The Inverse Conjecture for the Gowers Norm is False

Shachar Lovett1 Roy Meshulam2 Alex Samorodnitsky3

1The Weizmann Institute of Science
2The Technion
3The Hebrew University of Jerusalem

IMU 2008
Informal overview

- **Problem**: Test if a function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is somewhat close to a degree d polynomial, using few queries

- The Gowers Norm of f is noticeable

- The test works in one direction: if f is close to a degree d polynomial, the test accepts with noticeable probability

- Main question: Does the inverse direction work? If the test accepts with noticeable probability, is f close to a degree d polynomial?

 - $d = 1, 2$: Yes ([BLR93], [BCHKS96] / [Sam05], [GT05])
 - $d \geq 3$: No (this work)

Lovett, Meshulam, Samorodnitsky

The ICGN is False
Problem: Test if a function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is somewhat close to a degree d polynomial, using few queries

Natural test: Take $d + 1$ derivatives of f in random directions. Accept if zero
Problem: Test if a function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is somewhat close to a degree d polynomial, using few queries

Natural test: Take $d + 1$ derivatives of f in random directions. Accept if zero (Gowers Norm)
Problem: Test if a function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is somewhat close to a degree d polynomial, using few queries.

Natural test: Take $d + 1$ derivatives of f in random directions. Accept if zero (Gowers Norm)

The test works in one direction: if f is close to a degree d polynomial, the test accepts with noticeable probability.

Lovett, Meshulam, Samorodnitsky

The ICGN is False
Informal overview

- **Problem:** Test if a function \(f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2 \) is somewhat close to a degree \(d \) polynomial, using few queries

- **Natural test:** Take \(d + 1 \) derivatives of \(f \) in random directions. Accept if zero (Gowers Norm)

- **The test works in one direction:** if \(f \) is close to a degree \(d \) polynomial, the test accepts with noticeable probability (The Gowers Norm of \(f \) is noticeable)

Lovett, Meshulam, Samorodnitsky

The ICGN is False
Informal overview

- **Problem:** Test if a function $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ is somewhat close to a degree d polynomial, using few queries

- **Natural test:** Take $d + 1$ derivatives of f in random directions. Accept if zero (Gowers Norm)

- **The test works in one direction:** if f is close to a degree d polynomial, the test accepts with noticeable probability (The Gowers Norm of f is noticeable)

- **Main question:** Does the inverse direction work? If the test accepts with noticeable probability, is f close to a degree d polynomial?
Informal overview

- **Problem:** Test if a function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is somewhat close to a degree d polynomial, using few queries.

- **Natural test:** Take $d + 1$ derivatives of f in random directions. Accept if zero (Gowers Norm).

- **The test works in one direction:** if f is close to a degree d polynomial, the test accepts with noticeable probability (The Gowers Norm of f is noticeable).

- **Main question:** Does the inverse direction work? If the test accepts with noticeable probability, is f close to a degree d polynomial?
 - $d = 1, 2$: Yes ([BLR93], [BCHKS96] / [Sam05], [GT05])
 - $d \geq 3$: No (this work).

Lovett, Meshulam, Samorodnitsky
Problem: Test if a function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is somewhat close to a degree d polynomial, using few queries

Natural test: Take $d + 1$ derivatives of f in random directions. Accept if zero (Gowers Norm)

The test works in one direction: if f is close to a degree d polynomial, the test accepts with noticeable probability (The Gowers Norm of f is noticeable)

Main question: Does the inverse direction work? If the test accepts with noticeable probability, is f close to a degree d polynomial?

- $d = 1, 2$: Yes ([BLR93], [BCHKS96] / [Sam05], [GT05])
- $d \geq 3$: No (this work)
Derivatives

- $f(x) : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$
Derivatives

- \(f(x) : \mathbb{F}_2^n \rightarrow \mathbb{F}_2 \)

- Derivative in direction \(y \in \mathbb{F}_2^n \): \(f_y(x) = f(x + y) - f(x) \)
Derivatives

- \(f(x) : \mathbb{F}_2^n \rightarrow \mathbb{F}_2 \)

- Derivative in direction \(y \in \mathbb{F}_2^n \): \(f_y(x) = f(x+y) - f(x) \)
 - Derivation reduces degree
Derivatives

- $f(x) : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$

- Derivative in direction $y \in \mathbb{F}_2^n$: $f_y(x) = f(x + y) - f(x)$
 - Derivation reduces degree

- Multiple derivatives:
 $$f_{y_1,\ldots,y_d}(x) = \sum_{S \subset \{1,\ldots,d\}} (-1)^{|S|} f(x + \sum_{i \in S} y_i)$$
Choose random $x, y_1, \ldots, y_d \in \mathbb{F}_2^n$
Choose random $x, y_1, \ldots, y_d \in \mathbb{F}_2^n$

