
Detecting Malicious Packet Losses
Alper T. M�zrak, Student Member, IEEE, Stefan Savage, Member, IEEE, and

Keith Marzullo, Member, IEEE

Abstract—In this paper, we consider the problem of detecting whether a compromised router is maliciously manipulating its stream of
packets. In particular, we are concerned with a simple yet effective attack in which a router selectively drops packets destined for some
victim. Unfortunately, it is quite challenging to attribute a missing packet to a malicious action because normal network congestion can
produce the same effect. Modern networks routinely drop packets when the load temporarily exceeds their buffering capacities.
Previous detection protocols have tried to address this problem with a user-defined threshold: too many dropped packets imply
malicious intent. However, this heuristic is fundamentally unsound; setting this threshold is, at best, an art and will certainly create
unnecessary false positives or mask highly focused attacks. We have designed, developed, and implemented a compromised router
detection protocol that dynamically infers, based on measured traffic rates and buffer sizes, the number of congestive packet losses
that will occur. Once the ambiguity from congestion is removed, subsequent packet losses can be attributed to malicious actions. We
have tested our protocol in Emulab and have studied its effectiveness in differentiating attacks from legitimate network behavior.

Index Terms—Internet dependability, intrusion detection and tolerance, distributed systems, reliable networks, malicious routers.

˙

1 INTRODUCTION

THE Internet is not a safe place. Unsecured hosts can
expect to be compromised within minutes of connecting

to the Internet and even well-protected hosts may be
crippled with denial-of-service (DoS) attacks. However,
while such threats to host systems are widely understood, it
is less well appreciated that the network infrastructure itself
is subject to constant attack as well. Indeed, through
combinations of social engineering and weak passwords,
attackers have seized control over thousands of Internet
routers [1], [2]. Even more troubling is Mike Lynn’s
controversial presentation at the 2005 Black Hat Briefings,
which demonstrated how Cisco routers can be compro-
mised via simple software vulnerabilities. Once a router has
been compromised in such a fashion, an attacker may
interpose on the traffic stream and manipulate it mal-
iciously to attack others—selectively dropping, modifying,
or rerouting packets.

Several researchers have developed distributed proto-
cols to detect such traffic manipulations, typically by
validating that traffic transmitted by one router is received
unmodified by another [3], [4]. However, all of these
schemes—including our own—struggle in interpreting the
absence of traffic. While a packet that has been modified in
transit represents clear evidence of tampering, a missing
packet is inherently ambiguous: it may have been
explicitly blocked by a compromised router or it may

have been dropped benignly due to network congestion.
In fact, modern routers routinely drop packets due to
bursts in traffic that exceed their buffering capacities, and
the widely used Transmission Control Protocol (TCP) is
designed to cause such losses as part of its normal
congestion control behavior. Thus, existing traffic valida-
tion systems must inevitably produce false positives for
benign events and/or produce false negatives by failing to
report real malicious packet dropping.

In this paper, we develop a compromised router
detection protocol that dynamically infers the precise
number of congestive packet losses that will occur. Once
the congestion ambiguity is removed, subsequent packet
losses can be safely attributed to malicious actions. We
believe our protocol is the first to automatically predict
congestion in a systematic manner and that it is necessary
for making any such network fault detection practical.

In the remainder of this paper, we briefly survey the
related background material, evaluate options for inferring
congestion, and then present the assumptions, specification,
and a formal description of a protocol that achieves these
goals. We have evaluated our protocol in a small experi-
mental network and demonstrate that it is capable of
accurately resolving extremely small and fine-grained
attacks.

2 BACKGROUND

There are inherently two threats posed by a compromised
router. The attacker may subvert the network control plane
(e.g., by manipulating the routing protocol into false route
updates) or may subvert the network data plane and
forward individual packets incorrectly. The first set of
attacks have seen the widest interest and the most
activity—largely due to their catastrophic potential. By
violating the routing protocol itself, an attacker may cause
large portions of the network to become inoperable. Thus,
there have been a variety of efforts to impart authenticity

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009 191

. A.T. M�zrak is with VMware, 3401 Hillview Ave., Palo Alto, CA 94304.
E-mail: amizrak@vmware.com, alpermizrak@gmail.com.

. S. Savage and K. Marzullo are with the Department of Computer Science
and Engineering, University of California, San Diego, 9500 Gilman Drive,
MC 0404, La Jolla, CA 92093-0404.
E-mail: {savage, marzullo}@cs.ucsd.edu.

Manuscript received 21 Dec. 2007; revised 16 Apr. 2008; accepted 21 Apr.
2008; published online 30 Apr. 2008.
Recommended for acceptance by P. Srimani.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-12-0475.
Digital Object Identifier no. 10.1109/TPDS.2008.70.

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

and consistency guarantees on route update messages with
varying levels of cost and protection [5], [6], [7], [8], [9], [10].
We do not consider this class of attacks in this paper.

