (FFT).

1.1 FFT

Let $\omega_n \in \mathbb{C}$ be a primitive n-th root of unity, for example $\omega_n = e^{2\pi i/n} = \cos(2\pi/n) + i \sin(2\pi/n)$. The order n Fourier matrix is given by

$$(M_n)_{i,j} = (\omega_n)^{ij} = (\omega_n)^{ij \mod n}$$

What is so special about it? well, as we will see soon, we can multiply it by a vector in time $O(n \log n)$, whereas for general matrices this takes time $O(n^2)$. To keep the description simple, we assume from now on that n is a power of two.

Theorem 1.1. For any $x \in \mathbb{C}^n$, we can compute $(M_n)x$ using $O(n \log n)$ additions and multiplications.
Proof. Decompose \(M_n \) into four \(n/2 \times n/2 \) matrices as follows. First, reorder the rows to list first all \(n/2 \) even indices, then all \(n/2 \) odd indices. Let \(M'_n \) be the new matrix, with re-ordered rows. Decompose

\[
M'_n = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.
\]

What are \(A, B, C, D \)? If \(1 \leq a, b \leq n/2 \) then

- \(A_{a,b} = (M_n)_{2a,b} = (\omega_n)^{2ab} = (\omega_{n/2})^{ab} = (M_{n/2})_{a,b}. \)
- \(B_{a,b} = (M_n)_{2a,b+n/2} = (\omega_n)^{2ab+an} = (\omega_n)^{2ab} = (M_{n/2})_{a,b}. \)
- \(C_{a,b} = (M_n)_{2a+1,b} = (\omega_n)^{2ab+b} = (M_{n/2})_{a,b} \cdot (\omega_n)^b. \)
- \(D_{a,b} = (M_n)_{2a+1,b+n/2} = (\omega_n)^{2ab+b+an+n/2} = -(M_{n/2})_{a,b} \cdot (\omega_n)^b. \)

So, let \(P \) be the \(n/2 \times n/2 \) diagonal matrix with \(P_{a,b} = (\omega_n)^b \). Then

\[
A = B = M_{n/2}, \quad C = -D = M_{n/2}P.
\]

In order to compute \((M_n)x \), decompose \(x = (x', x'') \) with \(x', x'' \in \mathbb{C}^{n/2} \). Then

\[
(M'_n)x = (Ax + By, Cx + Dy) = (M_{n/2}(x + y), M_{n/2}P(x - y)).
\]

Let \(T(n) \) be the number of additions and multiplications required to multiply \(M_n \) by a vector. Then to compute \((M_n)x \) we need to: compute \(x + y, x - y, P(x - y) \), which takes time \(3n \) since \(P \) is diagonal; multiply each of the vectors by \(M_{n/2} \), which takes time \(2T(n/2) \); and finally reorder the rows back to compute \((M_n)x \), which takes another \(n \) steps. So we obtain the recursion

\[
T(n) = 2T(n/2) + 4n.
\]

This recursion solves to \(T(n) \leq 4n \log n \):

\[
T(n) \leq 2 \cdot 4(n/2) \log(n/2) + 4n = 4n \log n - 4n + 4n.
\]

\[\square\]

1.2 Inverse FFT

The inverse of the Fourier matrix is the complex conjugate of the Fourier matrix, up to scaling.

Lemma 1.2. \((M_n)^{-1} = \frac{1}{n} M_n^* \).

Proof. We have \((M^*_n)_{a,b} = \overline{(\omega_n)^{ab}} = \omega_n^{-ab} \). So

\[
(M_n M_n^*)_{a,b} = \sum_{c=0}^{n-1} (\omega_n)^{(a-b)c}
\]

2
If $a = b$ then the sum equals n. We claim that when $a \neq b$ the sum is zero. To see that, let $S = \sum_{i=0}^{n-1} \omega_n^i c$, where $c \neq 0 \mod n$. Then

$$(\omega_n)^c \cdot S = \sum_{i=1}^{n} (\omega_n)^{ic} = \sum_{i=0}^{n-1} (\omega_n)^{ic} = S.$$

Since ω_n has order n, we have $\omega_n^c \neq 1$, and hence $S = 0$. \hfill \square

Corollary 1.3. For any $x \in \mathbb{C}^n$, we can compute $(M_n)^{-1}x$ using $O(n \log n)$ additions and multiplications.

1.3 Fast polynomial multiplication

Let $f(x)$ be a polynomial. Its order n Fourier transform is defined as its evaluations on the n-th roots of unity:

$$\hat{f}(i) = f((\omega_n)^i).$$

Lemma 1.4. Let $f(x)$ be a polynomial of degree $\leq n - 1$. Its Fourier transform can be computed in time $O(n \log n)$.