Test if:

$$f_{y_1,\ldots,y_d}(x) = \sum_{S \subseteq \{1,\ldots,d\}} (-1)^{d-|S|} f(x + \sum_{i \in S} y_i) = 0$$
Random derivatives test

- Choose random $x, y_1, \ldots, y_d \in \mathbb{F}_2^n$
- Test if:
 \[
 f_{y_1,\ldots,y_d}(x) = \sum_{S \subseteq \{1,\ldots,d\}} (-1)^{|S|} f(x + \sum_{i \in S} y_i) = 0
 \]
- The test uses 2^d queries
Random derivatives test

- Choose random \(x, y_1, \ldots, y_d \in \mathbb{F}_2^n \)

- Test if:

\[
f_{y_1,\ldots,y_d}(x) = \sum_{S \subseteq \{1,\ldots,d\}} (-1)^{d-|S|} f(x + \sum_{i \in S} y_i) = 0
\]

- The test uses \(2^d \) queries

- The test accepts always \(\iff f \) is a degree \(d - 1 \) polynomial
Random derivatives test

- Choose random $x, y_1, \ldots, y_d \in \mathbb{F}_2^n$

- Test if:

$$f_{y_1,\ldots,y_d}(x) = \sum_{S \subseteq \{1,\ldots,d\}} (-1)^{|S|} f(x + \sum_{i \in S} y_i) = 0$$

- The test uses 2^d queries

- The test accepts always $\iff f$ is a degree $d - 1$ polynomial

- f is random \implies the test accepts with probability $1/2$
Random derivatives test

Choose random \(x, y_1, ..., y_d \in \mathbb{F}_2^n \)

Test if:

\[
f_{y_1,..,y_d}(x) = \sum_{S \subset \{1,..,d\}} (-1)^{d-|S|} f(x + \sum_{i \in S} y_i) = 0
\]

The test uses \(2^d \) queries

The test accepts always \(\iff \) \(f \) is a degree \(d - 1 \) polynomial

\(f \) is random \(\Rightarrow \) the test accepts with probability \(1/2 \)

Main problem: If the test accepts with probability \(\frac{1+\delta}{2} \), is \(f \) somewhat close to a degree \(d - 1 \) polynomial?
d-th Gowers Norm of f - average bias of random d derivatives
Gowers Norm

- **d-th Gowers Norm** of \(f \) - average bias of random \(d \) derivatives

\[
\|f\|_{U^d} = \left(\mathbb{E}_{x,y_1,...,y_d} \left[(-1)^{f_{y_1,...,y_d}(x)} \right] \right)^{1/2}
\]

Facts:

- \(\|\cdot\|_{U^d} \) is a norm
- \(0 \leq \|f\|_{U^d} \leq 1 \)
- \(f \) is a degree \(d-1 \) polynomial \(\iff \|f\|_{U^d} = 1 \)
- \(f \) is random \(\Rightarrow \|f\|_{U^d} \approx 0 \)
Gowers Norm

- **d-th Gowers Norm** of f - average bias of random d derivatives

\[\|f\|_{U^d} = \left(\mathbb{E}_{x, y_1, \ldots, y_d} \left[(-1)^{f_{y_1, \ldots, y_d}(x)} \right] \right)^{1/2^d} \]
Gowers Norm

- d-th Gowers Norm of f - average bias of random d derivatives

\[\| f \|_{U^d} = \left(\mathbb{E}_{x, y_1, \ldots, y_d} \left[(-1)^{f_{y_1, \ldots, y_d}(x)} \right] \right)^{1/2^d} \]

- Facts:
Gowers Norm

- **d-th Gowers Norm** of f - average bias of random d derivatives

\[
\|f\|_{U^d} = \left(\mathbb{E}_{x, y_1, \ldots, y_d} \left[(-1)^{f_{y_1, \ldots, y_d}(x)} \right] \right)^{1/2^d}
\]

Facts:
- $\| \cdot \|_{U^d}$ is a norm
Gowers Norm

- **d-th Gowers Norm** of f - average bias of random d derivatives

$$\|f\|_{U^d} = (\mathbb{E}_{x,y_1,\ldots,y_d} [(-1)^{f_{y_1,\ldots,y_d}(x)}])^{1/2^d}$$

- **Facts:**
 - $\| \cdot \|_{U^d}$ is a norm
 - $0 \leq \|f\|_{U^d} \leq 1$
Gowers Norm

- **d-th Gowers Norm** of f - average bias of random d derivatives

\[
\| f \|_{U^d} = \left(\mathbb{E}_{x,y_1,...,y_d}[(-1)^{f_{y_1,...,y_d}(x)}] \right)^{1/2^d}
\]

- **Facts:**
 - $\| \cdot \|_{U^d}$ is a norm
 - $0 \leq \| f \|_{U^d} \leq 1$
 - f is a degree $d - 1$ polynomial $\iff \| f \|_{U^d} = 1$
Gowers Norm

