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ABSTRACT
Modern network worms spread with tremendous speed—potentially
covering the planet in mere seconds. However, for most worms,
this prodigious pace continues unabated long after the outbreak’s
incidence has peaked. Indeed, it is this ongoing infection activity
that is typically used to identify compromised hosts. In principle,
a stealthier worm might eliminate this telltale sign by coordinating
its members to halt infection activity after the vulnerable popula-
tion is subverted. Thus, after a short initial spreading period all
infected hosts could become quiescent “sleeper agents.” In this pa-
per, we show that such “self-stopping” capabilities are trivial to add
to existing worms, and can be efficiently implemented without any
explicit coordination or additional network traffic.
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ulation and Modeling]: Types of Simulation—Discrete event
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1. INTRODUCTION
Existing self-propagating worms are able to blanket millions of

Internet hosts in minutes [3] and future worms may achieve the
same coverage in seconds [5]. Thus, it is common that such worms
are only detected after they have infected much of the vulnerable
population. Indeed, when recovering from an epidemic, the stan-
dard technique for detecting infected hosts on one’s network is to
look for their continued scanning activity.
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However, the widespread belief that indefinite scanning is an
inherent side-effect of random scanning strategies is a fragile as-
sumption at best—today’s worms simply aren’t designed to stop.
In this paper we explore distributed algorithms that accurately esti-
mate and moderate the growth of worm epidemics. Thus, a worm
could spread quickly for a short period (perhaps only seconds),
until a large fraction of its vulnerable population is compromised,
and then globally stop itself. Such behavior could make outbreaks
harder to detect and, more importantly, could make it far harder
to identify the presence of infected hosts after the fact. The chal-
lenge of this problem lies in coordinating the scanning dynamics
of an unknown number of independent worm instances. Some re-
searchers have proposed alternative worm designs to provide this
coordination explicitly via an overlay control network but we argue
that this sophistication is unnecessary [1]. We demonstrate that it
is easy to modify existing oblivious worm designs to autonomously
monitor global progress and then change behavior when a particu-
lar fraction of the vulnerable population has been subverted. More-
over, we show that this can be done with trivial overhead and no
additional network traffic.

In the remainder of this paper we describe our approach in more
detail, explore alternative designs and present our initial experi-
ences. Section 2 discusses our assumptions and evaluation crite-
ria, followed by a description of various self-stopping algorithms
in Section 3. We evaluate these algorithms in Section 4, and we
conclude in Section 5.

2. ASSUMPTIONS AND MODEL
For the purposes of this paper, the goal of a self-stopping worm

is to stop propagating when the total number of infected hosts has
reached a target population. This target may in turn be specified
as an absolute limit—e.g., 10,000 vulnerable hosts—or as a rel-
ative limit—e.g., 95% of the vulnerable population. In addition,
we assume that worms propagate by “scanning” and infecting tar-
get hosts. Thus, an infected host will initiate γ infection attempts
(scans) in a timestep—we refer to γ as the per-host scanning rate.
We consider two target selection strategies: uniform random scan-
ning and permutation scanning. In the first case, an infected host
chooses each target randomly out of an address space of size A. N

out of the A hosts are vulnerable to infection, and we assume this
quantity is static. Similarly, in the permutation scanning regime, in-
fected hosts select targets from a universally predetermined, circu-
lar sequence of addresses—i.e., the permutation space. An individ-
ual host stores a seed value, which is an index into the permutation
space representing the address it will scan. After scanning, the host
increments its seed to point to the next address in the permutation,
and repeats [6].

The only dynamic quantities of interest in our model are I(t), the



Param Definition

t Time (in timesteps)
A Size of address space
N Total number of vulnerable hosts
γ Per-host scanning rate (scans per timestep)

I(t) Number of infected hosts at time t

a(t) Number of infected hosts that are actively infecting
others

Table 1: Notation for epidemic parameters and quantities.

number of infected hosts at time t, and a(t), the number of hosts
that are infected and active at time t. For all our evaluations, we
assume that I(0) = 1. Table 1 summarizes the notation we shall
use throughout the paper.

We also have chosen to explore the most restrictive part of the
design space, in which the only form of communication allowed
is that opportunistically piggybacked upon existing infection at-
tempts. Thus, we assume that worms do not create any long-lived
or structured communication channels amongst themselves. We
have chosen these limitations because they require no change to
existing worm designs and moreover demonstrate the simplicity of
implementing effective self-stopping strategies. We will show that
even with these handicaps, purely oblivious distributed algorithms
are competitive with a perfect oracle in common scenarios.

We propose several criteria for evaluating the effectiveness of
self-stopping strategies. The first is an algorithm’s accuracy with
respect to the target population goal. More formally, the differ-
ence between the resulting number of infected hosts and the num-
ber specified in the population goal should be small for an accurate
strategy. This criterion is important because we should consider a
worm that aims to infect 100% of the population but ends up in-
fecting 50% to be ineffective. However, one must discuss accuracy
with respect to a population goal, because for some strategies a rel-
ative limit can be easier to achieve than an absolute limit, and vice
versa.

The second measure of effectiveness is a small network foot-
print—in particular a worm’s speed, duration, and aggregate scan
traffic. Speed refers to the amount of time a worm requires to infect
a target portion of the population. Duration is the amount of time
elapsed from the beginning of an epidemic to the time all infected
hosts have deactivated. Aggregate scan rate is the amount of traffic
generated by all active, infected nodes in a time interval, and the
scan total measures such traffic over the entire epidemic. Presum-
ably, worm authors would prefer to minimize network footprint and
thus the opportunity for detection.

The third criterion we use to characterize effectiveness is the ease
of implementation, which accounts for inter-node communication
structure, the amount of state kept at each node, and feedback level
between nodes. As we discussed earlier, strategies that try to con-
struct overlays among infected nodes are more complex than those
that simply piggy-back information with infection probes. The
amount of state an infected node keeps can range from stateless,
e.g., simply relying on fortuitous contact to initiate a deactivation
sequence, to storing scalars (infection counts, scan counts, etc.),
to detailed records like keeping a list of every infected host it has
ever contacted. The feedback level refers to the amount of detail in
communications between nodes. A node could receive no feedback
at all on an infection attempt, like many existing UDP worms—
we say that worms that operate in this regime are blind. Alterna-
tively, a node could take advantage of knowledge that an infection
attempt was a new hit (reaching a previously uninfected vulnerable

host), a redundant hit (reaching a previously infected vulnerable
host), or a miss (reaching a non-vulnerable host). Furthermore, a
node could seed its descendants with epoch counters and genera-
tion numbers, or exchange data from scalars to more complex data
structures. There are many possibilities, but we restrict our atten-
tion to a handful of them.

