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Abstract 

A rotation-invariant texture recognition system is pre- 
sented. A steerable orientedpyramid is used to extract rep- 
resentative features for the input textures. The steerability 
of the filter set allows a ship to an invariant representation 
via a DFT-encoding step. Supervised classijkation follows. 
State-of-the-art recognition results are presented on a 30 
texture database with a comparison across the performance 
of the K-nn, Back-Propagation and Rule-Based classifiers. 
In addition, high accuracy estimation of the input rotation 
angle is demonstrated. 

1 Introduction 

A number of texture recognition systems have been re- 
cently proposed in the literature, giving very high-accuracy 
classification rates (e.g., [l-41). The next challenge in the 
texture recognition arena is to achieve rotation- and scale- 
invariant recognition systems. In this work we concen- 
trate on rotation-invariance. Rotation-invariant classifica- 
tion is essential for most real-life applications, however 
it has been mostly overlooked in the literature due to the 
complexity of the task. Some results on small databases 
may be found in the literature (e.g., [5-81). In these works, 
rotation-invariance is obtained either only on a discrete set 
of orientations or by eliminating the orientation information 
altogether. 

We present a rotation-invariant texture recognition sys- 
tem which achieves rotation-invariant classification on a 
large database of textures as well as extraction of the ro- 
tation of the input image relative to the prestored texture 
database. We have attempted to constitute a large and 
heterogeneous database, which can resemble a real-world 
scenario. It is composed of the 30 textures shown in Fig. 
1. Most of the textures are taken from the standard Brodatz 
database of textures [9]; the others have been collected by 
us from a variety of real-world texture sources (e.g., jeans, 
printed text). 

The need for rotation-invariance in a recognition sys- 
tem can be shown by the decline in performance of a 
“classical” recognition framework, which is not designed 
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with rotation-invariance in mind. Fig. 2 shows a mis- 
classification curve for a system which is comprised of 
a multi-scale (pyramidal) feature-extraction stage followed 
by a supervised classification scheme (the system has been 
presented in [4]). The classification results are averaged 
over the entire 30 texture database. The degradation in 
performance with increasing rotation angle of the input test 
images is evident, and unacceptable beyond 20’. 

Rotation-invariancecan be achieved in one of two ways, 

Fig.1: 30 texture database. Labels: ROW 1: bark(D12), 
calf(D24), cloth(D19), cardboard, jeans. ROW 2: grass(D9), 
pig(D92), raffia(D84), water(D38), wood(D68). ROW 3: 
backpack, bookbox, brownbag, check-book cover, cork(D32). 
ROW 4: cotton canvas(D77), furcanv(D20), fur(D93), hand- 
made paper(D57), napkin. ROW 5: particle board, reptile(D3), 
straw(D15), text, towel. ROW 6: vinyl, herringbone (D16), 
sand(D29), wire(D6), strawmat(D55). Textures taken from the 
Brodatz book are labeled with the corresponding plate number. 
Others have been scanned in from real-world texture sources. 
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Fig. 3: Left: A set of oriented pyramid filters. Real and imaginary 
compolnents are presented, top and bottom, respectively. Right: 
Power spectracharacteristics for the chosen filter set (+ conjugate 
counterparts). 
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either by extracting rotation-invariant features or by appro- 
priate training of the classifier to make it 'learn' invariant 
properties. We use the first approach. In section 2 we 
suggest the use of a steerable pyramid of oriented filters 
which1 is the key element of our system in coping with 
the invariance challenge. In section 2 we demonstrate the 
use of the Discrete Fourier Transform (DFT) for interpolat- 
ing the steerable filter outputs to extract rotation-invariant 
features. The rotation-invariant recognition system is pre- 
sented in section 3 along with classification results on the 
30 texture database of Fig. 1. Rotation-angle estimation 
results are presented in section 4. 

2 Steerable Pyramid and Invariance 

The front end of our system consists of the oriented 
Laplacian pyramid, which is discussed in detail in [4, lo]. 
The oriented Laplacian pyramid provides us with a com- 
putationally efficient scheme to extract a set of orientation- 
selective bandpass filtered versions of the input textures. 
Three scales are used (with octave spacing) with four ori- 
entations per scale (spaced 45' apart). The set of oriented 
filters are complex exponentials modulated by Gaussians 
acting on the Laplacian pyramid. A set of the pyramid fil- 
ters is; shown in Fig. 3 (left). This set of filters was shown 

to span the orientation space (see Fig. 3 right) and to form 
a steerable basis [lo]. 