- **d-th Gowers Norm** of f - average bias of random d derivatives

\[\| f \|_{U^d} = \left(\mathbb{E}_{x, y_1, \ldots, y_d} \left[(-1)^{f_{y_1, \ldots, y_d}(x)} \right] \right)^{1/2^d} \]

- **Facts:**
 - $\| \cdot \|_{U^d}$ is a norm
 - $0 \leq \| f \|_{U^d} \leq 1$
 - f is a degree $d - 1$ polynomial $\iff \| f \|_{U^d} = 1$
 - f is random $\Rightarrow \| f \|_{U^d} \approx 0$
Closeness to low degree poly. \Rightarrow large Gowers Norm

Definition: f is δ-close to g if $\Pr_x[f(x) = g(x)] \geq \frac{1+\delta}{2}$
Closeness to low degree poly. \Rightarrow large Gowers Norm

- **Definition:** f is δ-close to g if $\mathbb{P}_x[f(x) = g(x)] \geq \frac{1+\delta}{2}$

- f is δ-close to a degree $d - 1$ polynomial $g \Rightarrow \|f\|_{U^d} \geq \delta$
Closeness to low degree poly. \Rightarrow large Gowers Norm

- **Definition:** f is δ-close to g if $\mathbb{P}_x[f(x) = g(x)] \geq \frac{1+\delta}{2}$

- f is δ-close to a degree $d - 1$ polynomial g \Rightarrow $\|f\|_{U^d} \geq \delta$

- **Inverse Conjecture:**
 $\|f\|_{U^d} \geq \delta$ \Rightarrow f is δ'-close to a degree $d - 1$ polynomial g
Closeness to low degree poly. \(\Rightarrow\) large Gowers Norm

- **Definition:** \(f\) is \(\delta\)-close to \(g\) if \(\mathbb{P}_x[f(x) = g(x)] \geq \frac{1+\delta}{2}\)

- \(f\) is \(\delta\)-close to a degree \(d - 1\) polynomial \(g\) \(\Rightarrow\) \(\|f\|_{U^d} \geq \delta\)

- **Inverse Conjecture:**
 \(\|f\|_{U^d} \geq \delta \Rightarrow f\) is \(\delta'\)-close to a degree \(d - 1\) polynomial \(g\)

- The Inverse Conjecture is known to hold when:
 - \(d = 1:\) \(\delta' = \delta\) [BLR93, BCHKS96]
 - \(d = 2:\) \(\delta' = e^{-\left(1 - (1 - \delta)^2\right)}O(1)\) [Sam05, GT05]
 - \(\delta \gtrsim 1 - 2^{-2^d}:\) \(\delta' \approx \delta\) [AKKLR03]

We show:
The Inverse Conjecture is already false for \(d = 3\)

Lovett, Meshulam, Samorodnitsky
Closeness to low degree poly. \implies large Gowers Norm

- **Definition:** \(f \) is \(\delta \)-close to \(g \) if \(\Pr_x [f(x) = g(x)] \geq \frac{1+\delta}{2} \)

- \(f \) is \(\delta \)-close to a degree \(d - 1 \) polynomial \(g \) \implies \(\|f\|_{U^d} \geq \delta \)

- **Inverse Conjecture:**
 \[\|f\|_{U^d} \geq \delta \implies f \text{ is } \delta'\text{-close to a degree } d - 1 \text{ polynomial } g \]

- The Inverse Conjecture is known to hold when:
 - \(d = 1 \): \(\delta' = \delta \) [BLR93, BCHKS96]

- We show:
The Inverse Conjecture is already false for \(d = 3 \)

\[\text{Lovett, Meshulam, Samorodnitsky} \]
Closeness to low degree poly. ⇒ large Gowers Norm

- **Definition:** f is δ-close to g if $\mathbb{P}_x[f(x) = g(x)] \geq \frac{1+\delta}{2}$

- f is δ-close to a degree $d - 1$ polynomial $g \Rightarrow \|f\|_{U^d} \geq \delta$

- **Inverse Conjecture:**
 $$\|f\|_{U^d} \geq \delta \Rightarrow f \text{ is } \delta' \text{-close to a degree } d - 1 \text{ polynomial } g$$

- The Inverse Conjecture is known to hold when:
 - $d = 1$: $\delta' = \delta$ [BLR93, BCHKS96]
 - $d = 2$: $\delta' = e^{-\left(\frac{1}{\delta}\right)^{O(1)}}$ [Sam05, GT05]
Definition: \(f \) is \(\delta \)-close to \(g \) if \(\mathbb{P}_x[f(x) = g(x)] \geq \frac{1+\delta}{2} \)

\(f \) is \(\delta \)-close to a degree \(d-1 \) polynomial \(g \) \(\Rightarrow \|f\|_{U^d} \geq \delta \)

