
Beyond Heuristics: Learning to Classify
Vulnerabilities and Predict Exploits

Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker
mehranbozorgi@google.com, {saul,savage,voelker} @cs.ucsd.edu

Department of Computer Science and Engineering
University of California, San Diego

ABSTRACT
The security demands on modern system administration are
enormous and getting worse. Chief among these demands, ad-
ministrators must monitor the continual ongoing disclosure of
software vulnerabilities that have the potential to compromise
their systems in some way. Such vulnerabilities include buffer
overflow errors, improperly validated inputs, and other unan-
ticipated attack modalities. In 2008, over 7,400 new vulner-
abilities were disclosed—well over 100 per week. While no
enterprise is affected by all of these disclosures, administra-
tors commonly face many outstanding vulnerabilities across
the software systems they manage. A key question for sys-
tems administrators is which vulnerabilities to prioritize. From
publicly available databases that document past vulnerabili-
ties, we show how to train classifiers that predict whether and
how soon a vulnerability is likely to be exploited. As input, our
classifiers operate on high dimensional feature vectors that we
extract from the text fields, time stamps, cross-references, and
other entries in existing vulnerability disclosure reports. Com-
pared to current industry-standard heuristics based on expert
knowledge and static formulas, our classifiers predict much
more accurately whether and how soon individual vulnerabili-
ties are likely to be exploited.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; I.5.1 [Pattern Recognition]:
Models—Statistical; I.5.2 [Pattern Recognition]: Design
Methodology—Feature evaluation and selection

General Terms
Algorithms, Security

Keywords
supervised learning, SVM, vulnerabilities, exploits

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-110/07 ...$10.00.

1. INTRODUCTION
Among the many requests made of researchers in com-

puter security, few are as frequent or as urgent as the call
for meaningful security metrics. The requests are driven by
a widespread need to quantify security risks (“how likely is it
that an attacker will thwart my security measures?”) in a way
that informs operational policy choices. Unfortunately, the ad-
versarial nature of security has resisted traditional methods of
quantifying risk and has even led some to argue that such met-
rics are inherently unattainable [4]. Nevertheless, even absent
a comprehensive solution to this conundrum, there remains
a need to evaluate the value of distinct operational security
choices. Thus, a range of ad hoc approaches have emerged in
individual domains where the needs are particularly acute. In
this paper we focus on one such domain — evaluating vulner-
ability disclosures — and we show that it is possible to make
meaningful predictions using tools from data mining and ma-
chine learning.

Public vulnerability disclosure has long been a staple of the
software security industry, with many thousands of new soft-
ware vulnerabilities identified and publicized each year [11].
In turn, these vulnerabilities are communicated, via a variety
of channels, to system administrators who must then deter-
mine if they have susceptible systems and decide what action
to take if so. Unfortunately, patching and other mitigations
can incur significant manpower overheads (even more so for
mission critical services that require quality assurance test-
ing before deploying new software). Since few organizations
have the resources to address every vulnerability disclosure
that might impact their enterprise, administrators must prior-
itize their efforts, triaging the most critical vulnerabilities to
address first.

To inform these decisions, a variety of “vulnerability scor-
ing” frameworks have been designed to assess risk qualita-
tively (e.g., Microsoft’s critical, important, moderate, or low
severity rating) or quantitatively (e.g., US-CERT’s severity
metric). Indeed, one such framework — FIRST’s Common
Vulnerability Scoring System (CVSS) [9] — appears to be
emerging as the de facto standard in the community. The use
of CVSS is mandated in the Payment Card Industry’s Data Se-
curity Standard (PCI-DSS), it is the ranking used in NIST’s
National Vulnerability Database (NVD), and its use is recom-
mended by a wide range of computer, networking and software
vendors (e.g., Cisco’s Risk Triage whitepaper [5]).

However, while these systems are carefully designed using
expert knowledge, they are inherently ad hoc in nature. For
example, the CVSS (v2) overall “Base Score” is expressed in



terms of Impact (I) and Exploitability (E) components by:

BaseScore = (1.176) ∗
(

3I

5
+

2E

5
− 3

2

)
. (1)

By convention, this score is rounded to one decimal place, and
it is set to zero (regardless of the above formula) if I = 0. We
note further that the Impact and Exploitability components in
eq. (1) are themselves combinations of categorical magic num-
bers. (For example, the Exploitability component depends on
an Access Vector score which takes the value 0.395 if the vul-
nerability requires local access, 0.646 if the vulnerability re-
quires adjacent network access, and 1.0 if the vulnerability
global network access). While we have little doubt that these
scoring metrics were carefully considered and of great value
when first developed, we suspect that any single fixed equa-
tion, such as eq. (1), is unlikely to provide a robust and lasting
model of vulnerability severity.

To this end, our paper seeks to place this problem on a more
systematic footing. Using tools from machine learning, we
show how to train classifiers that predict whether vulnerabili-
ties are likely to be exploited, and if so, how soon. Our results
suggest that our trained classifiers are likely to outperform cur-
rent measures of exploitability. In particular, our classifier out-
puts correlate much better with vulnerability outcomes than
the “Exploitability" component of the CVSS Base Score in
eq. (1).

2. BACKGROUND
Software vulnerabilities are exploitable flaws in software

systems that pose significant security risks. Production soft-
ware inevitably ships with many such flaws, a subset of which
are subsequently discovered and become known over time.
When flaws are discovered, vendors distribute patches and
mitigations to their customers, who ideally implement such
measures before an exploit is developed and targeted against
them. This vulnerability life-cycle (described in more detail
by Arbaugh et al. [1]) has in turn driven the creation of a
complex ecosystem of players: vulnerability researchers, soft-
ware and security vendors, security information providers and
a range of networks, information sources and markets connect-
ing them together (for a comprehensive analysis of the vulner-
ability ecosystem see Frei et al. [10]).