Feature vectors are formed from the outputs of the ori- 
ented filters, describing the local characteristics (in 8 x 8 
windows) of the original image. The feature vectors are 
15-dimensional consisting of the 4 oriented components 
per scale together with a nonoriented component extracted 
from the Laplacian pyramid. 

For a given input (texture) we define afeature curve 
(per scale) across orientation space, f , ( O ) ,  as the texture's 
response to any oriented filter in the 360' space (using 
symmetry considerations we will concentrate on the 180' 
space). Using the steerability property we note that the four 
oriented components (with 45' sampling period), per scale, 
of the feature vector allow us to reconstruct the continuous 
feature curve. 

As an input texture is rotated, its feature curve, f ,(O),  
shifts across the orientation axis. Alternatively we can 
visualize the sample points cycling along the continuous 
curve. It is our goal to find a rotation-invariant representa- 
tion for the sampled curve . We will next describe how the 
DFT-encoding can be used for this task. 

2.1 Use of the DFT for Rotation Invariance 

Let f(n), n = 0..3, denote the oriented components 
at a single scale in a given feature vector. We define a 
companion feature vector f(  k) to be the Discrete Fourier 
Transform of f (  n)  as follows ' : 

3 

f(k) = f(n)e-ixnk/* k = 0,1,2,3.  (1) 
n=O 

Using the extracted coefficients above, we can represent 
the original feature curve, f,(O), as: 

f , ( O )  = A + Bcos(0 + C) + rotation-variant term (2) 

with the coefficients given by 

A = f ( O > ,  = If(1)L c = ars[f(l)ll (3) 
Nyquist component = f(2). 

We note that A and B do not change as a result of rota- 
tion, while C/2 is equal to the rotation angle of the input 
(The division by two is necessary since f (  n)  goes through 
two complete cycles during a rotation of the input image 
by 360'). The value of B represents the strength along 
the orientation indicated by C/2. In this case we do not 
have a high-enough sampling rate to extract the phase com- 
ponent of the second harmonic. The Nyquist component, 

'The complete feature vector includes the DlT components for each 
scale together with the non-oriented components of the Laplacian pyramid. 
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which varies with rotation of the input, provides no useful 
information. 

Using the DFT encoding, we can thus create an invariant 
feature vector which, at each scale, consists of the values 
of A and B (as above), while the value of C/2 may be 
inspected to determine the rotation angle on the input. The 
DFT-encoded feature vector is the input to the recognition 
system. 

In the above analysis we have addressed the issue of 
a single dominant orientation in the input textures. We 
note that in the case of multiple orientations at a single 
location (such as in a cross pattern) additional harmonics 
are needed in our representation, or additional filters, to 
sample the corresponding feature curve. For example, with 
two harmonics: 

f , ( q  = A + B cos(e + c) + D C O S ( ~ O  + E )  + 
rot.-variant term. (4) 

Thus, to handle multiple orientations, we may extend 
the above analysis, with a larger set of (narrower frequency 
tuned) filters. (e.g., a set of 8 kernels, spaced 22.5' apart 
and with twice the spatial frequency of the above filters). 
Here, the parameters A ,  B and D provide us with arotation- 
invariant representation while C and E indicate the orien- 
tations of any regions in the image with either one or two 
dominant orientations. 

We note that for N multiple orientations, we obtain 
N + 1 invariant terms and N phase components that vary 
directly with rotation, for a total of 2N + 1 components. 
In the above scheme, all of the N phase components are 
discarded in the recognition process. As an alternative, 
one phase component (such as C/2) may be chosen as the 
angle by which to either 'derotate' the actual input textureor 
interpolate the proper translation in the feature vectors, thus 
giving us a total of 2N useful components for recognition. 

3 Rotation-Invariant Texture Recognition 

Two major stages comprise a general recognition sys- 
tem - a feature extraction stage and a classification stage. In 
the proposed system, feature-vectors are extracted via the 
Oriented Pyramid. The DFT encoding step is added next 
as part of the feature-extraction phase of the system. In 
the classification phase we compare the k-nearest neighbor 
algorithm K-nn) [ 111, the Backprop neural-network algo- 
rithm [ 121 and a Rule-based network classifier (ITRULE) 
[ 131 The overall system block diagram is depicted in Fig. 
4. For more details on the system the reader is referred to 
[ 141. We next demonstrate the performance of the rotation- 
invariant system on the 30 texture database of Fig. 1. 