Inverse Conjecture:
\[\|f\|_{U^d} \geq \delta \Rightarrow f \text{ is } \delta'\text{-close to a degree } d-1 \text{ polynomial } g \]

The Inverse Conjecture is known to hold when:

- \(d = 1 \): \(\delta' = \delta \) [BLR93, BCHKS96]
- \(d = 2 \): \(\delta' = e^{-\left(\frac{1}{\delta}\right)^{O(1)}} \) [Sam05, GT05]
- \(\delta \gtrsim 1 - 2^{-2d} \): \(\delta' \approx \delta \) [AKKLR03]
Closeness to low degree poly. ⇒ large Gowers Norm

- **Definition:** f is δ-close to g if $\mathbb{P}_x[f(x) = g(x)] \geq \frac{1+\delta}{2}$

- f is δ-close to a degree $d - 1$ polynomial $g \Rightarrow \|f\|_{U^d} \geq \delta$

- **Inverse Conjecture:**
 $$\|f\|_{U^d} \geq \delta \Rightarrow f \text{ is } \delta'\text{-close to a degree } d - 1 \text{ polynomial } g$$

- The Inverse Conjecture is known to hold when:
 - $d = 1$: $\delta' = \delta$ [BLR93, BCHKS96]
 - $d = 2$: $\delta' = e^{-\left(\frac{1}{\delta}\right)^{O(1)}}$ [Sam05, GT05]
 - $\delta \gtrsim 1 - 2^{-2d}$: $\delta' \approx \delta$ [AKKLR03]

- **We show:** The Inverse Conjecture is already false for $d = 3$
The counterexample (over \mathbb{F}_2)

- The symmetric polynomial $S_4(x_1, \ldots, x_n)$:

\[
S_4(x_1, \ldots, x_n) = \sum_{i<j<k<l} x_i x_j x_k x_l
\]
The counterexample (over \mathbb{F}_2)

- The symmetric polynomial $S_4(x_1, \ldots, x_n)$:

$$S_4(x_1, \ldots, x_n) = \sum_{i<j<k<l} x_ix_jx_kx_l$$

- We prove:

There is no cubic polynomial which is $2^{-\Omega(n)}$-close to S_4.

Independently proven by Green and Tao.

Lovett, Meshulam, Samorodnitsky

The ICGN is False
The counterexample (over \mathbb{F}_2)

- The symmetric polynomial $S_4(x_1, \ldots, x_n)$:

$$S_4(x_1, \ldots, x_n) = \sum_{i<j<k<l} x_i x_j x_k x_l$$

- We prove:
 - $\|S_4\|_{U^4} \approx \left(\frac{1}{8}\right)^{1/16} (= 0.88\ldots)$

There is no cubic polynomial which is $2^{-\Omega(n)}$-close to S_4
Independently proven by Green and Tao

The ICGN is False
The counterexample (over \mathbb{F}_2)

- The symmetric polynomial $S_4(x_1, \ldots, x_n)$:
 \[S_4(x_1, \ldots, x_n) = \sum_{i<j<k<l} x_i x_j x_k x_l \]

- We prove:
 - $\|S_4\|_{U^4} \approx (\frac{1}{8})^{1/16}$ ($\approx 0.88\ldots$)
 - There is no cubic polynomial which is $2^{-\Omega(n)}$-close to S_4
The counterexample (over \mathbb{F}_2)

- The symmetric polynomial $S_4(x_1, ..., x_n)$:
 \[S_4(x_1, ..., x_n) = \sum_{i<j<k<l} x_i x_j x_k x_l \]

We prove:
- $\|S_4\|_{U^4} \approx (\frac{1}{8})^{1/16}$ (≈ 0.88...)
- There is no cubic polynomial which is $2^{-\Omega(n)}$-close to S_4

- Independently proven by Green and Tao
The counterexample (over \mathbb{F}_2)

- The symmetric polynomial $S_4(x_1, \ldots, x_n)$:
 \[
 S_4(x_1, \ldots, x_n) = \sum_{i<j<k<l} x_i x_j x_k x_l
 \]

- We prove:
 \[
 \|S_4\|_{U^4} \approx \left(\frac{1}{8}\right)^{1/16} \approx 0.88...
 \]
 There is no cubic polynomial which is $2^{-\Omega(n)}$-close to S_4

- Independently proven by Green and Tao
 There is no cubic polynomial which is $\frac{1}{\log \log n}$-close to S_4
Counterexamples over general fields

- The **Gowers Norm** can be defined over general prime fields \mathbb{F}_p
Counterexamples over general fields

- The **Gowers Norm** can be defined over general prime fields \mathbb{F}_p

- Counterexamples - the symmetric polynomials $S_{p^k}(x_1, \ldots, x_n)$
Counterexamples over general fields

• The Gowers Norm can be defined over general prime fields \mathbb{F}_p

• Counterexamples - the symmetric polynomials $S_p^k(x_1, \ldots, x_n)$

• $\|S_p^k\|_{U_p^k} > \epsilon_{p,k} \ (k > 1)$
Counterexamples over general fields