2.1 Public Vulnerability Disclosures
At the end of this process, vulnerabilities are documented

and disclosed to the public. These reports not only list var-
ious discrete attributes of each vulnerability (e.g., software
affected, date disclosed), they also describe (in plain text)
how each vulnerability works, why it presents a threat, and
how it can be mitigated. This information is disclosed to
the public via multiple sources, including moderated forums
(e.g., Bugtraq [21]), individual vendors (e.g., Microsoft [14],
commercial aggregators (e.g., Secunia [20]), and open source
databases (e.g., OSVDB [17]). Vulnerabilities are also quickly
assigned a unique identifier — both local to individual infor-
mation providers/repositories and global across multiple vul-
nerability databases using MITRE’s Common Vulnerabilities
and Exposures (CVE) service [6].

The precise timing of vulnerability disclosures depends
considerably on how they were found and the policy of the
organizations involved. Some vulnerabilities are disclosed im-

mediately upon discovery while others may be kept private for
significant periods of time to allow vendors to develop and test
appropriate patches and mitigations. Still other vulnerabili-
ties are exploited before or at the same time as public disclo-
sure (so-called 0-day exploits). Vulnerability discovery and
disclosure policy has generated a great deal of both contro-
versy and research [2, 3, 18, 16]. A number of studies have
also examined the probability that vulnerabilities are able to
be patched [15, 19]. By contrast, our work focuses on pre-
dicting if a vulnerability is likely to be exploited shortly (thus
meriting immediate attention from system administrators).

2.2 Rating Vulnerabilities
To aid system administrators, vulnerability disclosures typ-

ically include a qualitative or quantitative assessment of each
vulnerability’s severity. The overall severity score depends
on both impact (how significant are the consequences of ex-
ploitation) and exploitability (how difficult is the vulnerabil-
ity to exploit). Severity scores are derived primarily from ex-
pert knowledge and/or communal input. For example, US-
CERT generates a quantitative severity score ranging from 0
to 180, calculated directly from answers to a range of quali-
tative questions (e.g., “Is information about the vulnerability
widely available or known?” and “What are the preconditions
required to exploit the vulnerability?”) [7]. Microsoft’s Secu-
rity Bulletin documents vulnerability severity using a qualita-
tive scheme (critical, important, moderate, or low) as do Se-
cunia’s reports (extremely critical, highly critical, moderately
critical, less critical, or not critical). More recently, a group
of vendors and researchers came together, under the sponsor-
ship of the Forum of Incident Response and Security Teams
(FIRST), to create a new severity metric, the Common Vul-
nerability Scoring System (CVSS). Now in its second itera-
tion, CVSS defines several independent metrics, but it is the
“base metric” which is typically used in third-party vulnerabil-
ity databases. This score combines impact and exploitability
components according to a carefully designed formula [9].

Unfortunately, each of these systems measures different
things and weights them in different ways. We are unaware of
any empirical study evaluating the effectiveness of any of these
metrics or comparing them to one another. Thus, it is hard
to make concrete statements about which approach is best, or
why. Indeed, this problem is inherently difficult since some
aspects of “severity” are either context dependent (e.g., a mis-
sion critical server being shut down may be more “severe” than
a print server) or may be inherently difficult to quantify. How-
ever, the issue of exploitation is far more clear cut — a vul-
nerability is either exploited or not and the date upon which
a working exploit becomes known is frequently documented.
Thus, in this paper we focus on the exploitability aspect of
severity.

Given this scope, we argue that existing scoring systems are
probably too limited to offer strong predictive power. They in-
clude only a few factors in each vulnerability’s assessment—
which may not be the key distinguishing features and fre-
quently depend on the judgment of evaluators—and they com-
bine these features in the same way to produce a score for
widely different sorts of vulnerabilities. For example, the cur-
rent CVSS Exploitability score is calculated as follows [13]:

Exploitability = 20 ∗ AV ∗ AC ∗ Authentication (2)

where AV stands for Access Vector and AC stands for



Figure 1: An example OSVDB vulnerability report.

Access Complexity, and each of these variables are as-
signed particular fixed values based on other qualitative or
subjective evaluations. For example, AC is set to 0.35 if ac-
cess complexity is deemed to be “high”, 0.61 if “medium”
and 0.71 if “low”. It is not entirely clear how this formula or
its constants were designed. Moreover, it seems unlikely that
this simple formula can model the probability of exploitation
across many different sorts of vulnerabilities.

3. VULNERABILITY DATA
In this study, we use two well-known, online sources of vul-

nerability data, the Open Source Vulnerability Database (OS-
VDB) [17] and the MITRE Common Vulnerabilities and Ex-
posures (CVE) database [6].

OSVDB is a large database containing reports on over
57,000 vulnerabilities. As an example, figure 1 shows the OS-
VDB report for a vulnerability in a Web services library. These
reports contain a wealth of information about each vulnerabil-
ity, indexed using a unique OSVDB ID, including a detailed
description, technical details, the software products affected,
solutions (such as patches and mitigations to prevent exploita-
tion), and references to other sources of information about the
vulnerability. Section 4.1 describes how we extract informa-
tion from these reports as features for classification and pre-
diction. We augment this data with additional temporal in-
formation provided by Frei et al. as described in their WEIS
2009 paper [10]. As described below, we use this additional
information to create labeled training and test sets.