Instead, we have focused on the less well-appreciated
threat of an attacker subverting the packet forwarding
process on a compromised router. Such an attack presents
a wide set of opportunities including DoS, surveillance,
man-in-the-middle attacks, replay and insertion attacks,
and so on. Moreover, most of these attacks can be trivially
implemented via the existing command shell languages in
commodity routers.

The earliest work on fault-tolerant forwarding is due to
Perlman [11] who developed a robust routing system based
on source routing, digitally signed route-setup packets, and
reserved buffers. While groundbreaking, Perlman’s work
required significant commitments of router resources and
high levels of network participation to detect anomalies.
Since then, a variety of researchers have proposed lighter
weight protocols for actively probing the network to test
whether packets are forwarded in a manner consistent with
the advertised global topology [5], [12], [13]. Conversely, the
1997 WATCHERS system detects disruptive routers pas-
sively via a distributed monitoring algorithm that detects
deviations from a “conservation of flow” invariant [14], [3].
However, work on WATCHERS was abandoned, in part due
to limitations in its distributed detection protocol, its over-
head, and the problem of ambiguity stemming from conges-
tion [15]. Finally, our own work broke the problem into three
pieces: a traffic validation mechanism, a distributed detection
protocol, and a rerouting countermeasure. In [16] and [4], we
focused on the detection protocol, provided a formal frame-
work for evaluating the accuracy and precision of any such
protocol, and described several practical protocols that allow
scalable implementations. However, we also assumed that
the problem of congestion ambiguity could be solved,
without providing a solution. This paper presents a protocol
that removes this assumption.

3 INFERRING CONGESTIVE LOSS

In building a traffic validation protocol, it is necessary to
explicitly resolve the ambiguity around packet losses.
Should the absence of a given packet be seen as malicious
or benign? In practice, there are three approaches for
addressing this issue:

. Static Threshold. Low rates of packet loss are assumed
to be congestive, while rates above some predefined
threshold are deemed malicious.

. Traffic modeling. Packet loss rates are predicted as a
function of traffic parameters and losses beyond the
prediction are deemed malicious.

. Traffic measurement. Individual packet losses are
predicted as a function of measured traffic load
and router buffer capacity. Deviations from these
predictions are deemed malicious.

Most traffic validation protocols, including WATCHERS [3],
Secure Traceroute [12], and our own work described in [4],
analyze aggregate traffic over some period of time in order
to amortize monitoring overhead over many packets. For
example, one validation protocol described in [4] maintains

packet counters in each router to detect if traffic flow is not
conserved from source to destination. When a packet arrives
at router r and is forwarded to a destination that will
traverse a path segment ending at router x, r increments an
outbound counter associated with router x. Conversely,
when a packet arrives at router r, via a path segment
beginning with router x, it increments its inbound counter
associated with router x. Periodically, router x sends a copy
of its outbound counters to the associated routers for
validation. Then, a given router r can compare the number
of packets that x claims to have sent to r with the number of
packets it counts as being received from x, and it can detect
the number of packet losses.

Thus, over some time window, a router simply knows
that out of m packets sent, n were successfully received. To
address congestion ambiguity, all of these systems employ a
predefined threshold: if more than this number is dropped
in a time interval, then one assumes that some router is
compromised. However, this heuristic is fundamentally
flawed: how does one choose the threshold?

In order to avoid false positives, the threshold must be
large enough to include the maximum number of possible
congestive legitimate packet losses over a measurement
interval. Thus, any compromised router can drop that many
packets without being detected. Unfortunately, given the
nature of the dominant TCP, even small numbers of losses
can have significant impacts. Subtle attackers can selectively
target the traffic flows of a single victim and within these
flows only drop those packets that cause the most harm. For
example, losing a TCP SYN packet used in connection
establishment has a disproportionate impact on a host
because the retransmission time-out must necessarily be
very long (typically 3 seconds or more). Other seemingly
minor attacks that cause TCP time-outs can have similar
effects—a class of attacks well described in [17].

All things considered, it is clear that the static threshold
mechanism is inadequate since it allows an attacker to
mount vigorous attacks without being detected.

Instead of using a static threshold, if the probability of
congestive losses can be modeled, then one could resolve
ambiguities by comparing measured loss rates to the rates
predicted by the model. One approach for doing this is to
predict congestion analytically as a function of individual
traffic flow parameters, since TCP explicitly responds to
congestion. Indeed, the behavior of TCP has been exces-
sively studied [18], [19], [20], [21], [22]. A simplified1

stochastic model of TCP congestion control yields the
following famous square root formula:

B …
1

RTT

�������
3

2bp

s

;

where B is the throughput of the connection, RTT is the
average round trip time, b is the number of packets that
are acknowledged by one ACK, and p is the probability
that a TCP packet is lost. The steady-state throughput of

192 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

1. This formula omits many TCP dynamics such as time-outs, slow start,
delayed acks, and so forth. More complex formulas taking these into
account can be found in literature.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

long-lived TCP flows can be described by this formula as a
function of RTT and p.

This formula is based on a constant loss probability,
which is the simplest model, but others have extended this
work to encompass a variety of loss processes [22], [20],
[23], [24]. None of these have been able to capture
congestion behavior in all situations.