- The **Gowers Norm** can be defined over general prime fields \(\mathbb{F}_p \)

- Counterexamples - the symmetric polynomials \(S_{p^k}(x_1, \ldots, x_n) \)

\[
\|S_{p^k}\|_{U^{p^k}} > \epsilon_{p,k} \quad (k > 1)
\]

- Using a variant of the Alon-Beigel argument (used in [GT07]), \(S_{p^k} \) is not \(\delta(n) \)-close to lower degree polynomials, for

\[
\delta(n) = \frac{1}{\log \ldots \log_n} = o(1)
\]
Counterexamples over general fields

- The **Gowers Norm** can be defined over general prime fields \mathbb{F}_p

- Counterexamples - the symmetric polynomials $S_{p^k}(x_1, \ldots, x_n)$

$$\|S_{p^k}\|_{U_{p^k}} > \epsilon_{p,k} \ (k > 1)$$

Using a variant of the Alon-Beigel argument (used in [GT07]), S_{p^k} is not $\delta(n)$-close to lower degree polynomials, for

$$\delta(n) = \frac{1}{\log \ldots \log_{p^k} n} = o(1)$$

- If f is a polynomial, $\deg(f) < p \Rightarrow$ The ICGN is true [GT07]
Proof sketch

- We prove:

\[\| S_4 \|_{U^4} \approx \left(\frac{1}{8} \right)^{1/16} \approx 0.88 \ldots \]

There is no cubic polynomial which is $2^{-\Omega(n)}$-close to S_4.

Lovett, Meshulam, Samorodnitsky
Proof sketch

- We prove:
 - \(\|S_4\|_{U^4} \approx (\frac{1}{8})^{1/16} \approx 0.88... \)
We prove:

\[\| S_4 \|_{U^4} \approx \left(\frac{1}{8} \right)^{1/16} \approx 0.88 \ldots \]

There is no cubic polynomial which is \(2^{-\Omega(n)} \)-close to \(S_4 \).
4-th Gowers Norm of S_4 is large

$$\|S_4\|_4^2 = \mathbb{E}_{x,y_1,y_2,y_3,y_4} \left[(-1)^{(S_4)_{y_1,y_2,y_3,y_4}(x)} \right]$$
4-th Gowers Norm of S_4 is large

$\|S_4\|_4^2 = \mathbb{E}_{x,y_1,y_2,y_3,y_4} \left[(-1)^{(S_4)_{y_1,y_2,y_3,y_4}(x)} \right]$

$(S_4)_{y_1,y_2,y_3,y_4} =$
4-th Gowers Norm of S_4 is large

$$\| S_4 \|_4^2 = \mathbb{E}_{x, y_1, y_2, y_3, y_4} \left[(-1)^{ (S_4)_{y_1,y_2,y_3,y_4} (x) } \right]$$

$$(S_4)_{y_1,y_2,y_3,y_4} = \sum_{i \neq j \neq k \neq l} (y_1)_i (y_2)_j (y_3)_k (y_4)_l = \det (\langle y_i, y_j \rangle)_{i,j=1}^4 \approx \det (\text{random } 4 \times 4 \text{ symmetric matrix}) = \frac{9}{16} \left(> \frac{1}{2} \right)$$
4-th Gowers Norm of S_4 is large

\[\| S_4 \|_4^2 = \mathbb{E}_{x, y_1, y_2, y_3, y_4} \left[(-1)^{(S_4)_{y_1, y_2, y_3, y_4}(x)} \right] \]

\[(S_4)_{y_1, y_2, y_3, y_4} = \sum_{i \neq j \neq k \neq l} (y_1)_i (y_2)_j (y_3)_k (y_4)_l = \]

\[\text{det} \left(\langle y_i, y_j \rangle \right)_{i, j = 1}^4 \approx 9/16 \]
4-th Gowers Norm of S_4 is large

\[\|S_4\|_4^2 = \mathbb{E}_{x,y_1,y_2,y_3,y_4} \left[(-1)^{(S_4)_{y_1,y_2,y_3,y_4}(x)} \right] \]

\[(S_4)_{y_1,y_2,y_3,y_4} = \sum_{i \neq j \neq k \neq l} (y_1)_i(y_2)_j(y_3)_k(y_4)_l = \]

\[\det \left(\langle y_i, y_j \rangle \right)_{i,j=1}^4 \]

\[(\langle y_i, y_j \rangle)_{i,j=1}^4 \sim \text{random } 4 \times 4 \text{ symmetric matrix} \]
4-th Gowers Norm of S_4 is large

$\|S_4\|_4^2 = E_{x,y_1,y_2,y_3,y_4} \left[(-1)^{(S_4)_{y_1,y_2,y_3,y_4}(x)} \right]$