From the OSVDB database we extracted a large set of vul-
nerabilities for classification and prediction. We used only vul-
nerabilities that were disclosed during the years 1991–2007,
inclusive. Vulnerabilities before 1991 represent a different era
of software; we excluded later vulnerabilities because, at the
time we started the project, they were recent and still in flux
(e.g., many of them had undetermined outcomes). We also
excluded vulnerabilities that did not have a description.

Table 1 shows the number of vulnerabilities we use in our

Exploit Category # Vulnerabilities Label
Exploit Available 8,537 Positive
Exploit Rumored / Private 1,483 Positive
Exploit Unavailable 536 Negative
Exploit Unknown 3,209 Negative
No Category 999 Not Used
Total 14,764

Table 1: Categories of exploited vulnerabilities.

experiments and how we label them. It categorizes vulnerabil-
ities using their OSVDB “Exploit Classification” status. If a
vulnerability has an available, rumored, or private exploit, we
label it as a “positive” vulnerability, indicating that it has been
exploited. Similarly, if a vulnerability has no known exploits
or exploits are unavailable, we label it a “negative” vulnerabil-
ity indicating that it is not exploited. If a vulnerability report
does not classify its exploit status, we exclude it from con-
sideration since we cannot determine the accuracy of our pre-
dictions. Section 4.2 describes how we train a classifier from
these labeled examples of vulnerabilities.

We use the CVE database to augment the vulnerability re-
ports from the OSVDB database. Similar to OSVDB, CVE en-
tries include summaries, references to related products and re-
ports, information about the type of vulnerability, time stamps,
and severity scores. In addition to providing more informa-
tion that can be extracted as features for classification, for
some vulnerabilities the CVE entries also provides informa-
tion missing in the OSVDB reports. We integrate these records
by cross-referencing their CVE and OSVDB identifiers. Most
OSVDB reports reference the corresponding CVE reports for
the same vulnerability and conversely, some CVE entries have
corresponding OSVDB IDs as well.

Finally, we note that the quality of our results are inher-
ently tied to the quality of this disclosure data and in particular
the quality of the temporal labels (when a vulnerability was
disclosed and exploited). This creates two potential classes
of problems. In principle, there are adversarial training risks
since bad vulnerability data could influence what the classifier
learns during training. However, we believe this is a particu-
larly unlikely scenario since vulnerability databases are gener-
ated by large numbers of independent actors. It seems unlikely
that an adversary would discover and disclose enough new vul-
nerabilities (in turn validated and accepted by third parties) to
influence the overall feature set used in training. Similarly,
while an adversary might try to “game" our predictions (e.g.,
by only exploiting vulnerabilities which we had classified as
unlikely to be exploited), the risk seems low, and certainly
such a counterstrategy is no easier than it is under current vul-
nerability scoring systems. A somewhat more likely limitation
is systematic bias. In particular, we note that large numbers
of vulnerabilities in the complete database have unknown ex-
ploitation status or dates, which limits our ability to train on
these records. In this work, we assume that the remainder of
disclosures (with known status and dates) are representative
and accurate. A selection bias would emerge if the omitted
records were systematically different than complete records;
however, we do not believe such a bias exists.

4. MACHINE LEARNING FOR VUL-
NERABILITY CLASSIFICATION



We aim to improve on existing approaches by casting vul-
nerability classification as a problem in machine learning. In a
nutshell, our goal is to replace small-scale heuristics by large-
scale statistics. This section describes our statistical model
for vulnerability classification. The model is estimated from
a large database of vulnerabilities that have been labeled as
“exploited" or “not exploited". Section 4.1 describes how we
extract information from this database and distill it into fea-
ture vectors for classification, and section 4.2 describes how
we classify these feature vectors using support vector ma-
chines [22]. The training and test sets of feature vectors in
our experiments are available at http://www.sysnet.
ucsd.edu/projects/exploit-learn/.

4.1 Feature extraction
Our database of vulnerabilities contains a wealth of infor-

mation, both factual and textual, about their histories and dis-
tinguishing characteristics. For each vulnerability, we extract
a high-dimensional (d = 93578) feature vector of binary and
integer-valued features. Though many of these features will
ultimately turn out to be irrelevant or redundant for classifi-
cation, the goal of our feature extraction is to distill as much
information as possible for subsequent statistical analysis.

Much of our information about vulnerabilities is contained
in text fields. We derive binary features using a bag-of-words
representation for each text field [12]. Essentially, these fea-
tures record whether or not particular tokens (e.g., “buffer",
“heap", “DNS") appear in specific text fields (e.g., “title", “so-
lution", “product name") associated with each vulnerability.

Table 2 shows the breakdown of features that we extract for
each vulnerability in our database. Each row in the table indi-
cates the number of features derived from a particular type of
information. Most of the features are generated from bag-of-
words representations of text fields. However, integer-valued
features also encode useful information, such as the date when
a vulnerability was first disclosed, the length of text describing
its symptoms, or the ranking of its severity according to other
popular heuristics.

4.2 Large margin classification
We build classifiers by training linear support vector ma-

chines (SVMs) [22] on the feature vectors described in the
previous section. (As preprocessing, however, the non-binary
features are normalized to lie between zero and one so that
they do not overshadow the binary features.) Linear SVMs are
trained by computing the maximum margin hyperplane that
separates the positive and negative examples in feature space.
The decision rule mapping feature vectors x ∈ <d to labels
y ∈ {−1, +1} is given by:

y = sign(w · x + b), (3)

where w ∈ <d is the normal (weight) vector to the separating
hyperplane and b is the distance of the separating hyperplane
from the origin.