1 - 1  - 
FEATUREEXTRACTION LEARNING 

PHASE PHASE 

Fig. 4: System Block Diagram 

Experimental setup 

The 30 texture database is comprised of 256 x 256 im- 
ages. For each 256 x 256 texture patch, a set of 16 non- 
overlapping 64 x 64 windows are extracted. 12 of the 
windows are used for training and 4 different ones are used 
for testing. The test set is constructed by rotating each of 
the test windows by 5 O  increments, between 5' and 50'; 
thus we have 40 test vectors per texture. The training in- 
puts are all rotated by 5' so that all members of the testing 
and training set have the same amount of error due to the 
rotation algorithm. 

The recognition process entails the following steps: 
1 .The 64 x 64 texture patch is passed through the steerable 
pyramid to result in a set of 15 8 x 8 filter maps. 
2.The 8 x 8 filtermaps are averaged, to produce one repre- 
sentative feature vector per 64 x 64 input window. 
3.The extracted feature vector, f, is DFT encoded to gen- 
erate the companion feature vector, f. 
4.The magnitudes of the set of DFT-encoded feature- 
vectors are next presented to the classification system for 
recognition. 

In the classification stage we compare across several 
non-parametric learning schemes. The Rule-based network 
classifier has been presented for texture classification in [4]. 
It is composed of an unsupervised K-means clustering stage 
followed by a supervised classification stage which is an 
information-theoretic rule-based scheme [ 131. An informa- 
tion theoretic measure is used to learn the most informative 
links or rules between features and class labels. In the 
testing phase, the a-priori defined rules provide the poste- 
rior probability for the output classes. The learned rules 
can be mapped onto a rule-based neural-network and thus 
the classification scheme is parallelizable and suitable for 
implementation using special purpose neural-network hard- 
ware. The Rule-based scheme is compared with the more 
standard K-nearest neighbor classifier and the Backpropa- 
gation neural-network. In the K-nn algorithm we average 
over several K nearest-neighbor values ( Ity = 1,3,5,7) .  A 
3-layer Backprop network is used with a 15-dimensional 
input space, a node for each class in the output layer, and 
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[ 30 TEXTURE CLASSIFICATION - 4 cases I 

67.5% 77.42% 
90% 83% 85.83% 

Table 1 Classification results for the 30 texture database of Fig. 1 

several hidden layer configurations (results are averaged 
over 30,60 and 90 hidden units). 

To augment the testing results 4 different runs are made, 
each with a different set of 4 testing windows, and the 
classification results are averaged over these runs. 

Results 

We compare results for 4 different classification scenar- 
ios, as given in Table 1. The 4 cases reflect the performance 
of the system as related to the state of the input test pat- 
tern's (rotated vs. non-rotated), and the input representa- 
tion space (rotation-invariant (via DFT encoding) vs. non 
rotaition-invariant). 

Iin case 1 the data is nonrotated and no DFT conversion 
is pexformed. High classification rates are achieved. These 
rates indicate the strength of the recognition system on 
non -rotated inputs. 

In case 2 the test data is rotated and no DFT conversion 
is performed. Here the strong decline in performance is 
evident, as is expected for a non rotation-invariant system. 
The result presented is averaged over both the oriented and 
non -oriented textures in the database, with the non-oriented 
cases (which are less affected by the rotation) actually aug- 
menting the performance. In addition, rotations of 5' - 50' 
were included. A more severe drop in performance would 
be evident if only the large rotations were included. 

In case 3 the test data is nonrotated but a DFT repre- 
sentation is used. Here we get high classification results, 
though somewhat reduced from case, 1. This is the price 
paidl for shifting to a rotation-invariant representation which 
makes fewer assumptions about what is known. In using 
the magnitude of the DFT-encoded vectors for the classi- 
ficalion task, we ignore the phase information. In the 4 
dimensional case we are actually left with only 2 invariant 
components (we zero out the single phase component and 
we cannot rely on the Nyquist component). This loss of 
infolrmation results in the reduced performance. 

Finally, in case 4 we have a rotated test set analyzed by 
the rotation-invariant system. The increase in the results 
frorn case 2 are evident. As expected the results are similar 
to case 3. We are able to classify the varied database of 30 

textures rotated at 5' resolution at an accuracy of close to 
90%. 

Comparable results are achieved across the three clas- 
sification schemes utilized. The above results represent 
state-of-the-art recognition results in the domain of large- 
database rotation-invariant natural texture recognition. 

4 Orientation Estimation 

In this section we study a method for computing the 
rotation angle of a given test patch relative to a reference 
texture in the database. In the context of the recognition 
stage, only the magnitude of the DFT-encoded feature vec- 
tor is used. Upon identification, the phase of the DFT can 
be inspected to determine the amount of rotation of the 
input texture relative to a prestored sample of that texture 
class. 