$(S_4)_{y_1,y_2,y_3,y_4} = \sum_{i \neq j \neq k \neq l} (y_1)_i(y_2)_j(y_3)_k(y_4)_l = det \left(\langle y_i, y_j \rangle \right)_{i,j=1}^4$

$(\langle y_i, y_j \rangle)_{i,j=1}^4 \sim$ random 4×4 symmetric matrix

$\mathbb{P} \left[(S_4)_{y_1,y_2,y_3,y_4} = 0 \right] \approx$
4-th Gowers Norm of S_4 is large

- $\|S_4\|_4^2 = \mathbb{E}_{x,y_1,y_2,y_3,y_4} \left[(-1)^{(S_4)_{y_1,y_2,y_3,y_4}(x)} \right]$

$$(S_4)_{y_1,y_2,y_3,y_4} = \sum_{i\neq j \neq k \neq l} (y_1)_i (y_2)_j (y_3)_k (y_4)_l =$$

$$\det \left(\langle y_i, y_j \rangle \right)_{i,j=1}^4$$

- $\langle y_i, y_j \rangle_{i,j=1}^4 \sim \text{random } 4 \times 4 \text{ symmetric matrix}$

$$\mathbb{P} \left[(S_4)_{y_1,y_2,y_3,y_4} = 0 \right] \approx$$

$$\mathbb{P} \left[\det (\text{random } 4 \times 4 \text{ symmetric matrix}) \right] =$$
4-th Gowers Norm of S_4 is large

\[\|S_4\|_4^2 = \mathbb{E}_{x, y_1, y_2, y_3, y_4} \left[(-1)^{(S_4)_{y_1, y_2, y_3, y_4}(x)} \right] \]

\[(S_4)_{y_1, y_2, y_3, y_4} = \sum_{i \neq j \neq k \neq l} (y_1)_i (y_2)_j (y_3)_k (y_4)_l = \]

\[\det (\langle y_i, y_j \rangle)_{i, j = 1}^4 \]

\[(\langle y_i, y_j \rangle)_{i, j = 1}^4 \sim \text{random } 4 \times 4 \text{ symmetric matrix} \]

\[\mathbb{P} [(S_4)_{y_1, y_2, y_3, y_4} = 0] \approx \]

\[\mathbb{P} [\det (\text{random } 4 \times 4 \text{ symmetric matrix})] = 9/16 \]
4-th Gowers Norm of S_4 is large

\[\|S_4\|_4^2 = \mathbb{E}_{x,y_1,y_2,y_3,y_4} \left[(-1)^{S_4(y_1,y_2,y_3,y_4)}(x) \right] \]

\[(S_4)_{y_1,y_2,y_3,y_4} = \sum_{i \neq j \neq k \neq l} (y_1)_i (y_2)_j (y_3)_k (y_4)_l = \]

\[\text{det} \left(\langle y_i, y_j \rangle \right)_{i,j=1}^4 \]

\[\langle y_i, y_j \rangle_{i,j=1}^4 \sim \text{random } 4 \times 4 \text{ symmetric matrix} \]

\[\mathbb{P} [(S_4)_{y_1,y_2,y_3,y_4} = 0] \approx \]

\[\mathbb{P} [\text{det} (\text{random } 4 \times 4 \text{ symmetric matrix})] = \]

\[9/16 \quad (> 1/2)\]
S_4 is not close to cubics

- It is easy to see that S_4 is only $2^{-\Omega(n)}$ close to cubic symmetric polynomials.
It is easy to see that S_4 is only $2^{-\Omega(n)}$ close to cubic symmetric polynomials.

The hard part is to prove this for any cubic.
S_4 is not close to cubics

- It is easy to see that S_4 is only $2^{-\Omega(n)}$ close to cubic symmetric polynomials
 - The hard part is to prove this for any cubic

- Let g be a cubic polynomial. We need to show:

$$\Pr_x[S_4(x) = g(x)] \leq \frac{1}{2} + 2^{-\Omega(n)}$$

It's enough to bound derivatives $P_{x,y,z}[S_4(x) = g(x)]$ since S_4 is quadratic, g is linear - well understood.
S_4 is not close to cubics

- It is easy to see that S_4 is only $2^{-\Omega(n)}$ close to cubic symmetric polynomials
 - The hard part is to prove this for any cubic

- Let g be a cubic polynomial. We need to show:

$$\mathbb{P}_x[S_4(x) = g(x)] \leq \frac{1}{2} + 2^{-\Omega(n)}$$

- It’s enough to bound derivatives

$$\mathbb{P}_{x,y,z}[(S_4)_{y,z}(x) = g_{y,z}(x)] \leq \frac{1}{2} + 2^{-\Omega(n)}$$
\(S_4 \) is not close to cubics

- It is easy to see that \(S_4 \) is only \(2^{-\Omega(n)} \) close to cubic symmetric polynomials
 - The hard part is to prove this for any cubic