In our evaluations we focus on an accuracy requirement where
worms must infect at least 85% of vulnerable hosts before they
stop, and evaluate the impact of different strategies on network
footprint (in particular, speed and duration). Ease of implementa-
tion is an inherently more subjective criterion because some worm
authors may be willing to implement a simple algorithm that re-
quires a large amount of memory (high state cost), and others may
be willing to invest time in implementing a more sophisticated
algorithm that uses less state. Nonetheless, we discuss the self-
stopping heuristics below in order of increasing complexity.

3. SELF-STOPPING HEURISTICS
This section presents the set of self-stopping worm heuristics that

we will evaluate in Section 4 in order of increasing power (where
power refers to the type of knowledge available to a node). We in-
troduce these heuristics in the context of uniform random scanning,
followed by descriptions of permutation scanning analogs.

As a baseline, we first describe the default, greedy mode of op-
eration found in many worms:

Greedy: An infected node infects as many hosts as possible with-
out stopping.

We will only evaluate the speed of this worm. Since there is no
stopping strategy for Greedy, the duration of the epidemic will be
infinite.

3.1 Non-Exchange, Non-Estimating Strategies
The first two self-stopping methods we explore are from the dis-

tributed systems literature and were introduced by Demers et al.
for moderating the overhead of epidemic flooding for distributed
replica updates [2]. The justification for using these techniques
arise from a model of epidemic behavior that accounts for removed
nodes: dI

dt
= γ

A
(N − I)a, and da

dt
= γ

A
(N − I)a−

1
k
a. The − 1

k
a

factor means that 1
k

of active hosts simply deactivate at the end of
a timestep. This yields the following strategy that does not rely on
feedback of any kind:

Blind-k: An infected node deactivates with probability 1
k

at the
end of each timestep.

In combining the two aforementioned equations, we can express
the number of active hosts in terms of the number of hosts that were
ever infected in the epidemic: a(I) = I + 1

k
A
γ

log(1 −
I
N

). We
can predict the total number of vulnerable hosts infected at the end
of the epidemic by solving for a(I) = 0 (the epidemic is finished
when the number of active hosts becomes zero for a non-trivial
value of I). For example, when A = 220, N = 512, γ = 250
and k = 32 (these are parameters we use in the evaluations for
scanning a 20-bit address space), 97.8% of the population will be
infected with a Blind-32 strategy. When A = 232, N = 217,
γ = 4, 000 and k = 32 (parameters in the evaluations for scanning
a 32-bit address space), 97.8% of the population will be infected
with a Blind-32 strategy. Note that parameterizing k for the Blind-k
strategy to reach a target population I requires a priori knowledge
of N , A, and γ, assumptions which may be very difficult for a
worm initiator to make.

The next strategy from [2] requires the worm to detect redun-
dant hits on vulnerable nodes, and the equation for da

dt
changes to



da
dt

= γ

A
(N − I)a −

1
k

γI

A
a. The −

1
k
( γI

A
)a factor means that 1

k
of

the active nodes that achieved a redundant hit—where γI

A
is the ex-

pected number of redundant hits generated per host—in the current
timestep have deactivated. Hence, we have the following strategy:

Stop-k: Upon achieving a redundant hit, an infecting host will
deactivate with probability 1

k
.

We can combine the above differential equations to express the
number of active hosts in terms of the number of infected hosts:
a(I) = k+1

k
I + N

k
log (1 −

I
N

). Using this equation, we can pre-
dict the total number of vulnerable hosts infected by the end of the
epidemic—regardless of the worm’s scanning rate or the size of
the address space—by solving for a(I) = 0. For example, when
k = 1, 2, and 3 and N = 217, the infected population will reach
80%, 94%, and 98% of vulnerables respectively. Note that this
strategy requires nodes to know the outcome of their infection at-
tempts, i.e., whether the attempt resulted in a new/redundant hit or
a miss. We call this type of feedback infection-status feedback.

If worms propagate in a structured manner so that a diagram of
parent-child relationships resembles a simple data structure (in the
following case, a k-ary tree), then estimating the number of hosts
that will be infected at the end of an epidemic is straightforward
assuming the absence of node failure. This is the motivation behind
the next strategy, which forces nodes to infect others in a tree-like
manner but does not use exchange or estimation. We describe this
precisely as follows:

Tree: Each infected node has a generation number i, with the gen-
eration of the original infected host set to 0. Infected nodes
with generation number i less than a constant m must infect
k previously-uninfected hosts (and assign the new hosts gen-
eration numbers of i + 1) before deactivating. Nodes with a
generation number equal to m may not scan, and must im-
mediately deactivate. With this technique, I = km+1

−1
k−1

at
the end of the epidemic.

3.2 Estimating Epidemic Parameters
The goal of infecting a target number or fraction of the vulner-

able population motivates the design of strategies that attempt to
estimate the vulnerable population (N ) and the infected population
at a given point in time (I(t)). Knowing I(t) alone is sufficient
to reach an absolute limit, but knowledge of both N and I(t) is
desirable for hosts wishing to reach a relative limit.

For situations where it is difficult to empirically estimate both
N and I(t), it is often convenient to estimate one using empiri-
cal measurements or exchanging information with other nodes, and
to calculate the other using a formula based on the logistic equa-
tion for modeling infectious epidemics. For our evaluations, an
infected node uses the following equation to estimate I(t) given
t, an estimate for N , and the per-host scanning rate γ: I(t) =

N eβ(t−t0)

1+eβ(t−t0) where β = γN

A
, and t0 = ln(N−1)

β
. Addition-

ally, an infected node can estimate N given I(t) and γ: N =

I(t) + A(I(t+1)−I(t))
γI(t)

.
This equation comes from the discrete version of the differential

equation dI
dt

= γ

A
I(t)(N−I(t)) for modeling epidemics. Note that

these estimators assume that nodes have access to a global clock.
In practice, a worm could approximate a global clock by seeding
its descendants with the birth-time of the first infected node or the
number of epochs that have elapsed so far (assuming nodes agree
on the length of an epoch).