Another approach is to model congestion for the
aggregate capacity of a link. In [25], Appenzeller et al.
explore the question of “How much buffering do routers
need?” A widely applied rule-of-thumb suggests that
routers must be able to buffer a full delay bandwidth
product. This controversial paper argues that due to
congestion control effects, the rule-of-thumb is wrong, and
the amount of required buffering is proportional to the
square root of the total number of TCP flows. To achieve
this, the authors produced an analytic model of buffer
occupancy as a function of TCP behavior. We have
evaluated their model thoroughly and have communicated
with the authors, who agree that their model is only a rough
approximation that ignores many details of TCP, including
time-outs, residual synchronization, and many other effects.
Thus, while the analysis is robust enough to model buffer
size it is not precise enough to predict congestive loss
accurately.

Hence, we have turned to measuring the interaction of
traffic load and buffer occupancy explicitly. Given an
output buffered first-in first-out (FIFO) router, congestion
can be predicted precisely as a function of the inputs (the
traffic rate delivered from all input ports destined to the
target output port), the capacity of the output buffer, and
the speed of the output link. A packet will be lost only if
packet input rates from all sources exceed the output link
speed for long enough. If such measurements are taken
with high precision it should even be possible to predict
individual packet losses. It is this approach that we consider
further in the rest of this paper. We restrict our discussion to
output buffered switches for simplicity although the same
approach can be extended to input buffered switches or
virtual output queues with additional adjustments (and
overhead).

Because of some uncertainty in the system, we cannot
predict exactly which individual packets will be dropped.
So, our approach is still based on thresholds. Instead of
being a threshold on rate, it is a threshold on a statistical
measure: the amount of confidence that the drop was due to
a malicious attack rather than from some normal router
function. To make this distinction clearer, we refer to the
statistical threshold as the target significance level.

4 SYSTEM MODEL

Our work proceeds from an informed, yet abstracted,
model of how the network is constructed, the capabilities of
the attacker, and the complexities of the traffic validation
problem. In this section, we briefly describe the assump-
tions underlying our model. We use the same system model
as in our earlier work [4].

4.1 Network Model
We consider a network to consist of individual homo-
geneous routers interconnected via directional point-to-
point links. This model is an intentional simplification of
real networks (e.g., it does not include broadcast channels
or independently failing network interfaces) but is suffi-
ciently general to encompass such details if necessary.
Unlike our earlier work, we assume that the bandwidth, the
delay of each link, and the queue limit for each interface are
all known publicly.

Within a network, we presume that packets are for-
warded in a hop-by-hop fashion, based on a local
forwarding table. These forwarding tables are updated
via a distributed link-state routing protocol such as OSPF
or IS-IS. This is critical, as we depend on the routing
protocol to provide each node with a global view of the
current network topology. Finally, we assume the admin-
istrative ability to assign and distribute cryptographic keys
to sets of nearby routers. This overall model is consistent
with the typical construction of large enterprise IP net-
works or the internal structure of single ISP backbone
networks but is not well suited for networks that are
composed of multiple administrative domains using BGP.
At this level of abstraction, we can assume a synchronous
network model.

We define a path to be a finite sequence hr1; r2; . . . rni of
adjacent routers. Operationally, a path defines a sequence of
routers a packet can follow. We call the first router of the
path the source and the last router its sink; together, these are
called terminal routers. A path might consist of only one
router, in which case the source and sink are the same.
Terminal routers are leaf routers: they are never in the
middle of any path.

An x-path segment is a consecutive sequence of x routers
that is a subsequence of a path. A path segment is an
x-path segment for some value of x > 0. For example, if a
network consists of the single path ha; b; c; di, then hc; di and
hb; ci are both two-path segments, but ha; ci is not because a
and c are not adjacent.

4.2 Threat Model
As explained in Section 1, this paper focuses solely on data
plane attacks (control plane attacks can be addressed by
other protocols with appropriate threat models such as [6],
[7], [5], [8], [9], and [10]). Moreover, for simplicity, we
examine only attacks that involve packet dropping.
However, our approach is easily extended to address other
attacks—such as packet modification or reordering—similar
to our previous work. Finally, as in [4], the protocol we
develop validates traffic whose source and sink routers are
uncompromised.

A router can be traffic faulty by maliciously dropping
packets and protocol faulty by not following the rules of the
detection protocol. We say that a compromised router r is
traffic faulty with respect to a path segment � during � if �
contains r and, during the period of time � , r maliciously
drops or misroutes packets that flow through �. A router
can drop packets without being faulty, as long as the
packets are dropped because the corresponding output
interface is congested. A compromised router r can also
behave in an arbitrarily malicious way in terms of executing

M�ZRAK ET AL.: DETECTING MALICIOUS PACKET LOSSES 193

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

the protocol we present, in which case we indicate r as
protocol faulty. A protocol faulty router can send control
messages with arbitrarily faulty information, or it can
simply not send some or all of them. A faulty router is one
that is traffic faulty, protocol faulty, or both.