- Let \(g \) be a cubic polynomial. We need to show:
 \[
 P_x[S_4(x) = g(x)] \leq \frac{1}{2} + 2^{-\Omega(n)}
 \]

- It’s enough to bound derivatives
 \[
 P_{x,y,z}[S_4(y,z)(x) = g_{y,z}(x)] \leq \frac{1}{2} + 2^{-\Omega(n)}
 \]

- \(S_4 \) is quadratic, \(g \) is linear - well understood
S_4 is not close to cubics

- We need to show:

$$\mathbb{P}_{x,y,z}[(S_4)_{y,z}(x) = g_{y,z}(x)] \leq \frac{1}{2} + 2^{-\Omega(n)}$$
S_4 is not close to cubics

- We need to show:

\[\mathbb{P}_{x,y,z}[(S_4)_{y,z}(x) = g_{y,z}(x)] \leq \frac{1}{2} + 2^{-\Omega(n)} \]

- How does the Fourier coefficients of $(S_4)_{y,z}$ look like?
S_4 is not close to cubics

- We need to show:
 $$\mathbb{P}_{x,y,z}[(S_4)_{y,z}(x) = g_{y,z}(x)] \leq \frac{1}{2} + 2^{-\Omega(n)}$$

- How does the Fourier coefficients of $(S_4)_{y,z}$ look like?

- **Easy case:** For half of the pairs (y, z), all the Fourier coefficients are exponentially small
S_4 is not close to cubics

- We need to show:

$$\mathbb{P}_{x,y,z}[(S_4)_{y,z}(x) = g_{y,z}(x)] \leq \frac{1}{2} + 2^{-\Omega(n)}$$

- How does the Fourier coefficients of $(S_4)_{y,z}$ look like?

- **Easy case:** For half of the pairs (y, z), all the Fourier coefficients are exponentially small

- **Hard case:** For the other half of (y, z), $(S_4)_{y,z}$ has just 8 non-zero Fourier coefficients

Lovett, Meshulam, Samorodnitsky

The ICGN is False
\(S_4 \) is not close to cubics

- **Hard case:** the Fourier coefficients of \((S_4)_{y,z}\) are in

\[
y \cdot z + \text{Span}(y, z, 1)
\]
Hard case: the Fourier coefficients of \((S_4)_{y,z}\) are in \(y \cdot z + \text{Span}(y, z, 1)\)

We need to show that for any cubic \(g:\)

\[
P_{y,z}[g_{y,z}(x) \equiv \langle (y \cdot z), x \rangle + c_{y,z}] = 2^{-\Omega(n)}
\]
S_4 is not close to cubics

- **Hard case:** the Fourier coefficients of $(S_4)_{y,z}$ are in
 $$y \cdot z + \text{Span}(y, z, 1)$$

- We need to show that for any cubic g:
 $$\mathbb{P}_{y,z}[g_{y,z}(x) \equiv \langle (y \cdot z), x \rangle + c_{y,z}] = 2^{-\Omega(n)}$$

- We need all the coefficients of x_i to agree
S_4 is not close to cubics

- **Hard case:** the Fourier coefficients of $(S_4)_{y,z}$ are in
 \[y \cdot z + \text{Span}(y, z, 1) \]

- We need to show that for any cubic g:
 \[\mathbb{P}_{y,z}[g_{y,z}(x) \equiv \langle (y \cdot z), x \rangle + c_{y,z}] = 2^{-\Omega(n)} \]

- We need all the coefficients of x_i to agree

- If $g(x) = \sum_{i<j<k} g_{i,j,k}x_i x_j x_k$, $i<j<k$
S_4 is not close to cubics

- **Hard case:** the Fourier coefficients of $(S_4)_{y,z}$ are in

 $$y \cdot z + \text{Span}(y, z, 1)$$

- We need to show that for any cubic g:

 $$\mathbb{P}_{y,z}[g_{y,z}(x) \equiv \langle (y \cdot z), x \rangle + c_{y,z}] = 2^{-\Omega(n)}$$

- We need all the coefficients of x_i to agree

- If $g(x) = \sum_{i<j<k} g_{i,j,k} x_i x_j x_k$,

 $$g_{y,z}(x) = \sum_{i\neq j \neq k} g_{i,j,k} x_i y_j z_k + c_{y,z}$$
S_4 is not close to cubics

- **Hard case:** the Fourier coefficients of $(S_4)_{y,z}$ are in

 $$y \cdot z + \text{Span}(y, z, 1)$$

- We need to show that for any cubic g:

 $$\mathbb{P}_{y,z}[g_{y,z}(x) \equiv \langle (y \cdot z), x \rangle + c_{y,z}] = 2^{-\Omega(n)}$$