In summary, we can use the traditional analytic models of in-
fectious epidemics to derive N from an estimate of I(t) and vice

versa. The remainder of this section discusses self-stopping meth-
ods that estimate N through empirical sampling and exchanging
information, and presents other heuristics that do not rely on such
estimates. However, we do not present techniques for estimating
I(t) empirically. A candidate approach would be to estimate the
infected population at time t using the number of redundant hits
that a node achieves in a timestep. The primary problem with this
approach is that, because I(t) is a dynamic quantity, the expected
number of redundant hits gathered in a timestep will change—this
prevents a node from using samples gathered in previous timesteps
to augment estimates in later timesteps.

3.3 Empirically Estimating N
The scanning that an active host undertakes to search for vul-

nerable hosts (which form a static fraction of the address space)
is a random process that lends itself naturally to two approaches
for correlating the number of successful hits with the vulnerable
population: sampling with replacement and sampling without re-
placement.

The first heuristic we present uses sampling with replacement to
estimate N . If a host records the number of vulnerable hosts it has
ever attempted to infect (H) as well as the total number of scans it
has produced (S), then we can model the number of hits achieved
by a worm during the scanning process as a binomial distribution
where there are S trials and the probability of success for each trial
is N

A
. Hence, E[H] = S N

A
. Thus we have the following heuristic:

Sum-Count: An infected host keeps two counters, one for the
number of vulnerable hosts it has contacted H , and one for
the number of scans it has produced S. The host can cal-
culate an estimate Nest of the vulnerable population using
Nest = HA

S
.

The next heuristic we present uses sampling without replacement
to estimate N . If a host can record the number of distinct vulnerable
hosts that it has ever infected (h) as well as the number of distinct
hosts that it has scanned (s), then we can model the number of hits
achieved by a worm during the scanning process with a hyperge-
ometric distribution where the number of possible successes is N ,
the number of failures is (A − N), and there are s trials. Hence,
E[h] = sN

N+(A−N)
= sN

A
. One method for tracking the distinct

hosts infected or scanned by a host is to use a bitmap with A bits,
where each bit position represents a host in the address space and
a bit is set for each infected/scanned host. This gives rise to the
following self-stopping worm heuristic:

Bitmap: An infected host uses two bitmaps, each of size A-bits.
It uses the first bitmap Bitv to record the vulnerable hosts it
has attempted to infect (new and redundant hits on vulnera-
ble hosts are included in this bitmap), and it uses the second
bitmap Bits to record the hosts it has scanned, regardless
of whether the host receiving its scan was vulnerable. The
infected host calculates an estimate Nest of the vulnerable
population where Nest = bitsset(Bitv)·A

bitsset(Bits)
.

A clear drawback to the naive Bitmap method is the large amount
of state required by each infected host to store the bitmap. While
there are several alternative data structures for approximating this
information compactly we do not record them here. We will show
that a variant of Sum-Count can almost match the Bitmap method
without any need for additional sophistication.

Although the estimators we use under sampling with and with-
out replacement are the same, the error analyses differ slightly.
V ar[Nest] = V ar[H

S
] = 1

S
N
A

(1 −
N
A

) for sampling with re-
placement, and V ar[Nest] = V ar[h

s
] = 1

s
N
A

(1 −
N
A

)( A−s
A−1

) for



sampling without replacement. In both cases, the estimate errors
improve as the number scans increase over time. Note that these
strategies require nodes to have infection-status feedback, but do
not require nodes to exchange extra information.

3.4 Augmenting Estimates With Exchange
The Sum-Count and Bitmap techniques for locally estimating N

only require the node to distinguish between vulnerable and non-
vulnerable hosts for every infection attempt. However, the error
analyses for those techniques suggest that we can make estimates
converge more quickly if we allow nodes to combine each other’s
estimates. We propose the following variations:

Sum-Count-X: This technique operates like Sum-Count, except
that when node A (with vulnerable hit count HA and scan
count SA) contacts node B (with vulnerable hit count HB

and scan count SB), their resulting sum counts become HA+
HB for hits and SA + SB for scans.

Bitmap-X: This technique operates like Bitmap, except that when
node A (with bitmaps Bitsv,A for vulnerable and Bitss,A

for scanned) contacts node B (with bitmaps Bitsv,B for vul-
nerable and Bitss,B for scanned), then the new bitmaps on
A and B for tracking infected/scanned nodes are Bitsv,A ∪

Bitsv,B for vulnerable hosts and Bitss,A ∪ Bitss,B for
scanned hosts.

3.5 Permutation Scanning Variants
Staniford et al. designed permutation scanning as an alterna-

tive to random scanning for victim selection in Internet worms [6].
The primary motivation behind permutation scanning is to increase
the speed of an epidemic by avoiding redundant address selection
among probing hosts. However, the technique also offers the po-
tential to reduce duration and scan traffic when used in conjunction
with divide-and-conquer methods.

We evaluate four permutation scanning variants of self-stopping
heuristics in this paper. The first is a variation of the Greedy strat-
egy, the second is Stop-k, the third is a Sum-Count-X variation, and
the last is a unique optimization where a node and its descendants
partition the address space among themselves:

Greedy Permutation: If the host achieves a redundant hit, it
will randomly choose a new seed and continue. No hosts
stop. Reseeding is motivated by the observation that another
host is already scanning forward in the current permutation
space—any continued scanning with the same seed would be
a duplicate effort.

Stop-k Permutation: Same as Stop-k.

Sum-Count-X Permutation: Same as Sum-Count-X, except with
the reseed-upon-redundant-hit policy used by Greedy Per-
mutation.

Partitioned Permutation: As suggested in [6], each infected host
is given responsibility for scanning a disjoint interval of the
permutation space. Upon achieving a new hit, a host assigns
half the unscanned portion of its current interval to the newly
infected descendant, and continues scanning the other half.
A host stops when it has finished scanning its interval (note
that achieving a redundant hit implies reaching the end of an
interval, although the converse might not apply).

The analysis we applied earlier to Sum-Count-X is not a perfect
fit for Sum-Count-X Permutation because permutation scanning is
closer to sampling without replacement, assuming that reseeding

does not overlap with previously scanned intervals. Nonetheless,
we will demonstrate that dynamic estimation has a positive impact
on the propagation dynamics of a permutation scanning worm as
well. Also, there are more sophisticated variations of partitioned
permutation scanning, such as switching to regular permutation
scanning when the interval size is lower than a threshold value [6].
However, we do not explore those further.