Attackers can compromise one or more routers in a
network. However, for simplicity, we assume in this paper
that adjacent routers cannot be faulty. Our work is easily
extended to the case of k adjacent faulty routers.

5 PROTOCOL �
Protocol � detects traffic faulty routers by validating the
queue of each output interface for each router. Given the
buffer size and the rate at which traffic enters and exits a
queue, the behavior of the queue is deterministic. If the
actual behavior deviates from the predicted behavior, then a
failure has occurred.

We present the failure detection protocol in terms of the
solutions of the distinct subproblems: traffic validation,
distributed detection, and response.

5.1 Traffic Validation
The first problem we address is traffic validation: what
information is collected about traffic and how it is used to
determine that a router has been compromised.

Consider the queue Q in a router r associated with the
output interface of link hr; rdi (see Fig. 1). The neighbor
routers rs1 ; rs2 ; . . . ; rsn feed data into Q.

We denote with Tinfoðr; Qdir; �; �Þ the traffic informa-
tion collected by router r that traversed path segment � over
time interval � . Qdir is either Qin, meaning traffic into Q, or
Qout, meaning traffic out of Q. At an abstract level, we
represent traffic, a validation mechanism associated with Q,
as a predicate TV ðQ; qpredðtÞ; S; DÞ, where

. qpredðtÞ is the predicted state of Q at time t. qpredðtÞ is
initialized to 0 when the link hr; rdi is discovered and
installed into the routing fabric. qpred is updated as
part of traffic validation.

. S … f8i 2 f1; 2; . . . ; ng : Tinfoðrsi ; Qin; hrsi ; r; rdi; �Þg,
is a set of information about traffic coming into Q as
collected by neighbor routers.

. D … Tinfoðrd; Qout; hr; rdi; �Þ is the traffic informa-
tion about the outgoing traffic from Q collected at
router rd.

If routers rs1 ; rs2 ; . . . ; rsn and rd are not protocol faulty, then
TV ðQ; qpredðtÞ; S; DÞ evaluates to false if and only if r was
traffic faulty and dropped packets maliciously during � .

Tinfoðr; Qdir; �; �Þ can be represented in different ways.
We use a set that contains, for each packet traversing Q, a
three-tuple that includes: a fingerprint of the packet, the
packet’s size, and the time that the packet entered or
exited Q (depending on whether Qdir is Qin or Qout). For
example, if at time t router rs transmits a packet of size ps
bytes with a fingerprint fp, and the packet is to traverse �,
then rs computes when the packet will enter Q based on
the packet’s transmission and propagation delay. Given a
link delay d and link bandwidth bw associated with the
link hrs; ri, the time stamp for the packet is t þ d þ ps=bw.

TV can be implemented by simulating the behavior of Q.
Let P be a priority queue, sorted by increasing time stamp.
All the traffic information S and D are inserted into P along
with the identity of the set (S or D) from which the
information came. Then, P is enumerated. For each packet
in P with a fingerprint fp, size ps, and a time stamp ts, qpred
is updated as follows. Assume t is the time stamp of the
packet evaluated prior to the current one:

. If fp came from D, then the packet is leaving
Q : qpredðtsÞ :… qpredðtÞ � ps.

. If fp came from S and ðfp 2 DÞ, then the packet fp is
entering and will exit: qpredðtsÞ :… qpredðtÞ þ ps.

. If fp came from S and ðfp =2 DÞ, then the packet fp is
entering into Q and the packet fp will not be
transmitted in the future: qpredðtsÞ is unchanged, and
the packet is dropped.

� If qlimit < qpredðtÞ þ ps, where qlimit is the buffer
limit of Q, then the packet is dropped due to
congestion.

� Otherwise, the packet is dropped due to mal-
icious attack. Detect failure.

In practice, the behavior of a queue cannot be predicted
with complete accuracy. For example, the tuples in S and D
may be collected over slightly different intervals, and so a
packet may appear to be dropped when in fact it is not (this
is discussed in Section 4.1). Additionally, a packet sent to a
router may not enter the queue at the expected time because
of short-term scheduling delays and internal processing
delays.

Let qactðtÞ be the actual queue length at time t. Based on
the central limit theorem2 [26], our intuition tells us that the
error, qerror … qact � qpred, can be approximated with a
normal distribution. Indeed, this turns out to be the case
as we show in Section 7. Hence, this suggests using a
probabilistic approach.

We use two tests: one based on the loss of a single packet
and one based on the loss of a set of packets.

194 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

Fig. 1. Validating the queue of an output interface.

2. The central limit theorem states the following. Consider a set of
n samples drawn independently from any given distribution. As n
increases, the average of the samples approaches a normal distribution as
long as the sum of the samples has a finite variance.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

5.1.1 Single Packet Loss Test
If a packet with fingerprint fp and size ps is dropped at
time ts when the predicted queue length is qpredðtsÞ, then
we raise an alarm with a confidence value csingle, which is
the probability of the packet being dropped maliciously.
csingle is computed as in Fig. 2.