As discussed in section 2, our scheme allows for the 
phase to be extracted at each scale on each 8 x 8 image 
tile. A key question is whether, given a sizeable texture 
patch, a more reliable estimate of orientation is obtained 
by direct averaging of the phases of the component 8 x 8 
tiles, or by computing the phase of the average of the filter 
outputs on the entire patch. In order to address this question, 
orientation characteristics are investigated on two block 
sizes: 8 x 8 and 64 x 64. The results for both block sizes 
will be compared and interpreted. 

Experimental setup 

Each 256 x 256 textured image in the database is run 
through the pyramid to produce a set of 32 x 32 = 1024 
feature-vectors (i.e., each feature-vector represents an 8 x 8 
block in the input image) which are subsequently DFT- 
encoded. Only the central 30 x 30 = 900 feature-vectors 
are kept in order to avoid edge effects. 

The phase of the first harmonic of the DFT components 
at all three scales of each of the 900 feature-vectors for each 
texture is next extracted. We will refer to each element 
of this collection of phase estimates as having the form 
pk e iek ,  where pk is the response strength along a particular 
orientation O k  . 

We examine next the histograms of the phase estimates 
of each texture, at each of the 3 scales of the system. Fig. 5 
shows the plots for the wood, pig and herring textures, top 
to bottom, respectively. A histogram of the phase estimates 
(Ok for all k) is presented left with a log scatter plot shown 
right. The log plot is a plot of log pk eaek . Since 

log pk e i e k  = log p k  + i ~ k  ( 5 )  

the log plot is essentially a rectangularized version of a 
polar plot (of p vs. 4). In this representation the high- 
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Fig. 5: Wood, pig and herring texture phase characteristics. Pre- 
sented are the histogram of the phase estimates (left) and a log 
scatter plot (right). 

energy orientations are represented by the rightmost points 
in the plot. By inspecting the plot it is possible to determine 
the peak angle in the strongest-power region. 

We now describe the procedure for obtaining the data 
for the 64 x 64 case. We first note that there are 16 non- 
overlapping 64 x 64-pixel blocks contained within a given 
256 x 256 image. The first step is to average the feature 
vectors over each 64 x 64 block to produce a set of 16 
feature vectors. Next, a set of 16 phase estimates for all 
three scales are extracted. The statistics of the resulting 
orientation estimates are reported in Table 2. 

Results 

First some comments on the general aspect of texture ori- 
entation statistics. Three examples are presented in Fig. 5. 
An example of a strongly (single) oriented texture is the 

wood texture (see Fig. 5 top). We note the strong peak at 
90" at all three scales. An example of a non-oriented tex- 
ture is presented in the center of the figure, for the pigskin 
texture. Here we note the large variance in angles in each 
of the three scales. Looking at the log plot we note the 
large variance in the power axis as well, with votes for the 
angles spread out in the entire angle axis. 

Most of the textures in the 30 texture database fall into 
one of the above two categories. One extreme case of in- 
terest is the herring texture which consists of two dominant 
orientations per scale. This case is presented in the bottom 
of Fig. 5.  Scale 2 has in this case the most power in the 
oriented components, and the least variance. It is also this 
scale in which we see two strong peaks in orientation, at 
45' and 135'. The strongest of the two peaks is used as the 
"reference" peak. Still, the information about the second 
peak is very important in the reliability of the estimated ro- 
tation angles. With the 4-dimensional DFT representation 
we extract a single phase component. In a single oriented 
texture, we are thus able to retrieve rotations within a 180' 
range. In the case of two dominant orientations per scale, 
our estimate can be accurate only to within a 90' interval. 

Table 2 summarizes the orientation analysis for each of 
the 30 textures in our database. For each texture we have 
indicated the following information: 
- The dominant scale from which to determine orientation. 
This scale is chosen as the one with the smallest standard 
deviation around the peak in orientation. 
- The mean orientation (peak location) in that scale. 
- The standard deviation of the orientation. 
- In the case where two dominant orientations exist, a sec- 
ond mean and standard deviation is given for the second 
peak. 

The method employed in this work for calculating the 
mean and standard deviation (std.) for a given angle dis- 
tribution is specially designed for the 180' periodicity of 
the measurements. The mean angle is computed by first 
finding the phase of the vector resulting from the sum of 
ei2gk for all k, and then dividing this phase by 2. If the 
magnitude of Ck eiZek is sufficiently small, (less than 150 
for the 8 x 8 case and less than 4 for the 64 x 64 case), 
however, a second check on Ck ei4gk is performed to see if 
a bimodal distribution exists, as is the case for herringbone 
in Fig. 5,  scale 1. 