4. EVALUATION
In this section we use simulation to evaluate the ability of the

self-stopping worm heuristics described in Section 3 to balance the
speed and thoroughness of infecting vulnerable host populations
with the goal of achieving effective self-stopping behavior. We
first describe our simulation methodology and parameterizations of
the self-stopping heuristics. Then we evaluate the infection speed
and stopping duration of the basic heuristics that require initial pa-
rameterization and tuning, but otherwise require no estimation or
information exchange. Next we evaluate the heuristics that dynam-
ically estimate the epidemic parameters during the infection, and
demonstrate the value of having hosts exchange estimates during
the epidemic. Afterward, we examine the effectiveness of permu-
tation scanning strategies. Finally, we examine the sensitivity of
the heuristics to the vulnerability density of the host population, as
well as the amount of scan traffic produced by each heuristic.

4.1 Methodology
We simulate the behavior of a simple random scanning worm

spreading in an address space of size A among a set of vulnera-
ble hosts N . During the simulation, a vulnerable host undergoes
the following progression of states: uninfected, pending, infected,
inactive. Initially in an epidemic, one host is infected and all vul-
nerable hosts are uninfected. We simulate the spread of a worm
by dividing time into rounds. For each round, each infected host
in turn scans the address space by picking γ addresses uniformly
at random from the address space. We use the term hit to describe
the selection of an address belonging to a vulnerable host. If the
scanning host hits an uninfected host, then the simulator marks the
scanned host as pending and records the hit as new. If the scan-
ning host hits a pending, infected, or inactive host, the state of the
scanned host does not change and the hit is redundant. During a
hit (whether new or redundant), the scanning and scanned hosts
may exchange information (e.g., bitmaps, sum-counts, generation
seeding). After all infected hosts have scanned in a round, the in-
fected and pending hosts evaluate a stopping heuristic to determine
whether to transition to the inactive state. At the end of the round,
remaining pending hosts become infected. To focus solely on the
behavior of a self-stopping heuristic, we do not simulate network
effects: any host can contact any other host, and we do not model
network delays, bandwidth, or contention. The ability of a self-
stopping heuristic to infect the vulnerable population quickly and
thoroughly before stopping is limited only by the heuristic itself.

To optimize the simulation, we preallocate h hits to each infected
host and allow the infected host to choose h addresses uniformly at
random from the N vulnerable hosts. The simulation chooses h

for each host per round according to a binomial distribution with γ

samples and a probability of success of N
A

.
To simulate host selection for permutation scanning, we gener-

ate a global permutation of N entries before each run. Each entry
is a pair (seq, host) where seq is a unique sequence number in a
permutation space of size A, and host is exactly one of the N vul-
nerable hosts. Entries in the permutation are ordered by increasing
sequence number (accounting for arithmetic modulo A). For each
round, an infected host with seed σ grabs entries (seqi, hosti) from



Strategy Stopping Condition Feedback

Blind-k Stop with probability 1
k

. None
Stop-k Stop with probability 1

k
after redundant hit. Infection-status

Tree Stop after infecting k new hits on vulnerable. Infection-status,
generation seeding

Sum-Count Estimate N empirically using sampling with replacement. Stop when estimated
I reaches threshold.

Infection-status

Bitmap Estimate N empirically using sampling without replacement. Stop when esti-
mated I reaches threshold.

Infection-status

Sum-Count-X Like Sum-Count, but incorporate sums from other nodes. Trading scalars
Bitmap-X Like Bitmap, but incorporate bitmaps from other nodes via bitwise union. Trading bitmaps

Table 2: Summary of self-stopping heuristics.

Speed Duration
Strategy 10th 50th 90th 10th 50th 90th

Greedy 105 117 135 ∞ ∞ ∞

Blind-32 116 123 132 223 239 259
Stop-3 113 127 139 410 446 515
Tree (k = 50, m = 3) 1514 1637 1712 11744 13699 15961
Know N and I 112 119 139 155 161 181
Know I 111 123 142 153 163 184
Know N 114 121 147 154 154 154
Sum-Count 148 159 189 426 448 482
Sum-Count-X 103 119 136 156 174 199

Table 3: Speed (timesteps to infect 85% of vulnerables) and duration (timesteps for all infected hosts to stop) by percentile of worm
epidemics using various self-stopping strategies. Address space size A = 232, number of vulnerables N = 217, and per-host scan
rate γ = 4, 000 per timestep.

the permutation so that σ ≤ seqi < σ + γ, and proceeds to infect
each corresponding hosti. The hosti’s represent vulnerable hosts
that the infected node would have contacted after scanning γ ele-
ments along the permutation sequence space.

Except where explicitly noted, all of our experiments simulate an
address space A = 232 with N = 217 vulnerable hosts, roughly the
number of hosts infected by the Slammer worm [3] (we examine
the sensitivity of the size of N in Section 4.5 below). Infected hosts
scan at a rate of γ = 4, 000 scans per timestep. With a simulated
timestep corresponding to one second, this rate corresponds to the
observed average scanning rate of Slammer, with the simplifying
assumption that all hosts scan at the same rate without any network
bottlenecks. We experimented with other scan rates and did not
find that the relative performance of the heuristics was sensitive to
the parameter.

The heuristics Blind-k, Stop-k, and Tree require parameteriza-
tion and tuning to be effective for particular choices of A and N

for an epidemic (the dynamic estimation heuristics do not have this
limitation). We choose parameters such that these heuristics will
infect most of the vulnerable population while achieving good self-
stopping performance for that heuristic. Because of the random
nature of the worm epidemic and self-stopping heuristics, it is not
practical to parameterize many of the heuristics to completely in-
fect 100% of the vulnerables.

For Blind, we set its stopping parameter k = 32. The analysis in
Section 3 indicates that, for a 32-bit address space with 217 vulnera-
ble hosts making 4,000 scans/timestep, Blind-32 will infect 98% of
the vulnerable hosts on average. For Stop, we set k = 3 which, as
per our analysis, will infect 98% of the vulnerable hosts, regardless
of address space size or scanning rate. For Tree, we set a branching
factor of k = 50, a maximum generation number of m = 3, and
a goal of infecting 97% of the vulnerable hosts. We experimented

with other parameters; for instance, k = 2 and m = 16 will in-
fect all but one of 217 vulnerable hosts. Simulations using such
aggressive infection parameters, however, result in extremely long
worm epidemics due to the time required to randomly scan the few
remaining uninfected vulnerable hosts at the end of an epidemic.