The mean � and standard deviation � of X can be
determined by monitoring during a learning period. We do
not expect � and � to change much over time, because they
are in turn determined by values that themselves do not
change much over time. Hence, the learning period need
not be done very often.

A malicious router is detected if the confidence value
csingle is at least as large as a target significance level slevel

single.
3

5.1.2 Combined Packet Losses Test
The second test is useful when more than one packet is
dropped during a round and the first test does not detect a
malicious router. It is based on the well-known Z-test4 [26].
Let L be the set of n > 1 packets dropped during the last
time interval. For the packets in L, let ps be the mean of the
packet sizes, qpred be the mean of qpredðtsÞ (the predicted
queue length), and qact be the mean of qactðtsÞ (the actual
queue length) over the times the packets were dropped.

We test the following hypothesis: “The packets are lost
due to malicious attack”: � > qlimit � qpred � ps. The Z-test
score is

z1 …
ðqlimit � qpred � ps � �Þ

�
���
n

p :

For the standard normal distribution Z, the probability of
ProbðZ < z1Þ gives the confidence value ccombined for the
hypothesis. A malicious router is detected if ccombined is at
least as large as a target significance level slevel

combined.
One can question using a Z-test in this way because the

set of dropped packets are not a simple random sample.
But, this test is used when there are packets being dropped
and the first test determined that they were consistent with
congestion loss. Hence, the router is under load during the

short period the measurement was taken and most of the
points, both for dropped packets and for nondropped
packets, should have a nearly full Q. In Section 7, we show
that the Z-test does in fact detect a router that is malicious
in a calculated manner.

5.2 Distributed Detection
Since the behavior of the queue is deterministic, the traffic
validation mechanisms detect traffic faulty routers whenever
the actual behavior of the queue deviates from the predicted
behavior. However, a faulty router can also be protocol
faulty: it can behave arbitrarily with respect to the protocol,
by dropping or altering the control messages of �. We mask
the effect of protocol faulty routers using distributed
detection.

Given TV , we need to distribute the necessary traffic
information among the routers and implement a distributed
detection protocol. Every outbound interface queue Q in the
network is monitored by the neighboring routers and
validated by a router rd such that Q is associated with the
link hr; rdi.

With respect to a given Q, the routers involved in
detection are (as shown in Fig. 1)

. rs� , which sends traffic into Q to be forwarded.

. r, which hosts Q.

. rd, which is the router to which Q’s outgoing traffic
is forwarded.

Each involved router has a different role, as described
below.

5.2.1 Traffic Information Collection
Each router collects the following traffic information during
a time interval � :

. rs� : Collect Tinfoðrs� ; Qin; hrs� ; r; rdi; �Þ.

. r: Collect Tinfoðr; Qin; hrs� ; r; rdi; �Þ. This informa-
tion is used to check the transit traffic information
sent by the rs� routers.

. rd: Collect Tinfoðrd; Qout; hr; rdi; �Þ.

5.2.2 Information Dissemination and Detection

. rs� : At the end of each time interval � , router rs� sends
‰Tinfoðrs� ; Qin; hrs� ; r; rdi; �Þ�rs� that it has collected.
‰M�x is a message M digitally signed by x. Digital

M�ZRAK ET AL.: DETECTING MALICIOUS PACKET LOSSES 195

Fig. 2. Confidence value for single packet loss test for a packet with a fingerprint fp, size ps, and a time stamp ts.

3. The significance level is the critical value used to decide to reject the
null hypothesis in traditional statistical hypothesis testing. If it is rejected,
then the outcome of the experiment is said to be statistically significant with
that significance level.

4. The Z-test, which is a statistical test, is used to decide whether the
difference between a sample mean and a given population mean is large
enough to be statistically significant or not.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

signatures are required for integrity and authenticity
against message tampering.5

1. D-I. r: Let � be the upper bound on the time to
forward traffic information.

a. If r does not receive traffic information from rs�

within �, then r detects hrs� ; ri.
b. Upon receiving ‰Tinfoðrs� ; Qin; hrs� ; r; rdi; �Þ�rs� ,

router r verifies the signature and checks to see
if this information is equal to its own copy
Tinfoðr; Qin; hrs� ; r; rdi; �Þ. If so, then r forwards
it to rd. If not, then r detects hrs� ; ri.

At this point, if r has detected a failure hrs� ; ri,
then it forwards its own copy of traffic information
Tinfoðr; Qin; hrs� ; r; rdi; �Þ. This is required by rd to
simulate Q’s behavior and keep the state q up to date.

2. D-II. rd:

a. If rd does not receive traffic information
Tinfoðrs� ; Qin; hrs� ; r; rdi; �Þ originated by rs�

within 2�, then it expects r to have detected rs�

as faulty and to announce this detection through
the response mechanism. If r does not do this,
then rd detects hr; rdi.

b. After receiving the traffic information for-
warded from r, rd checks the integrity and
authenticity of the message. If the digital
signature verification fails, then rd detects hr; rdi.

c. Collecting all traffic information, router rd
evaluates the TV predicate for queue Q. If TV
evaluates to false, then rd detects hr; rdi.