Linear SVMs are particularly appropriate for our applica-
tion to vulnerability classification because we have many more
input features (d) than training examples (n). In particular, for
the experiments in section 5, the ratio of features to exam-
ples is never less than 10-to-1. In this regime of small sam-
ple size (n ¿ d), there are many hyperplane decision bound-
aries that can perfectly separate all n examples {(xi, yi)}n

i=1

Feature Family Count Database Source
Summary (B) 14883 CVE
Full Product Name (B) 13040 OSV - Obj. Correls.
Description (B) 11573 OSV - Vulnerabilities
Title (B) 9812 OSV - Vulnerabilities
Short Description (B) 9761 OSV - Vulnerabilities
Manual Notes (B) 6576 OSV - Vulnerabilities
Product Versions (B) 5388 OSV - Obj. Versions
Related Products (B) 5057 CVE
Product Names (B) 3661 OSV - Obj. Products
Tech. Description (B) 3479 OSV - Vulnerabilities
Solution (B) 3474 OSV - Vulnerabilities
Product Vendors (B) 2500 OSV - Obj. Vendors
Authors (B) 2368 OSV - Credits
Keywords (B) 1556 OSV - Online
References (B) 267 CVE
Classifications (B) 69 CVE
External Refs (B) 31 OSV - Ext. Refs.
OSVDB Dates (I) 15 OSV - Vulnerabilities
Attack Type (B) 11 OSV - Classifications
Category (B) 9 OSV - Classifications
Location (B) 8 OSV - Classifications
Solution Category (B) 8 OSV - Classifications
Disclosure Type (B) 8 OSV - Classifications
CVE Dates (I) 6 CVE
Impact (B) 4 OSV - Classifications
Scores (I) 3 CVE
Effect on Products (B) 3 OSV - Aff. Types
Other (I) 8 OSV & CVE
Total 93578

Table 2: Extracted features from the vulnerability data.
(B) denotes binary and (I) denotes integer features.

in our training sets. Linear SVMs compute the hyperplane that
(roughly speaking) maximizes the distance of the most border-
line training examples to the linear decision boundary. This
hyperplane is not only uniquely specified, but a large body
of work in statistical learning theory also shows that it gener-
alizes better to new data, yielding lower expected error rates
when used to classify previously unseen examples [22]. Many
software packages are available for fitting models of this form;
for the results in this paper, we used the LIBLINEAR imple-
mentation of SVMs [8].

5. EVALUATION
In this section we present our experimental results using

SVMs for vulnerability classification. We consider several dif-
ferent scenarios. We first evaluate the prediction accuracy in
an offline experiment, representing a best-case scenario where
we consider the data set of vulnerabilities as a single, static
snapshot; we also examine the features that have the most
prominent role in making predictions. We then evaluate the
prediction accuracy of our model in an online experiment em-
ulating a real-world deployment: we dynamically update the
classifier and make predictions over time as new vulnerabili-
ties appear. We also use SVMs to predict if vulnerabilities will
be exploited within a particular time frame. Finally, we com-
pare the results from SVMs to current heuristic approaches to
vulnerability classification.



Training Testing
Positive Examples (|P |) 1600 2000

Negative Examples (|N |) 1500 1874
Total Examples 3100 3874

True Negatives 100% 92.2%
True Positives 100% 87.5%

False Negatives 0% 7.79%
False Positives 0% 12.5%

Total Accuracy 100% 89.8%

Table 3: Prediction accuracy in the offline experiment.

5.1 Methodology
As discussed in Section 3, we use the OSVDB and CVE

databases as our data set of vulnerability examples. In addition
to providing the features we use for learning and classification,
they also provide the ground truth for evaluating the accuracy
of our classifiers. In general, we label those vulnerabilities
that have exploits as positive examples and vulnerabilities that
do not have exploits as negative examples. Table 1 shows a
breakdown of the vulnerabilities based on these labels.

Note that there are more positive examples (10,020) than
negative examples (3,745), i.e., more vulnerabilities with ex-
ploits than those without. When conducting balanced experi-
ments, which remove any such bias in the data used for clas-
sification, we randomly choose the same number of examples
from both sets multiple times and average the results. When
conducting unbalanced experiments, an unavoidable aspect of
practical deployments, we explicitly quantify and report the
bias in the input data. Finally, a subset of the vulnerabilities do
not have exploit information; we do not use these examples in
our experiments because, without true labels, we cannot eval-
uate the accuracy of classification.

5.2 Offline Exploit Prediction
In our first experiment, we evaluate how well SVMs clas-

sify vulnerabilities in an offline setting. For this experiment,
we use a balanced data set of roughly 4000 positive and nega-
tive examples—that is, divided almost evenly between vulner-
abilities with and without exploits. We train SVMs on 40% of
these examples (as training data) and evaluate them on 50%
of these examples (as test data). We use the remaining 10%
of examples as a development set to choose tuning parameters
for the SVMs. We report averaged results from ten-fold cross
validation: that is, we learn ten different classifiers, randomly
choosing which examples fall into the training, test, and devel-
opment sets, then average the results across all runs.

Table 3 shows the results. Here, true positives are positive
examples correctly classified as vulnerabilities that will be ex-
ploited; true negatives are negative examples correctly classi-
fied as vulnerabilities with no known exploits; false positives
are positive examples incorrectly classified as vulnerabilities
that will be exploited, but were not; and false negatives are
negative examples that were incorrectly classified as vulnera-
bilities that have no known exploits, but in fact do. The overall
accuracy is nearly 90%, demonstrating the viability of statisti-
cal methods for vulnerability classification.