- We need all the coefficients of x_i to agree

- If $g(x) = \sum_{i<j<k} g_{i,j,k} x_i x_j x_k$,

 $$g_{y,z}(x) = \sum_{i \neq j \neq k} g_{i,j,k} x_i y_j z_k + c_{y,z}$$

 $$\forall 1 \leq i \leq n : \sum_{j \neq k : j, k \neq i} g_{i,j,k} y_j z_k = y_i z_i$$
S_4 is not close to cubics

We need to show:

$$\mathbb{P}_{y,z}[\forall 1 \leq i \leq n : \sum_{j \neq k, j, k \neq i} g_{i,j,k} y_j z_k + y_i z_i = 0] = 2^{-\Omega(n)}$$

Equivalently - the number of common roots to the n polynomials is exponentially small

Proof uses the special structure of the polynomials set
\textbf{S_4 is not close to cubics}

- We need to show:

$$\mathbb{P}_{y,z}[\forall 1 \leq i \leq n : \sum_{j \neq k : j,k \neq i} g_{i,j,k}y_j z_k + y_i z_i = 0] = 2^{-\Omega(n)}$$

- Equivalently - the number of common roots to the n polynomials is exponentially small
We need to show:

$$\mathbb{P}_{y,z}[\forall 1 \leq i \leq n : \sum_{j \neq k : j,k \neq i} g_{i,j,k}y_jz_k + y_iz_i = 0] = 2^{-\Omega(n)}$$

Equivalently - the number of common roots to the n polynomials is exponentially small.

Proof uses the special structure of the polynomials set.
Let f_1, \ldots, f_m be polynomials in $\mathbb{F}_2[x_1, \ldots, x_n]$
S_4 is not close to cubics

- Let $f_1, ..., f_m$ be polynomials in $\mathbb{F}_2[x_1, ..., x_n]$

- Let:
 - $M = \mathbb{F}_2[x_1, ..., x_n]/\langle x_1^2 - x_1, ..., x_n^2 - x_n \rangle$
 - $I = \langle f_1, ..., f_m \rangle \subset M$
 - $R = \{ u \in \mathbb{F}_2^n : f_1(u) = ... = f_m(u) = 0 \}$
S_4 is not close to cubics

- Let f_1, \ldots, f_m be polynomials in $\mathbb{F}_2[x_1, \ldots, x_n]$

- Let:
 - $M = \mathbb{F}_2[x_1, \ldots, x_n]/\langle x_1^2 - x_1, \ldots, x_n^2 - x_n \rangle$
 - $I = \langle f_1, \ldots, f_m \rangle \subset M$
 - $R = \{ u \in \mathbb{F}_2^n : f_1(u) = \ldots = f_m(u) = 0 \}$

- **Lemma:**
 \[R \leq \dim(M/I) \]
Summary

- A natural test for low degree polynomials

Equivalent to the Gowers Norm

It is correct in special cases ($d = 1, 2/\delta \sim 1/\deg(f) < p$)

We showed it is generally false

Counterexamples for $d = pk$ over \mathbb{F}_p

Over \mathbb{F}_2, S_4 is at most exponentially-small close to cubics

Lovett, Meshulam, Samorodnitsky

The ICGN is False
A natural test for low degree polynomials
 Taking random derivatives
A natural test for low degree polynomials
- Taking random derivatives
- Equivalent to the Gowers Norm
Summary

- A natural test for low degree polynomials
 - Taking random derivatives
 - Equivalent to the Gowers Norm

- It is correct in special cases \((d = 1, 2 / \delta \sim 1 / \deg(f) < p)\)
A natural test for low degree polynomials
 - Taking random derivatives
 - Equivalent to the Gowers Norm

It is correct in special cases \((d = 1, 2 / \delta \sim 1 / \deg(f) < p)\)

We showed it is generally false
A natural test for low degree polynomials

- Taking random derivatives
- Equivalent to the Gowers Norm

It is correct in special cases ($d = 1, 2 \ / \ \delta \sim 1 \ / \ \deg(f) < p$)

We showed it is generally false

- Counterexamples for $d = p^k$ over \mathbb{F}_p
A natural test for low degree polynomials
- Taking random derivatives
- Equivalent to the Gowers Norm

It is correct in special cases \((d = 1, 2 / \delta \sim 1 / \deg(f) < p)\)

We showed it is generally false
- Counterexamples for \(d = p^k\) over \(\mathbb{F}_p\)
- Over \(\mathbb{F}_2\), \(S_4\) is at most exponentially-small close to cubics
Open problems

- Can you test proximity to low degree polynomials over small fields?
Open problems

- Can you test proximity to low degree polynomials over small fields?
 - Using constant number of queries
Open problems

- Can you test proximity to low degree polynomials over small fields?
 - Using constant number of queries

- Is there a natural family to which the random derivatives test / Gowers Norm measures distance to?
Open problems

- Can you test proximity to low degree polynomials over small fields?
 - Using constant number of queries

- Is there a natural family to which the random derivatives test / Gowers Norm measures distance to?

Thank you