4.2 Basic Heuristics
We start by evaluating the effectiveness of the basic heuristics

Blind-32, Stop-3, and Tree, and compare them against the Greedy
worm. These heuristics are straightforward to implement and de-
pend on only local information to stop. The top part of Table 3
shows the speed and duration of these heuristics for simulated epi-
demics. We define speed as the number of timesteps required for
a worm to infect 85% of vulnerables; at this stage of the epidemic,
most vulnerables are infected and the worm is well beyond the
exponential growth phase. We define duration as the number of
timesteps required for all hosts infected by a worm to stop scan-
ning relative to the start of the epidemic.

For each heuristic, we simulate 20 worm epidemics and report
the 10th, 50th, and 90th percentiles of each metric. Because these
worms perform random scans, their speed and duration will vary
across simulation runs depending upon the random chance of early
infections. “Lucky” worms infect vulnerable hosts sooner and there-
fore propagate faster; “unlucky” worms take more random trials
to infect vulnerable hosts, and propagate slower. The percentiles
show the sensitivity of each heuristic to the effect of randomness.
In general, the sensitivity is not substantial: both the 10th and 90th
percentiles are within roughly 10% of the median.

As expected, Greedy is the fastest strategy since it does not slow
down as the epidemic completes the infection. With a simulated
timestep corresponding to a second, the median Greedy speed cor-
responds to a 3-minute epidemic (the real Slammer worm infected
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Figure 1: Infected and active hosts over time for the basic heuristics Greedy, Blind-32, Stop-3, and Tree.

most vulnerable hosts in similar time [3]). Blind-32 and Stop-3 are
fast as well, with median speeds marginally slower than Greedy.
Tree, however, is an order of magnitude slower than the other heuris-
tics; we discuss this effect in more detail below.

In terms of duration, the heuristics have similar relative perfor-
mance but with more dramatic variation. Blind-32 has the short-
est duration. In comparison, the median duration for Stop-3 is 1.9
times longer than the median for Blind-32, and the duration of Tree
is almost 2 orders of magnitude longer. Greedy has an infinite du-
ration since it does not try to stop.

To illustrate the heuristics in more detail, Figures 1a and 1b show
the behavior of the heuristics as a function of time. Corresponding
to the goal of infecting as many hosts of the vulnerable population
as quickly as possible, Figure 1a shows the percentage of vulnera-
ble hosts that are infected over time for each of the heuristics. Cor-
responding to the goal of stopping as quickly as possible once the
worm has infected the vulnerable population, Figure 1b shows the
percentage of vulnerable hosts that are active over time for each
of the heuristics. As a representative simulation run for a given
heuristic, we use the run that results in the median duration time
from Table 3.

The Greedy worm represents the ideal infection performance for
a worm since it has the fastest infection speed. A “perfect” self-
stopping worm would spread like Greedy until it infects all vul-
nerable hosts, and then all active infected hosts would stop simul-
taneously. The goal of the heuristics is to approximate Greedy
infection speed while balancing the additional goal of stopping
quickly. Figure 1a shows how Blind-32 and Stop-3 spread nearly
as quickly as Greedy. They infect almost all of the vulnerable
hosts, but not 100% due to their stopping behavior. Stop-3 starts
by spreading more aggressively than Blind-32, but hosts begin to
deactivate sooner by the middle of the epidemic. As a result, both
heuristics take about the same amount of time, for instance, to in-
fect 85% of vulnerable hosts.

Figure 1b shows the dynamic stopping behavior of the heuristics.
With Stop-3 the number of simultaneously active hosts peaks at
55% of the vulnerable hosts, but then active hosts quickly begin to
stop themselves as they contact other infected hosts. At the same
time, it becomes increasingly unlikely that an active host will scan
an uninfected vulnerable host, slowing the worm down even more.
Eventually, the time it takes for an active host to randomly scan

a remaining uninfected vulnerable host is longer than the time to
contact multiple already-infected hosts. As a result, all active hosts
eventually decide to stop and the worm halts after 446 timesteps.

With Blind-32 the active hosts peak higher at 70% of vulnerable
hosts, and they stop more aggressively than with Stop-3. Although
Blind-32 spreads less aggressively than Stop-3 (infected hosts ran-
domly stop even in the early part of an epidemic), with a higher
peak of active hosts it is able to infect as many hosts as Stop-3.
Since Blind-32 depends only on time to stop, rather than randomly
contacting already-infected hosts, a Blind-32 worm stops substan-
tially sooner than a Stop-3 worm (239 vs. 446 timesteps).

Figures 1a and 1b illustrate the limitations of the basic Tree
heuristic. A Tree worm spreads much slower than the other heuris-
tics because infected hosts are constrained in the number of vulner-
able hosts they infect. With other heuristics a host infected early
will try to infect vulnerable hosts throughout the epidemic, whereas
with Tree an infected host will stop when it reaches its infection
quota. As a result, basic Tree epidemics take substantially longer
to propagate. More complex optimizations could make Tree more
aggressive, such as widening the fan-out, assigning redundant tar-
gets, etc. But since our goal is to avoid complexity, and simple
heuristics already perform comparatively well, we did not investi-
gate further refinements of Tree.

4.3 Dynamic Estimation
The basic heuristics above enable a worm to spread quickly, but

they vary widely in their self-stopping ability. More critically, they
also require the worm initiator to correctly estimate the size of
the vulnerable population ahead of time. Since this information
is rarely known, we next evaluate heuristics that dynamically es-
timate the epidemic parameters during the infection and use these
estimates to decide when to stop. The crucial advantage of this
approach is that it does not require parameterization or tuning.