5.3 Feature Inspection
The offline classification results show that the vulnerability

reports contain useful features for predicting whether a vul-

Feature Family Feature Nj Weight
References BUGTRAQ ID 2045 0.3674

Modified Date − (Time Difference) 3096 0.1860
Create Date

Authors (Number of Tokens) 1858 0.1461
Class. Types LOCATION 2509 0.1373

References (Number of Tokens) 3054 0.1292
Title (Number of Tokens) 3085 0.1229

CVE Summary ALLOWS 1983 0.1146
Notes (Number of Tokens) 925 0.0971

Modified Date − (Time Difference) 3098 0.0902
Disclosure Date

References SECUNIA ADV. ID 2107 0.0840

Table 4: Top 10 features with the highest positive nor-
malized weights, and the number of vulnerabilities Nj in
which they appear in the training set. Features prefixed
with “CVE” are derived from CVE entries, otherwise they
come from OSVDB reports.

nerability will be exploited. We now examine which features
play a prominent role in these predictions. In the linear SVMs
that we use, the decision rule in eq. (3) multiplies each fea-
ture by a positive or negative weight. Recall that all features
are normalized to lie between zero and one before the weights
are learned. Thus the magnitudes of these weights reflect the
relative contribution of each feature to the decision rule.

Tables 4 and 5 show the top 10 features with the highest
positive and negative normalized weights, respectively, from
the experiment in Section 5.2. Positively weighted features
suggest to the classifier that the vulnerability has an exploit;
negatively weighted features suggest to the classifier that the
vulnerability does not. The first column lists the feature fam-
ily (Table 2) and the second column the specific feature in the
family. For example, the feature “References: BUGTRAQ ID”
in the first row of Table 4 corresponds to the token “BUG-
TRAQ ID” appearing in the “References” feature family of a
vulnerability report. The third column lists the number of vul-
nerabilities Nj in which feature j appears in the training data.
For example, the feature “References: BUGTRAQ ID” occurs
in 2,045 of the 3,100 vulnerabilities in the training set. The
fourth column lists the normalized weight of the feature. The
normalized weight w̃j = wj(Nj/N) is the raw weight wj

learned by the classifier multiplied by the ratio of the num-
ber of vulnerabilities Nj whose jth feature is non-zero di-
vided by the total number of vulnerabilities in the training set
(N = 3100). By sorting the normalized weights, we reveal
the features with the largest overall effect across all vulnera-
bilities (as opposed to the largest effect on a possibly miniscule
number of vulnerabilities).

The features in Table 4 are those that suggest most strongly
to the classifier that a vulnerability will be exploited. Many of
them correspond to the number of tokens in particular feature
families, such as the “Authors”, “Title”, and “Notes” sections
of the vulnerability reports. These weights suggest that vulner-
abilities with exploits generally have longer reports in the vul-
nerability databases than those without exploits; when looking
at the vulnerability reports manually, we find that this situation
is indeed the case. Other top features are references to other se-
curity databases, suggesting that vulnerabilities with exploits



Feature Family Feature Nj Weight
Today − (Time Difference) 3097 -0.9432

Last Modified Date
CVE Today − (Time Difference) 3045 -0.1478
Generate Date

Class. Types ATTACK TYPE 3052 -0.1439
CVE Mod. Date − (Time Difference) 3044 -0.1412

Generate Date
Classifications ATTACK TYPE 2158 -0.08260

INPUT MANIP
References RELATED 1486 -0.07923

OSVDB ID
Create Date − (Time Difference) 3098 -0.06584

Disclosure Date
Description CODE 872 -0.05499

CVE References VUPEN 994 -0.04956
Full Product Name (Not Defined) 2322 -0.04770

Products (Not Defined) 2322 -0.04770
Vendors (Not Defined) 2322 -0.04770

Table 5: Top 10 features (including ties) with the lowest
negative normalized weights, and the number of vulnera-
bilities Nj in which they appear in the training set. Fea-
tures prefixed with “CVE” are derived from CVE entries,
otherwise they come from OSVDB reports.

are often tracked by multiple sources. Finally, we note that
there are many features with positive weights beyond those in
Table 4. The top 100 features span nearly all of the feature
families listed in Table 2; in other words, there are useful fea-
tures in all parts of the vulnerability reports.

The features in Table 5 are those that suggest most strongly
to the classifier that a vulnerability will not be exploited.
Among these features, we observe two trends. First, we see
that multiple features measuring the passage of time have
strongly negative weights. Thus it appears that vulnerabilities
with “dusty" reports are less likely to be exploited. Second, we
see that vulnerabilities whose product-related fields are unde-
fined (“Full Product Name”, “Products”, “Vendors”) also ap-
pear less likely to be exploited. Presumably, such “incom-
plete” reports indicate vulnerabilities that have not received
much attention from the community (nor from attackers).

5.4 Online Exploit Prediction
The offline experiment in Section 5.2 showed the potential

for learning to classify vulnerabilities that were randomly di-
vided into training, test, and development sets. In a real-world
deployment, however, system administrators would train the
classifier on known vulnerabilities to make predictions about
new ones. Moreover, as time goes, the knowledge that vulner-
abilities have or have not been exploited can be used to create
new training examples. We can then extend the training set
with these new vulnerabilities and learn a new classifier based
on the most up-to-date information. This process can continue
indefinitely as time progresses.