Proof. Let $f(x) = \sum_{i=0}^{n-1} f_i x^i$. Then

$$\hat{f}(j) = \sum_{i=0}^{n-1} f_i (\omega_n)^{ij} = (M_n) \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_{n-1} \end{pmatrix}$$

\hfill \square

Corollary 1.5. Let f be a polynomial of degree $\leq n - 1$. Given the evaluations of f at the n-th roots of unity, we can recover the coefficients of f in time $O(n \log n)$.

Proof. Compute $f = (M_n)^{-1}\hat{f}$. \hfill \square

The Fourier transform of a product has a simple formula:

$$\hat{(fg)}(i) = (fg)((\omega_n)^i) = f((\omega_n)^i) \cdot g((\omega_n)^i) = \hat{f}(i) \cdot \hat{g}(i).$$

So, we can multiply two polynomials as follows: compute their Fourier transform; multiply it coordinate-wise; and then perform the inverse Fourier transform. Note that if f, g have degrees d, e, respectively, then fg has degree $d + e$. So, we need to choose $n > d + e$ to compute their product correctly.
Fast polynomial multiplication

Input: two polynomials \(f, g \), of degrees \(d \) and \(e \), respectively, given as lists of coefficients
Output: their product \(fg \) as a list of coefficients

0. Let \(n \) be the smallest power of two, such that \(n \geq d + e + 1 \)
1. Pad \(f, g \) to length \(n \) if necessary (by adding zeros)
2. Compute \(x = (M_n) f \) \hspace{1cm} // \hspace{1cm} \(x = \hat{f} \)
3. Compute \(y = (M_n) g \) \hspace{1cm} // \hspace{1cm} \(y = \hat{g} \)
4. Compute \(z_i = x_iy_i \) for \(1 \leq i \leq n \) \hspace{1cm} // \hspace{1cm} \(z = \hat{fg} \)
5. Return \((M_n)^{-1} z \).

1.4 Multivariate polynomials

Let \(f, g \) be multivariate polynomials. For simplicity, let’s consider bivariate polynomials. Let
\[
 f(x, y) = \sum_{i,j=0}^{n} f_{i,j} x^i y^j, \quad g(x, y) = \sum_{i,j=0}^{n} g_{i,j} x^i y^j.
\]
Their product is
\[
 (fg)(x, y) = \sum_{i,j,i',j'=0}^{n} f_{i,j} g_{i',j'} x^{i+i'} y^{j+j'} = \sum_{i,j=0}^{2n} \left(\sum_{i'=0}^{\min(n,i)} \sum_{j'=0}^{\min(n,j)} f_{i',j'} g_{i-i',j-j'} \right) x^i y^j.
\]
Our goal is to compute \(fg \) quickly. One approach is to define a two-dimensional FFT. Instead, we would reduce the problem of multiplying two bivariate polynomials of degree \(n \) in each variable, to the problem of multiplying two univariate polynomials of degree \(O(n^2) \), and then apply the algorithm using the standard FFT.

Let \(N \) be large enough to be determined later, and define the following univariate polynomials:
\[
 F(z) = \sum_{i,j=0}^{n} f_{i,j} z^{N_i+j}, \quad G(z) = \sum_{i,j=0}^{n} g_{i,j} z^{N_i+j}.
\]
We can clearly compute \(F, G \) from \(f, g \) in linear time, and as \(\deg(F), \deg(G) \leq (N + 1)n \), we can compute \(F \cdot G \) in time \(O((Nn) \log(Nn)) \). The only question is whether we can infer \(f \cdot g \) from \(F \cdot G \).

Lemma 1.6. Let \(N \geq 2n + 1 \). If \(H(z) = F(z) G(z) = \sum H_i z^i \) then
\[
 (fg)(x, y) = \sum_{i,j=0}^{2n} H_{N_i+j} x^i y^j.
\]
Proof. We have

\[H(z) = F(z)G(z) = \left(\sum_{i=0}^{n} f_{i,j} z^{N_i + j} \right) \left(\sum_{i=0}^{n} g_{i',j'} z^{N_{i'} + j'} \right) \]

\[= \sum_{i,j,i',j'=0}^{n} f_{i,j} g_{i',j'} z^{N(i+i')+(j+j')} . \]

We need to show that the only solutions for

\[N(i + i') + (j + j') = N i^* + j^* \]

where 0 ≤ i, i', j, j' ≤ n and 0 ≤ i*, j* ≤ 2n, are these which satisfy i + i' = i*, j + j' = j*. As 0 ≤ j + j', j* ≤ 2n and N > 2n, if we compute the value modulo N we get that j + j' = j*, and hence also i + i' = i*. \[\square\]

Corollary 1.7. We can compute the product of two bivariate polynomials of degree n in time \(O(n^2 \log n)\).