On the Caching and Prefetching of Program Committees

Stefan Savage

Department of Computer Science and Engineering
University of Washington
Overview

- Problems
 - Long latency waiting for new program committees
 - High overhead generating new PC members

- Questions
 - Can we just cache old PC’s or prefetch new ones?
 - How cacheable is SIGCOMM vs other SIG’s?
 - What benefits does high locality bring?
The SIGCOMM PC distribution

Heavy tailed, follows power law, infinite variance
(ten year period)
CDF of PC slot occupancy

Fraction of committee members vs. Cumulative fraction of PC slots

- Empirical distribution
- Uniform distribution

Locality!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Comparison to other ACM SIGs

(five year period)

SIGCOMM has best locality!
Benefits of locality

- Recurring PC members are confident
 PC members
- Have no problem saying “no”
 - 1990: 31 papers accepted
 - 1999: 24 papers accepted
 - Clearly the more diverse 80’s crowd didn’t have the backbone to uphold the high standards of SIGCOMM!
Probability that your junky paper will make it into SIGCOMM

![Graph showing the probability of paper acceptance over years. The graph includes a trend line with an R^2 value of 0.7929.]

\[
R^2 = 0.7929
\]
Prefetching SIGCOMM PC slots

- Why wait for the PC to be named when you can kiss ass now?
- Simple probabilistic model is very effective
- I have a sealed envelope containing a good approximation of the SIGCOMM 2000 PC…