In our next experiment we emulate this online scenario us-
ing the time-stamp information in our vulnerability databases:

1. Initialize a baseline classifier — Consider all vulnerabili-
ties {V }t

0 reported between time 0 and time t that have known
outcomes (exploited or not) represented with labels {L}t

0. We

W1 05 W26 05 W1 06 W26 06 W1 07 W26 07 W1 08
0

3

6

9

12

15

18

21

24

Weeks

P
er

ce
nt

ag
e

 

 

Overall Error (%)

False Negative (%)

False Positive (%)

(a) Weekly Training

Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08
0

3

6

9

12

15

18

21

24

Months
P

er
ce

nt
ag

e

 

 

 Overall Error %

False Negative %

False Positive %

(b) Monthly Training

Figure 2: Cumulative error, false negative, and false posi-
tive percentages for predicting whether vulnerabilities will
be exploited in an online, deployed setting. We evalu-
ate two time intervals for updating the classifier, every (a)
week and (b) month.

build a baseline classifier Ct based upon these vulnerability
examples and labels {V, L}t

0.
2. Predict exploited vulnerabilities that appear in the next

time interval — Suppose new vulnerabilities {V }t+T
t+1 arrive

after a duration of T time elapses. We can use Ct to predict
the labels {L′}t+T

t+1 for these examples.
3. Update with known vulnerability outcomes — Once we

know whether or not vulnerabilities are exploited, we know
the true labels {L}t+T

t+1 of the vulnerabilities. With their true
labels, we can now include these vulnerabilities {V }t+T

t+1 in
the training set {V, L}t+T

t and rebuild a new classifier Ct+T .
4. Calculate error — We also calculate the cumulative er-

ror of the classifier Ct. For each time interval of duration T ,
we count the number of predicted labels {L′} that differ from
their true labels {L} in that interval, and sum all of the counts
across all intervals. We then divide the sum by the total num-
ber of vulnerabilities seen up until that time. Calculating the
cumulative error shows the stability of the classifier over time.

Figure 2 shows the results of this experiment. We train a
classifier starting at January 2005 and initialize it with all prior
vulnerabilities appearing before 2005. We then emulate the
appearance of vulnerabilities and online reclassification and
prediction through December 2007 (the end of our data set).
We evaluate two update intervals T , once a week (Figure 2a)
and once a month (Figure 2b). We show three curves for the
total classification error as well as the false positive and nega-
tive rates over time.

These results show that, after initial fluctuations, the classi-



t (days) |P | |N | Bias SVM
2 1,404 2,632 65.21% 78.01%
7 1,960 2,076 51.44% 75.78%

14 2,330 1,706 57.73% 77.06%
30 2,733 1,303 67.71% 79.82%

Table 6: Predicting whether vulnerabilities will be ex-
ploited within t days.

fier stabilizes and improves its accuracy with more examples
over time. At the end the classifier has an overall error rate
of 14%, a false negative rate of 9% and a false positive rate
of 5%. Further, classification accuracy is relatively insensitive
to the update period: when the classifier stabilizes, the weekly
and monthly results differ very little. These results demon-
strate the viability of deploying a classifier in an online setting
to predict whether vulnerabilities will be exploited.

5.5 Predicting Time to Exploit
Next we use SVMs to predict other metrics that help as-

sess the severity of vulnerabilities. In practice, in addition to
knowing whether a vulnerability will be exploited, it is also
useful to know how soon it will be exploited. (Even if all vul-
nerabilities will eventually be exploited, it is valuable to know
when.) With this knowledge, software vendors can prioritize
the patches they release; system administrators can similarly
prioritize the installation of these patches.

In general, there are three kinds of time-dependent exploits:
positive-day exploits where an exploit is reported after the vul-
nerability is disclosed; 0-day exploits where an exploit is re-
ported at the same time that the vulnerability is disclosed; and
negative-day exploits where the exploit precedes the vulnera-
bility disclosure date (e.g., an attacker exploits a vulnerability
before the software vendor realizes the existence and nature
of the vulnerability). Ideally, for each vulnerability, we would
like know the probability distribution over days when it will
be exploited. Such a distribution cannot be modeled by SVMs,
which are designed for binary classification. However, we can
use SVMs to make similarly relevant predictions.

Next we use SVMs to predict whether or not a vulnerability
will be exploited within some time t, where t is the difference
between the exploit and disclosure dates of the vulnerability.
To train such SVMs, we use the same examples as before,
merely altering the labels to reflect whether a vulnerability has
been exploited within some time frame (as opposed to whether
it has been exploited at all). The set of “positive” examples P
contains all vulnerabilities with positive-day exploits that are
exploited within time t. The set of “negative” examples N
contains vulnerabilities with positive-day exploits that are not
exploited within time t. (Those that have 0-day or negative-
day exploits need no prediction since their reports arrive with
the vulnerability already exploited.) We then evaluate a range
of time frames for t, from two days to one month.

For this experiment, we used an additional source of infor-
mation with more accurate dates of vulnerability events. (Un-
fortunately, the OSVDB database has mixed-quality date in-
formation.) From his recent work developing a detailed empir-
ical model of the vulnerability discovery, disclosure, and patch
process [10], Stefan Frei generously shared the date informa-
tion on vulnerabilities with CVE identifiers from his carefully
collected data sets. We incorporated his data on discovery, ex-

W1 05 W26 05 W1 06 W26 06 W1 07 W26 07 W1 08
0

5

10

15

20

25

30

Weeks

P
er

ce
nt

ag
e

 

 

Overall Error (%)

False Negative (%)

False Positive (%)

(a) Weekly Training

Jan 05 Jul 05 Jan 06 Jul 06 Jan 07 Jul 07 Jan 08
0

5

10

15

20

25

30

Months

P
er

ce
nt

ag
e

 

 

Overall Error (%)

False Negative (%)

False Positive (%)

(b) Monthly Training

Figure 3: Cumulative error, false negative, and false posi-
tive percentages for predicting time to exploit in an online,
deployed setting. We evaluate two time intervals for up-
dating the classifier, every (a) week and (b) month.

ploit, and disclosure dates for the vulnerabilities contained in
our data sets (Table 1).