We evaluate the dynamic estimators Sum-Count and Sum-Count-
X (we discuss the Bitmap heuristic below) and compare them with
Greedy, Blind-32 (the best basic heuristic), and three idealized heuris-
tics Know-NI, Know-N, and Know-I. Recall that Sum-Count esti-
mates N by tracking the relative number of vulnerable hosts it has
scanned, and derives I based upon its estimate of N . Sum-Count-X
further refines Sum-Count by having hosts exchange their estimates
when they contact each other. This exchange improves local esti-
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Figure 2: Infected and active hosts over time for the dynamic estimator heuristics.

mates by disseminating global observations. The idealized heuris-
tics have perfect instantaneous knowledge of the number of vul-
nerable hosts N and/or the number of infected hosts I at all times,
and represent an upper bound on estimation accuracy. By compar-
ing against these ideals, we can determine the effectiveness of an
estimator and the necessity of estimating accurately for a capable
self-stopping worm.

The second half of Table 3 lists the speed and duration of these
heuristics. Starting with the ideals, Know-N and Know-I estimate
the number of vulnerable hosts or infected hosts in terms of perfect
knowledge of the other using the equations in Section 3. Know-NI
has perfect knowledge of both quantities and requires no estima-
tion: it knows precisely when it has infected all vulnerable hosts
and can stop immediately.

Not surprisingly, the ideal estimators are fast and stop quickly.
They have slightly different stopping behaviors, however, and these
differences provide additional insights into estimation and subtleties
of our metrics. The speed results indicate that estimating N us-
ing perfect knowledge of I (Know-I) is slightly slower than Know-
N, but this difference is simply an artifact of the random infection
process. On the other hand, Know-N stops faster with no vari-
ance compared to Know-I; Know-N calculates its I estimate from
a static quantity N , whereas Know-I derives estimates based on a
quantity whose growth rate varies from epidemic to epidemic.

Note that, with Know-N and Know-I, having perfect knowledge
of one of the quantities will result in different behavior than Know-
NI because the heuristics still have to estimate the other quantity
from the known one. Since host selection is a random process, and
the equations in Section 3 model an expected propagation, the esti-
mated quantities still introduce error relative to perfect knowledge
of both quantities. For example, Know-I knows the true number
of infected hosts I , but each infected host still estimates N based
upon the analytic model. Depending on the random infection be-
havior of a worm epidemic, Know-I can have hosts stop before or
after the time when all vulnerable hosts have been infected.

Comparing the durations of Know-NI, Know-N, and Know-I il-
lustrates the effects of estimation even with partial perfect knowl-
edge. For example, Table 3 shows that Know-NI takes longer to
self-stop than Know-N. The reason is that Know-NI will not stop
until 100% of vulnerable hosts have been infected, whereas Know-
N stops based upon its estimate of the number of infected hosts.

As a result, Know-N can decide to stop when less than 100% of
vulnerable hosts have been infected. So Know-N may stop sooner,
but it will not infect quite as many hosts as Know-NI.

Moving on to the practical dynamic estimators, Table 3 shows
that Sum-Count is not much of an improvement over the basic esti-
mators. It is slower to infect 85% of the vulnerable population than
Blind-32 and Stop-3, and takes as long as Stop-3 for all infected
hosts to self-stop. In other words, worms using purely local esti-
mation spread slower than the basic heuristics and do not improve
on their ability to stop, but local estimation does have the benefit of
not requiring parameterization.

The Sum-Count-X heuristic highlights the value of exchanging
information for self-stopping worms. With Sum-Count-X, each
host exchanges its counts of vulnerable and scanned hosts with
other infected hosts on each contact. As a result, it infects faster
than all previous heuristics and stops 1.3 times sooner than Blind-
32 (using the median results). It also spreads as fast as the idealized
estimators, and stops nearly as quickly: it takes only 8% longer to
stop than Know-NI, which has perfect knowledge of both N and I .
Sum-Count-X demonstrates that self-stopping worms are practical
to implement using a simple distributed algorithm, and that self-
stopping, random scanning worms can realize nearly ideal spread-
ing and stopping performance.

Figures 2a and 2b show the dynamic behavior of the estimation
heuristics. Figure 2a shows the percentage of vulnerable hosts that
a worm has infected over time, and Figure 2b shows the percent-
age of vulnerable hosts that are active over time. We show results
for Know-NI, Know-N, Know-I, Sum-Count, and Sum-Count-X,
and we include the results for Greedy and Blind-32 from before
for comparison. For all heuristics, we use the simulation run that
results in the median duration time reported in Table 3. Figure 2a
shows that the idealized estimators indeed produce fast-spreading
worms: in terms of infected hosts, they spread as quickly as Greedy.
Further, Figure 2b shows that they are able to stop nearly instanta-
neously once they estimate that all vulnerable hosts have been in-
fected (note that Know-N stops sooner than Know-NI as described
above).

The figures also show the effect of a purely local estimator com-
pared with one that exchanges information and incorporates global
observations. Sum-Count, the local estimator, spreads even slower
than Blind-32, which performs no estimation (although Blind-32
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Figure 3: Infected and active hosts over time for Partitioned Permutation as well as permutation and random scanning versions of
Greedy and Sum-Count-X.

Speed Duration
Strategy 10th 50th 90th 10th 50th 90th

Know-NI 58 71 81 91 101 115
Sum-Count 79 100 143 202 231 268
Bitmap 83 100 126 206 237 331
Sum-Count-X 62 73 83 91 109 133
Bitmap-X 60 71 83 101 103 120

Table 4: Speed and duration by percentile of worm epidemics
using select self-stopping strategies under a 20-bit address
space with 512 vulnerables and a per-host scanning rate of 250
per timestep.

does require tuning, as described in Section 4.1 above). In con-
trast Sum-Count-X, which exchanges information, is nearly indis-
tinguishable from the idealized estimators.

Finally, recall that Section 3 described a second dynamic esti-
mator, Bitmap-X, that also exchanges estimation information when
hosts contact each other during the epidemic. Whereas Sum-Count-
X keeps track of counts of vulnerable and scanned hosts, Bitmap-X
keeps track of precisely which hosts in the address space are vul-
nerable and which ones have been scanned and infected. Because
it maintains and exchanges more precise information than Sum-
Count-X, Bitmap-X can potentially estimate N more accurately
and perform better.

We have not included results for Bitmap-X in the table and graphs
above because of the difficulty of simulating an accurate version
of Bitmap-X for a 32-bit address space in a reasonable amount of
time and resources (roughly we need to maintain a 232-bit bitmap
for each of the 217 vulnerable hosts). We have, however, simulated
it for a smaller 20-bit address space, together with Know-NI and
Sum-Count-X for comparison [7]. In scaling back the size of the
address space, we have also scaled back the number of vulnerable
hosts (512) and worm scanning rate (250 per timestep) to keep the
same propagation constant as our 32-bit parameterization.