The std. values are obtained by first translating the his- 
togram by 90' - to center the peak at 90' and then 
computing the std. of the set of 6 k ' s  using thle conven- 
tional std. definition. The standard-deviation (std.) of the 
angle distribution provides us with a characterization of 
the textures. Highly structured textures (e.g., wood( 10) 
and jeans(5)) tend to have small std., while unstructured 
textures (e.g., particle-board(21) and handmade-paper( 19)) 
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_- 
Texture 
1.bark 
2.calf 

-~ 

3 cloth 
4 crdbrd 

6 grass 
7 P’g 
8.raffia 
9 water 
10 wood 
11 backpack 
12 bookbox 
13 brownbag 
14 chbkcover 
15 cork 
16 cotcanv 
17 frcanv 
18 fur 
19 hmpaper 
20 napkm 
21 prtboard 
22 reptlle 
23 straw 
24 text 
25 towel 
26 vinyl 
27 herring 

28 sand 
29 wire 
30 strawmat 

5 JWUiS 

- 
- 
scale 

1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
2 
0 
0 
0 
1 
0 
0 
1 
1 
0 
1 
1 

- mean 
102.46 
81.91 
66.69 
91.04 
87.28 
106.56 
177.45 
175.35 
92.34 
91.77 
90.74 
0.63 
84.44 
0.01 
59.60 
133.69 
178.69 
111.41 
16.69 
135.62 
92.35 
71.02 
144.26 
1.15 

148.33 
43.64 
45.60 
135.75 
109.99 
90.25 
165.02 

- 

- 
- 
std. 
45.31 
11.84 
32.93 
9.21 
2.44 
31.91 
39.18 
23.05 
5.03 
1.63 
0.94 
7.99 
40.85 
36.64 
11.34 
7.10 
1.02 
7.88 
33.16 
20.04 
42.42 
24.04 
13.23 
19.26 
37.03 
34.07 
12.35 
10.78 
37.20 
5.36 
9.02 

- 
t - 

scale 
1 
1 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
2 
0 
0 
1 
1 
0 
0 
0 

0 
1 
1 

- mean 
103.71 
84.35 
68.21 
91.21 
87.40 
108.10 
176.50 
176.46 
92.56 
91.58 
90.75 
0.59 
85.38 
179.55 
60.66 
134.64 
178.62 
110.24 
16.74 
135.61 
94.15 
73.80 
143.36 
1.42 

147.76 
44.05 
106.56 

110.76 
90.72 
166.02 

- 
- 
5 - 
std. 

12.78 
6.88 
10.16 
1.25 
0.54 
10.67 
9.95 
3.77 
1.48 
0.93 
0.71 
1.91 
8.87 
4.16 
4.23 
1.54 
0.27 
7.65 
8.74 
2.73 
7.78 
6.67 
9.70 
1.27 

22.65 
14.92 
22.87 

7.58 
0.43 
2.23 

- 

Table 2 Orientation characteristics of textures via a histogram 
analysis. Shown for each texture are the dominant scale (0, 1 or  
2), the mean (peak) orientation angle, and the std. 

have large std. For purposes of comparsion, note that the 
maximum std. for a range of 1 80° is approximately 52’. 

We can now draw comparisons between the statistics for 
each block size. Since there are 64 8 x 8 blocks contained 
in oine 64 x 64 block, by averaging 8 x 8 tile orienta- 
tions; we may obtain orientation estimates whose std. is 
l/&i = 1/8 that of the individual 8 x 8 tiles. By com- 
paring such values (Table 2, g. the 4th column) with the 
64 x 64 orientation std., it is easy to conclude that averaging 
8 x 8 tile orientations is the better method for estimating 
texture orientation. 

5 Summary and Conclusions 

We have presented a novel rotation-invariant texture 
recognition system together with a method for estimating 
the rotation-angle of textures. The features are obtained 
from oriented pyramid filters which present particularly 
good properties of “discriminability” for texture classifi- 
cation and are computationally efficient. The orientation 
estimation method is particularly reliable in that confidence 
measures are estimated along with the orientation. We have 
demonstrated state-of-the-art results both in classification 
and orientation estimation on a set of 30 natural and real- 

world textures. Future work will include extending this 
framework to scale-invariant recognition and scale estima- 
tion. 
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