To evaluate the accuracy of predicting time-to-exploit for
vulnerabilities, we perform both offline and online experi-
ments similar to those in Sections 5.2 and 5.4. In the offline ex-
periment we train and test classifiers on the entire data set, and
in the online experiment we retrain the classifiers and make
predictions on vulnerabilities over time.

Table 6 shows the results of the offline experiment. As
in Section 5.2, we partition the examples into training and
testing sets and report averaged results from cross-validation
with ten different random partitions. For each experiment
in the table, we show the predicted time frame t, the num-
ber of positive |P | and negative |N | examples, the accuracy
max(|P |, |N |)/(|P | + |N |) of the default classifier that al-
ways predict the dominant label, and the accuracy from SVMs.
The predictions from SVMs are 75–80% accurate across the
different time frames; note that these results are significantly
better than the raw bias induced from the imbalance of posi-
tive and negative training examples. Considering that we have
not tuned the classifier, features, or thresholds to optimize the
accuracy for this scenario, we believe that these results demon-
strate the viability of predicting time-to-exploit from statistical
analyses of vulnerability disclosure reports.

Figure 3 shows the results for the online version of the
experiment. In the online version, we emulate a real-world
deployment where we dynamically update the classifier and
make predictions over time as new vulnerabilities appear. We
show the results for predicting whether a vulnerability will be
exploited within t = 2 days, the most severe positive-day case.



0 0.2 0.4 0.6 0.8 1

exploited vulnerabilities

0 0.2 0.4 0.6 0.8 1
CVSS score

non−exploited vulnerabilities

(a) CVSS

−3 −2 −1 0 1 2 3 4

exploited vulnerabilities

−3 −2 −1 0 1 2 3 4
classifier score

non−exploited vulnerabilities

(b) Classifier

Figure 4: Histograms of exploitability scores computed on the vulnerabilities in our data set: (a) computed using the CVSS
“Exploitability” formula (Eq. 2) with values normalized to 1; (b) computed using the classifier score (w·x + b).

(Other time frames, not shown, yielded similar results.) The
classifier fluctuates initially, then stabilizes after training on a
sufficient number of examples. The long-term trend shows a
decrease in the false negative and cumulative error rates while
the false positive error rate remains flat. For a simple linear
classifier, the overall results are extremely promising: at the
end of training, the classifier has an overall cumulative error
rate of 15%. Finally, in terms of errors, there are many more
false negatives (13%) than false positives (2%).

5.6 Exploitability Metrics
Finally, we consider the issue of scoring metrics for vulner-

abilities. Specifically, we compare two metrics for assessing
how likely a reported vulnerability is likely to be exploited:
one based on prior (expert) knowledge and handcrafted for-
mulas, the other based on statistical methods and data mining.

As discussed in Section 2.2, the Common Vulnerabilities
Scoring System (CVSS) defines a metric for scoring the “Ex-
ploitability” of a vulnerability; see eq. 2. We use this CVSS
score as a representative formula-based metric. To be fair, the
CVSS specification does not state how to interpret the “Ex-
ploitability” score; its intended purpose may not have been to
represent the likelihood that a vulnerability is exploited. How-
ever, given its name and the factors that determine the score —
e.g., difficulty and complexity of programmatically accessing
the vulnerability in an exploit attempt — it seems reasonable
to expect that the score correlates with exploit likelihood.

Our data-driven approach to vulnerability classification sug-
gests an alternative scoring method. Recall that the decision
rule in eq. (3) computes the signed distance to the maximum
margin hyperplane separating positive and negative examples.
The signed distance (w · x + b) serves as a natural score for
the exploitability of a vulnerability: the sign predicts whether
it will be exploited, and for positively labeled examples, the
magnitude indicates its severity.

We compare the effectiveness of these scoring methods by
illustrating the distributions of their scores computed on the
vulnerabilities in our data set. Visually, these distributions tell
a compelling story.

Figure 4(a) shows histograms of CVSS “Exploitability”
scores for exploited vulnerabilities (top) and vulnerabilities
without exploits (bottom); we have normalized the scores to

a maximum of 1. Note that CVSS automatically assigns a nor-
malized score of 1 to all newly discovered vulnerabilities as
a precautionary step. Vulnerabilities with that default score
dominate the distribution, though, so we have removed them
from the histogram to more clearly show the distribution of
values computed by the CVSS formula. Figure 4(a) suggests
that the CVSS exploitability scores on known vulnerabilities
do not consistently reflect what happens in practice. Many
vulnerabilities without exploits have high CVSS scores, and
many vulnerabilities with exploits have low CVSS scores. As
a result, no threshold CVSS score can differentiate well be-
tween the exploited and non-exploited vulnerabilities.

Figure 4(b) shows histograms of the classifier scores (i.e.,
the signed distances w·x + b) for the same vulnerabilities.
The vertical dashed line indicates the default threshold of zero
used to predict whether a vulnerability should be labeled as
“exploited” or not: values above the threshold are predicted as
“exploited”, and values below the threshold as “not exploited”.
As suggested by the results in Section 5.2, the histograms
show that the classifier separates these distributions well: few
exploited vulnerabilities have scores below the threshold (the
false negatives), and few non-exploited vulnerabilities have
scores above the threshold (the false positives). We note that
preceding experiments included the CVSS score as a feature
since it is available when a vulnerability is reported. However,
we found that excluding the CVSS score as a feature did not
noticeably change any of the results.