Table 4 shows the speed and duration results for several heuris-
tics for the 20-bit address space. The results indicate that the ad-
ditional estimation accuracy of Bitmap-X provides little improve-
ment over Sum-Count-X. These results are not surprising given that

Sum-Count-X performs nearly identically to perfect estimators—
Bitmap-X has little room to improve over Sum-Count-X.

4.4 Permutation Scanning
The discussion of permutation scanning in [6] as a technique

to improve the propagation characteristics of a worm leads us to
ask the following question: Is the performance of a self-stopping
heuristic independent of a worm’s scanning regime? To find the
answer, we evaluate the improvement in speed and duration that
strategies such as Greedy Permutation, Stop-k Permutation and
Sum-Count-X Permutation provide over their respective random
scanning analogs, Greedy, Stop-k and Sum-Count-X. Additionally,
we study the effectiveness of a simple version of partitioned permu-
tation scanning, where each infected host stops after scanning its
assigned interval. Table 5 shows the speed and duration of the per-
mutation scanning strategies and their random scanning analogs.

When comparing Greedy Permutation to Greedy, we see that
permutation scanning provides a slight gain in speed because the
Greedy Permutation worms are designed to avoid duplicating scan
effort, and hence reach uninfected vulnerables sooner.

When we compare Stop-k Permutation to Stop-k, we see a sim-
ilar improvement in speed as between the permutation and random
Greedy variations. However, there is no improvement in dura-
tion because the few lingering hosts that remain must contact an
already-infected host to deactivate, and the probability of doing
so seems independent of the fact that a host is doing random or
permutation scanning. (The difference in the probability of suc-
cess between sampling with and without replacement is negligible
when the number of possible successes, N , is small compared to
the sample space size, A.)

On its surface, Partitioned Permutation seems like an optimal-
speed strategy since assigning disjoint address intervals to worms
should minimize duplicate effort. Counterintuitively, it is roughly
50% slower than Greedy Permutation. The reason is that the as-
signment of intervals to worm instances is rigid—a worm that is
given a very small interval deactivates far too soon, since it could
otherwise spend time assisting another worm that has been assigned
a large, sparsely-populated interval. Nonetheless, Partitioned Per-
mutation maintains a reasonable duration of roughly 280 timesteps
because there is no duplicate scanning.



Speed Duration
Strategy 10th 50th 90th 10th 50th 90th

Greedy 105 117 135 ∞ ∞ ∞

Greedy Permutation 102 111 124 ∞ ∞ ∞

Stop-3 113 127 139 410 446 515
Stop-3 Permutation 105 113 128 410 456 507
Partitioned Permutation 154 167 195 261 280 330
Sum-Count-X 103 119 136 156 174 199
Sum-Count-X Permutation 104 115 134 178 192 218

Table 5: Speed (timesteps to infect 85% of vulnerables) and duration (timesteps for all infected hosts to stop) by percentile of worm
epidemics using permutation scanning and other strategies. Address space size A = 232, number of vulnerables N = 217, and
per-host scan rate γ = 4, 000 per timestep.

Finally, we compare Sum-Count-X Permutation against Sum-
Count-X to see whether permutation scanning benefits from dy-
namic estimate exchange and vice versa. We see that permutation
scanning slightly improves the speed of the epidemic, although the
duration gets worse (increasing from 174 to 192 timesteps). We
do not see an improvement in duration because the motivation of
the immediate reseeding policy in Sum-Count-X Permutation is to
avoid contacting infected nodes, whereas hosts under dynamic es-
timation benefit from contacting infected nodes to improve their
estimates. To further explain this peculiarity, let us examine the
qualitative behavior of these strategies.

Figure 3 shows the infected and active hosts over time for worm
epidemics using random and permutation scanning variations of
Greedy and Sum-Count-X, as well as Partitioned Permutation. As
with previous versions of this graph, we show the results for runs
with median duration out of 20 trials for each heuristic.

Figure 3a shows that Sum-Count-X Permutation propagates more
quickly than Sum-Count-X, and Figure 3b demonstrates that the
vast majority of hosts stop in Sum-Count-X Permutation before
they do in Sum-Count-X. However, because the few remaining
hosts in the permutation version are avoiding infected hosts by re-
seeding themselves after a redundant hit, their estimates take longer
to converge. By contrast, a random scanning host is more likely
to improve its estimates by being less discriminating in contacting
infected nodes. We imagine that a retooled redundant-hit policy
for Sum-Count-X Permutation (e.g., continue scanning using the
current seed despite a threshold number of redundant hits) could
eliminate these tail effects and lessen the duration.

Despite the sometimes opposing requirements of permutation re-
seeding and dynamic estimation, the effect that dynamic estima-
tion has on decreasing duration is apparent since the duration of
Sum-Count-X Permutation is noticeably shorter than Partitioned
Permutation. Therefore, although permutation scanning improves
the speed of a self-stopping worm, that technique alone cannot pro-
vide the dramatic stopping times of dynamic estimate exchange.

4.5 Vulnerability Density
In previous experiments, we have assumed a fixed vulnerabil-

ity density (number of vulnerable hosts relative to the total number
of hosts). Next we test this assumption and evaluate the sensitiv-
ity of the self-stopping heuristics to the vulnerability density. We
simulate worm epidemics using the most effective heuristics across
the categories: Greedy as an upper bound on speed, Know-N as
an upper bound on estimation, Blind-32 for the basic heuristics,
and Sum-Count-X for practical dynamic estimation. We vary the
number of vulnerable hosts from 211 to 220 (roughly the number in-
fected by Code Red [4]) and simulate 20 epidemics for each heuris-
tic for each vulnerability density.
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Figure 4 shows the results of this experiment. It graphs the speed
of a heuristic to infect 85% of the vulnerable population as a func-
tion of the number of vulnerable hosts, and also graphs the duration
of a heuristic to self-stop all active infected hosts at the end of an
epidemic. We show two curves with error bars for each heuris-
tic (except Greedy, which only has a speed curve). The points on
a curve correspond to the median of the 20 simulated epidemics,
and the lower and upper error bars correspond to the 10th and 90th
percentiles among the 20 epidemics, respectively.