Fault detections D-Ia, D-Ib, D-IIa, and D-IIb are due to
protocol faulty routers, and fault detection D-IIc is due to the
traffic validation detecting traffic faulty routers.

Note that dropping traffic information packets due to
congestion can lead to false positives. Thus, the routers send
this data with high priority. Doing so may cause other data
to be dropped instead as congestion. Traffic validation
needs to take this into account. It is not hard, but it is
somewhat detailed, to do so in simulating Q’s behavior.

5.3 Response
Once a router r detects router r0 as faulty, r announces the
link hr0; ri as being suspected. This suspicion is dissemi-
nated via the distributed link state flooding mechanism of
the routing protocol. As a consequence, the suspected link is
removed from the routing fabric.

Of course, a protocol faulty router r can announce a
link hr0; ri as being faulty, but it can do this for any routing
protocol. And, in doing so, it only stops traffic from being
routed through itself. Router r could even do this by
simply crashing itself. To protect against such attack, the
routing fabric needs to have sufficient path redundancy.

6 ANALYSIS OF PROTOCOL �
In this section, we consider the properties and overhead of
protocol �.

6.1 Accuracy and Completeness
In [4], we cast the problem of detecting compromised
routers as a failure detector with accuracy and completeness
properties. There are two steps in showing the accuracy and
completeness of �:

. Showing that TV is correct.

. Showing that � is accurate and complete assuming
that TV is correct.

Assuming that there exists no adjacent faulty routers, we
show in Appendices B and C that if TV is correct, then � is
2-accurate and 2-complete, where 2 indicates the length of
detection: A link consisting of two routers is detected as a
result. We discuss how to relax this assumption in
Section 9.2.

We discuss traffic validation in Section 6.2.

6.2 Traffic Validation Correctness
Any failure of detecting malicious attack by TV results in a
false negative, and any misdetection of legitimate behavior
by TV results in a false positive.

Within the given system model of Section 4, the example
TV predicate in Section 5.1 is correct. However, the system
model is still simplistic. In a real router, packets may be
legitimately dropped due to reasons other than congestion:
for example, errors in hardware, software or memory, and
transient link errors. Classifying these as arising from a
router being compromised might be a problem, especially if
they are infrequent enough that they would be best ignored
rather than warranting repairs the router or link.

A larger concern is the simple way that a router is
modeled in how it internally multiplexes packets. This
model is used to compute time stamps. If the time stamps
are incorrect, then TV could decide incorrectly. We
hypothesize that a sufficiently accurate timing model of a
router is attainable but have yet to show this to be the case.

A third concern is with clock synchronization. This
version of TV requires that all the routers feeding a queue
have synchronized clocks. This requirement is needed in
order to ensure that the packets are interleaved correctly by
the model of the router.

The synchronization requirement is not necessarily
daunting; the tight synchronization is only required by
routers adjacent to the same router. With low-level time
stamping of packets and repeated exchanges of time [27], it
should be straightforward to synchronize the clocks
sufficiently tightly.

Other representations of collected traffic information and
TV that we have considered have their own problems with
false positives and false negatives. It is an open question as
to the best way to represent TV . We suspect any
representation will admit some false positives or false
negatives.

6.3 Overhead
We examined the overhead of protocol � in terms of
computing fingerprints, computing TV , per-router state,
control messages overhead, clock synchronization, and key
distribution. We believe all are low enough to permit
practical implementation and deployment in real networks.

196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

5. Digital signatures can be replaced with message authentication codes
if the secret keys are distributed among the routers.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

6.3.1 Computing Fingerprints
The main overhead of protocol � is in computing a
fingerprint for each packet. This computation must be done
at wire speed. Such a speed has been demonstrated to be
attainable.

In our prototype, we implemented fingerprinting using
UHASH [28]. Rogaway [29] demonstrated UHASH perfor-
mance of more than 1 Gbps on a 700-MHz Pentium III
processor when computing a 4-byte hash value. This
performance could be increased further with hardware
support.

Network processors are designed to perform highly
parallel actions on data packets [30]. For example,
Feghali et al. [31] presented an implementation of well-
known private-key encryption algorithms on the Intel
IXP28xx network processors to keep pace with a 10-Gbps
forwarding rate. Furthermore, Sanchez et al. [32] demon-
strated hardware support to compute fingerprints at wire
speed of high speed routers (OC-48 and faster).

6.3.2 Computing TV
The time complexity of computing TV depends on the size
of the traffic information collected and received from the
neighbors that are within two hops, and so it depends on
the topology and the traffic volume on the network. If traffic
information stores the packet fingerprints in order of
increasing time stamps, then a straightforward implemen-
tation of traffic validation exists.

In our prototype, which is not optimized, TV computa-
tion had an overhead of between 15 to 20 ms per validation
round.

6.3.3 Per-Router State
Let N be the number of routers in the network, and R be the
maximum number of links incident on a router. Protocol �
requires a router to monitor the path segments that are at
most two hops away. By construction, this is OðR2Þ. State is
kept for each of these segments. The TV predicate in
Section 5.1 requires that a time stamp and the packet size be
kept for each packet that traversed the path segment. As a
point of comparison, WATCHERS [3] requires OðRNÞ state,
where each individual router keeps seven counters for each
of its neighbors for each destination.