Overall, our results suggest that the security community
should consider statistical models in addition, or as an alterna-
tive to current scoring practices. Such models have many com-
pelling features. First, with little tuning, standard models such
as SVMs can provide metrics that correlate well with exploit
behavior. Second, the models can dynamically adapt over time
to incorporate new features and data sets. Third, such mod-
els can be flexibly adapted to yield a variety of predictions—
for example, whether a vulnerability will be exploited, or in
what time frame it will be exploited. Fourth, the models pro-
vide real-valued scores that practitioners can use to prioritize
vulnerabilities. Finally, these models can integrate the results
from other scoring systems simply by incorporating the met-
rics defined by other systems as additional features used for
classification.



6. CONCLUSION
Ranking vulnerabilities is a critical task for software com-

panies. With thousands of vulnerabilities in hand and limited
resources to fix them, it is important to prioritize any opera-
tional actions. Current methods, while easy to calculate, rely
on static combinations of a small number of human-mediated
qualitative variables that seem unlikely to capture the full com-
plexity that drives vulnerability exploitation. In this paper we
have described a complementary approach for vulnerability
assessment using tools from data mining and machine learn-
ing. By considering a far broader range of features and relying
on contemporary empirical data rather than “gut instinct” to
determine their importance, we demonstrate that this approach
can classify vulnerabilities significantly better than at least one
currently (and widely) used system for severity scoring.

In general, we believe that machine learning is well-suited
to many such security assessment tasks and offers consider-
able flexibility for consolidating disparate data sources so long
as desirable security outcomes can be identified. For exam-
ple, while this paper has focused specifically on exploitability,
it would be straightforward for software vendors to use our
approach in triaging discovered vulnerabilities to determine
how to prioritize the development and deployment of patches.
Finally, one limitation with existing vulnerability scoring ap-
proaches is they are generally “one size fits all”; they do not
provide an easy mechanism for incorporating environment or
context-specific information (aside from manually adjusting
the ad hoc magic numbers in the formulas). In contrast, our
data-driven approach provides a consistent way to integrate
many local data sources, such as vulnerability scanners, IDS
logs and incident ticketing systems, to specialize vulnerability
assessment to a particular organization.

For many years, security assessment activities have been
more art than science. While we concede that the “holy grail”
security metric remains elusive, we see no reason to ignore the
power of well-founded statistical methods that can improve the
state of the practice.

Acknowledgments
We gratefully acknowledge the assistance of Stefan Frei, who
generously shared his carefully collected data on vulnerability
event dates [10].

7. REFERENCES
[1] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows

of vulnerability: A case study analysis. Computer,
33(12):52–59, 2000.

[2] A. Arora, A. Nandkumar, and R. Telang. Does
information security attack frequency increase with
vulnerability disclosure? an empirical analysis.
Information Systems Frontiers, 8(5), 2006.

[3] A. Arora, R. Telang, and H. Xu. Optimal policy for
software vulnerability disclosure. In Workshop on
Economics and Information Security (WEIS’04), 2004.

[4] S. M. Bellovin. On the Brittleness of Software and the
Infeasibility of Security Metrics. IEEE Security and
Privacy, 4(4), July 2006.

[5] Cisco. Risk Assessment: Risk Triage for Security
Vulnerability Announcements. Cisco Whitepaper,
Accessed September, 2009.

http://www.cisco.com/web/about/security/intelligence/
vulnerability-risk-triage.html.

[6] CVE Editorial Board. Common Vulnerabilities and
Exposures: The Standard for Information Security
Vulnerability Names. http://cve.mitre.org/.

[7] C. Dougherty. Vulnerability metric, Updated on July 24,
2008. https://www.securecoding.cert.org/confluence/
display/seccode/Vulnerability+Metric.

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR – A Library for Large Linear
Classification.
http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

[9] Forum of Incident Response and Security Teams
(FIRST). Common Vulnerabilities Scoring System
(CVSS). http://www.first.org/cvss/.

[10] S. Frei, D. Schatzmann, B. Plattner, and B. Trammel.
Modeling the Security Ecosystem — The Dynamics of
(In)Security. In Proc. of the Workshop on the Economics
of Information Security (WEIS), June 2009.

[11] IBM. IBM Internet Security Systems X-Force 2008
Trend and Risk Report. White paper, Jan. 2009.
http://www-935.ibm.com/services/us/iss/xforce/
trendreports/xforce-2008-annual-report.pdf.

[12] D. Lewis. Naive (Bayes) at Forty: The Independence
Assumption in Information Retrieval. In Proceedings of
ECML-98, the 10th European Conference on Machine
Learning, pages 4–15, 1998.

[13] P. Mell, K. Scarfone, and S. Romanosky. A complete
guide to the common vulnerability scoring system
version 2.0, June, 2007.
http://www.first.org/cvss/cvss-guide.html.

[14] Microsoft TechNet Security Team. Microsoft Security
Bulletin. http:
//www.microsoft.com/technet/security/current.aspx.

[15] D. Moore, C. Shannon, and k. claffy. Code-red: a case
study on the spread and victims of an internet worm. In
Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pages 273–284, 2002.

[16] D. Nizovtsev and M. Thursby. Economic analysis of
incentives to disclose software vulnerabilities. In Proc.
of the Workshop on the Economics of Information
Security, 2005.

[17] OSVDB. The Open Source Vulnerability Database.
http://osvdb.org/.

[18] A. Ozment. The likelihood of vulnerability rediscovery
and the social utility of vulnerability hunting. In Proc. of
the Workshop on the Economics of Information Security,
2005.

[19] E. Rescorla. Security holes... who cares? In Proc. of the
12th conference on USENIX Security Symposium, 2003.

[20] Secunia Corporation. Secunia Advisories.
http://secunia.com.

[21] Symantec Corporation. Security Focus.
http://www.securityfocus.com.

[22] V. Vapnik. Statistical Learning Theory. John Wiley &
Sons, New York, NY, 1998.