These graphs indicate that the relative performance of the heuris-
tics is not sensitive to vulnerability density. In terms of speed, the
relative ordering of the heuristics by their medians varies slightly
over the wide range of densities, but still within the percentile in-
tervals. In terms of duration, the heuristics preserve their relative
ordering across the range of densities with very small variation.
The curves appear to flatten towards high densities with slightly
more spread among them. At these high vulnerability densities,
however, practical issues like network capacity and contention will
likely prevent worms from achieving suggested speeds.

4.6 Scan Traffic
Finally, we evaluate the network overhead of the various self-

stopping heuristics. Although reducing network overhead is not an
explicit goal of our heuristics, it does indicate their relative cost for
spreading aggressively.



Aggregate Scan Aggregate Scan
Rate (×108) Total (×1010)

Strategy 50th 90th 50th 90th

Greedy 5.24 5.24 ∞ ∞

Greedy Permutation 5.24 5.24 ∞ ∞

Know-NI 5.24 5.24 3.00 3.06
Know-I 5.24 5.24 2.89 2.99
Know-N 5.22 5.23 2.45 2.85
Blind-32 3.63 3.64 1.58 1.59
Stop-3 2.86 2.87 1.75 1.76
Stop-3 Permutation 3.54 3.55 1.88 1.89
Tree (k = 50, m = 3) 0.0754 0.0806 1.55 1.56
Partitioned Perm. 0.599 0.623 0.430 0.430
Sum-Count 1.53 1.74 1.54 1.79
Sum-Count-X 5.22 5.23 3.20 3.98
Sum-Count-X Perm. 5.20 5.21 3.63 4.57

Table 6: Aggregate scan rate and total by percentile of worm
epidemics using various self-stopping strategies under a 32-bit
address address space with 217 vulnerables and a per-host scan-
ning rate of 4,000 per timestep. We did not simulate the Bitmap
heuristics.

Table 6 lists the peak aggregate scan rate and scan total for the
heuristics. The peak aggregate scan rate is the number of scans
in a timestep made by a worm across all infected hosts during the
peak of worm activity (the peaks of the “active” curves in previous
graphs). The aggregate scan total is the total number of scans made
by a worm across all infected hosts for the duration of the epidemic.
The table reports the 50th and 90th percentiles across 20 simulation
runs for each heuristic to show variation among random epidemics.

As expected, the most aggressive heuristics (Greedy, Know-NI,
Know-N, Know-I, and Sum-Count-X) have the highest scan rates
and scan totals. Excepting Tree and Partitioned Permutation, the re-
maining heuristics have scan rates that are factors of 1.4–3.4 smaller
and scan totals 1.7–2 times smaller than the most aggressive heuris-
tics. Because Tree limits activity by each host, the number of simul-
taneously active hosts is relatively small. As a result, its peak scan
rate is two orders of magnitude smaller than the other heuristics.
Partitioned Permutation also has a low peak scan rate because the
strategy restricts each host to its assigned interval. It has a slightly
higher scan rate than Tree because all hosts are not restricted in
the same manner, allowing older nodes to continue scanning de-
spite multiple successful contacts. Furthermore, Partitioned Per-
mutation has the lowest scan total because partitioning the address
space means that worms can infect all hosts with a minimal num-
ber of scans (e.g., 4 billion for a 32-bit address space) to infect all
hosts.

5. CONCLUSION
In this paper we demonstrate that scanning worms can use sim-

ple, practical heuristics to immediately stop scanning at the end of
an epidemic in an entirely distributed fashion. Such self-stopping
worms can adapt their scanning and stopping behavior to the dy-
namic conditions of the epidemic, requiring no parameterization or
tuning. In particular, we describe the Sum-Count-X heuristic and
show that random scanning worms can use it to realize nearly ideal
spreading and stopping performance with trivial state overhead and
no additional communication. Using this approach, hosts locally
track the number of scanned and vulnerable hosts and exchange this
information opportunistically upon contact with other hosts during
the normal propagation of an epidemic. Our experiments also indi-

cate that having hosts exchange these dynamic estimates is crucial
for achieving such ideal stopping performance, even for more so-
phisticated scanning methods such as permutation scanning.

Finally, the feasibility of self-stopping worms reminds us that the
window of opportunity to detect, contain and treat a network worm
epidemic is short and getting shorter. Therefore, efforts to develop
quick detection and containment systems remain of paramount im-
portance for preventing infestation, as are post-hoc forensic capa-
bilities for finding pockets of sleeper hosts whose infection is no
longer obvious.

6. ACKNOWLEDGMENTS
We would like to thank our UCSD colleagues Jay Chen for chal-

lenging us to design better epidemic parameter estimators, Barath
Raghavan for frequent and useful discussions, Marvin McNett for
maintaining our systems, and Michelle Panik for proofing our text.
As well, we are indebted to Nicholas Weaver, a partner in CCIED,
who provided insightful feedback on permutation scanning and pro-
vided his simulation for cross-validation. Finally, we thank the
anonymous reviewers for their helpful comments.

This work was supported through NSF grants CNS-0433668,
CNS-0311690, a gift from Microsoft Research, and a grant from
the UCSD Center for Networked Systems.

7. REFERENCES
[1] Brandon Wiley. Curious Yellow: The First Coordinated Worm

Design. http://blanu.net/curious yellow.html.
[2] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,

S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic
Algorithms for Replicated Database Maintenance. In
Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, British Columbia,
Canada, Aug. 1987.

[3] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the Slammer Worm. IEEE Security and
Privacy, 1(4):33–39, July 2003.

[4] D. Moore, C. Shannon, and J. Brown. Code-Red: A Case
Study on the Spread and Victims of an Internet Worm. In
Proceedings of the ACM/USENIX Internet Measurement
Workshop (IMW), Marseille, France, Nov. 2002.

[5] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The Top
Speed of Flash Worms. In Proceedings of the ACM Workshop
on Rapid Malcode (WORM), Fairfax, VA, Oct. 2004.

[6] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
Internet in Your Spare Time. In Proceedings of the USENIX
Security Symposium, San Francisco, CA, Aug. 2002.

[7] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson.
Preliminary Results Using Scale-Down to Explore Worm
Dynamics. In Proceedings of the ACM Workshop on Rapid
Malcode (WORM), Fairfax, VA, Oct. 2004.