6.3.4 Control Message Overhead
Protocol � collects traffic information and exchanges this
information periodically using the monitored network
infrastructure. Suppose we compute a 4-byte fingerprint
and keep packet size and time stamp in 2 bytes each. Then,
message overhead is 8 bytes per packet. If we assume that
the average packet size is 800 bytes, then the bandwidth
overhead of protocol � is 1 percent.

6.3.5 Clock Synchronization
Similar to all previous detection protocols, � requires
synchronization in order to agree on a time interval during
which to collect traffic information. For a router r, all
neighboring routers of r need to synchronize with each
other to agree on when and for how long the next
measurement interval � will be.

Clock synchronization overhead is fairly low. For
example, external clock synchronization protocol NTP [33]
can provide accuracy within 200 �s in local area networks
(LANs). It requires two messages of size 90 bytes per
transaction and the rate of transactions can be from once per
minute to once per 17 minutes. Wedde et al. [34] presented
an internal clock synchronization protocol (RTNP) that
maintains an accuracy within 30 �s by updating the clocks
once every second.

6.3.6 Key Distribution
To protect against protocol faulty routers tampering the
messages containing traffic information, � requires digital
signatures or message authentication codes. Thus, there is
an issue of key distribution, and the overhead for this
depends on the cryptographic tools that are used.

7 EXPERIENCES

We have implemented and experimented with protocol � in
the Emulab [35], [36] testbed. In our experiments, we used
the simple topology shown in Fig. 3. The routers were Dell
PowerEdge 2850 PC nodes with a single 3.0-GHz 64-bit
Xeon processor and 2 Gbytes of RAM, and they were
running Redhat-Linux-9.0 OS software. Each router except
for r1 was connected to three LANs to which user machines
were connected. The links between routers were configured
with 3-Mbps bandwidth, 20-ms delay, and 75,000-byte
capacity FIFO queue.

Each pair of routers shares secret keys; furthermore,
integrity and authenticity against the message tampering is
provided by message authentication codes.

The validation time interval � was set to 1 second, and
the upper bound on the time to forward traffic informa-
tion � was set to 300 ms. At the end of each second, the
routers exchanged traffic information corresponding to the
last validation interval and evaluated the TV predicate
after 2� … 600 ms. Each run in an experiment consisted of
an execution of 80 seconds. During the first 30 seconds,
we generated no traffic to allow the routing fabric to
initialize. Then, we generated 45 seconds of traffic.

7.1 Experiment 1: Protocol � with No Attack
We first investigated how accurately the protocol predicts
the queue lengths of the monitored output interfaces. We
considered the results for the output interface Q of r1

M�ZRAK ET AL.: DETECTING MALICIOUS PACKET LOSSES 197

Fig. 3. Simple topology.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

associated with the link hr1; r2i. Background traffic was
created to make hr1; r2i a bottleneck. Twenty percent of the
bottleneck bandwidth was consumed by constant bit rate
traffic, another 20 percent by short lived http traffic, and the
rest by long lived ftp traffic.

The result of one run is shown in Fig. 4a. qpred is the
predicted queue length of Q computed by router r2
executing the protocol �. qact, which is the actual queue
length of Q recorded by router r1, is not shown in the
graph because it is so close to qpred. Instead, the difference
qerror … qact � qpred is plotted; its value ranges approxi-
mately from �7,500 to 7,500 bytes. Packet drops—all due
to congestion—are marked with triangles.

Next, we examine the distribution of qerror. In Fig. 4b, the
probability distribution and cumulative distribution func-
tions of qerror are plotted. It is clustered around the multiples
of 1,500 bytes, since this is the maximum transmission unit
and most frequent packet size of the traffic. Computing the
mean, �, and the standard deviation, �, of this data, the
corresponding normal distribution functions are also shown
in the graph. It turns out that the distribution of qerror can be
approximated by a normal distribution Nð�; �Þ.

We expected many different causes to contribute to qerror:
inaccurate clock synchronization, scheduling delays, inter-
nal processing delays, and so on. It turns out that
scheduling and clock synchronization inaccuracy are the
dominant factors. In terms of scheduling, all routers are
running Linux with a programmable interval timer of
1,024 Hz. This results in a scheduling quantum of roughly

1 ms. We verified the effect of the scheduling quantum by
changing the frequency to 100 Hz, and we observed that the
variance of the distribution of qerror changed accordingly.
For clock synchronization, we used NTP [33] to synchronize
the routers’ clocks, but it takes a long time for the NTP
daemon to synchronize the routers’ clocks to within a few
milliseconds. So, we used a different strategy: once every
second, we reset each router’s clock to the NTP server’s
clock. This resulted in the clocks being synchronized to
within 0.5 ms. Finally, the processing delay of the packets
within a router is typically less than 50 �s. So, it does not
introduce significant uncertainty as compared to other
factors.

7.2 Experiment 2: False Positives
In the second experiment, we first ran a training run to
measure the mean and standard deviation of qerror. We
found � … 0 and � … 1;750. We then ran protocol � under a
high traffic load for more than 1 h, which generated more
than half a million packets. Approximately 4,000 validation
rounds occurred within this run, and approximately
16,000 packets were dropped due to congestion. Choosing
significance levels slevel

single … 0:999 and slevel
combined … 0:9, there

were eight false positives generated by the single packet
drop test and two false positives generated by the combined
packet drop test. Both results are lower than one would
expect, given the number of samples. We suspect that the
lower false positive rate for the single packet drop test is
because the distribution of qerror is not truly a normal
distribution, and the lower false positive rate for the
combined packet drop test is because the test is not done
on a simple random sample. We are investigating this
further. In all of the subsequent experiments, we used the
same mean, standard deviation, and two significance levels
given here.

7.3 Experiment 3: Detecting Attacks
We then experimented with the ability of protocol � to
detect attacks. In these experiments, the router r1 is
compromised to attack the traffic selectively in various
ways, targeting two chosen ftp flows. The duration of the
attack is indicated with a line bounded by diamonds in the
figures, and a detection is indicated by a filled circle.

For the first attack, the router r1 was instructed to drop
20 percent of the selected flows for 10 seconds. Predicted
queue length and the confidence values for each packet drop
can be seen in Figs. 5a and 5b. As shown in the graph, during
the attack, protocol � detected the failure successfully.

In the second attack, router r1 was instructed to drop
packets in the selected flows when the queue was at least
90 percent full. Protocol � was able to detect the attack and
raised alarms, as shown in Fig. 6.

Next, we increase the threshold for which r1 attacks to
95 percent. No single drop test has enough confidence to
raise an alarm because all of the drops are very close to the
qlimit. However, � raised alarms for the combined drops test.
Even though few additional packets were dropped, the
impact on the TCP flows of this attack was significant. Both
attacked flows’ bandwidth usage dropped more than
35 percent, and their share was used by the other flows
(Fig. 7).

198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 2, FEBRUARY 2009

Fig. 4. (a) Queue length. (b) Distribution of qerror.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

Last, we looked in the SYN attack, which would prevent
a selected host to establish a connection with any server:
The router r1 was instructed to drop all SYN packets from a
targeted host, which tries to connect to an ftp server. In
Fig. 8, five SYN packets, which are marked with circles, are
maliciously dropped by r1. Except for the second SYN
packet drop, all malicious drops raised an alarm. The
second SYN is dropped when the queue is almost full, and
so the confidence value is not significant enough to
differentiate it from the other packet drops due to
congestion.

7.4 Protocol � versus Static Threshold
We argued earlier the difficulties of using static thresholds
of dropped packets for detecting malicious intent. We
illustrate this difficulty with the run shown in Fig. 6. Recall
that during this run, the router dropped packets only when
the output queue was at least 90 percent full. Before time 52,
the router behaved correctly, and 2.1 percent of the packets
were dropped due to congestion. During the time period
from 52 to 64, the router maliciously dropped packets, but
only 1.7 percent of the packets were dropped (some due to
congestion and some due to the attack). This may seem
counterintuitive: fewer packets were dropped due to
congestion during the period that the queues contained
more packets. Such a nonintuitive behavior does not
happen in every run, but the dynamics of the network
transport protocol led to this behavior in the case of this
run. So, for this run, there is no static threshold that can be
used to detect the period during which the router was

malicious. A similar situation occurs in the highly focused
SNY attack of Fig. 8.

In contrast, protocol � can detect such malicious
behaviors because it measures the router’s queues, which
are determined by the dynamics of the network transport
protocol. Protocol � can report false positives and false
negatives, but the probability of such detections can be
controlled with a significance level for the statistical tests
upon which � is built. A static threshold cannot be used in
the same way.

8 NONDETERMINISTIC QUEUING

As described, our traffic validation technique assumes a
deterministic queuing discipline on each router: FIFO
with tail-drop. While this is a common model, in practice,
real router implementations can be considerably more
complex—involving switch arbitration, multiple layers of
buffering, multicast scheduling, and so forth. Of these,
the most significant for our purposes is the nondetermin-
ism introduced by active queue management (AQM),
such as random early detection (RED) [37], proportional
integrator (PI) [38], and random exponential marking
(REM) [39]. In this section, we describe how protocol �
can be extended to validate traffic in AQM environments.
We focus particularly on RED, since this is the most
widely known and widely used of such mechanisms.6

M�ZRAK ET AL.: DETECTING MALICIOUS PACKET LOSSES 199

6. Although RED is universally implemented in modern routers, it is still
unclear how widely it is actually used.

Fig. 5. Attack 1: Drop 20 percent of the selected flows. (a) Queue length.
(b) Statistical test results.

Fig. 6. Attack 2: Drop the selected flows when the queue is 90 percent
full. (a) Queue length. (b) Statistical test results.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 26, 2009 at 23:11 from IEEE Xplore. Restrictions apply.

