The Case for Informed Transport Protocols

Stefan Savage
Neal Cardwell Tom Anderson

University of Washington
Our position

Wide-area network performance:
- is important
- is limited by inefficient congestion control
- can be improved by sharing information among hosts
The desktop bandwidth gap
(or, “why systems people should care about wide-area networking”)
Why is it so bad?

- Not enough capacity
 - Maybe - exchanges or shared access links
- Poor network load balancing
 - Maybe - routing inefficiency common
- Poor use of available bandwidth
 - Probably - TCP-style congestion control wasn’t designed for today’s Internet
A student’s view of the Internet then...

Long flows, thin pipes, infrequent losses

Typical late-1980’s grad students

ftp BSD4.2

Internet (56kbps)

ftp rogue

ucbvax.cs.berkeley.edu
… and the Internet now

Short flows, fat pipes, frequent losses

Typical 1999 grad students

5% drop rate

Internet (>155Mbps)

www.etrade.com
The congestion control problem

- Mismatch between:
 - TCP-style end-to-end congestion control
 - Assumes long flows, low bandwidth, few losses
 - Internet applications & infrastructure
 - Has short flows, high bandwidth, high loss rate

- Key problems:
 - Hosts are ignorant about the network
 - They take too long to learn
TCP connection establishment

- *Don’t know* RTT
- Set initial timeout to 3-6 secs
- Result: many connections are delayed
TCP slow start

- *Don’t know* bottleneck BW
- Increase sending rate until packet is lost
- Result: poor utilization of bandwidth; excess burstiness

\[
BW \leq \frac{B}{RTT \cdot \left[\log_{1.5} \left(\frac{B}{2 \cdot MSS} + 1 \right) \right]}
\]

BW: bandwidth
RTT: round-trip time
MSS: Maximum segment size
B: data transfer size
TCP congestion avoidance

- Don’t know available bandwidth
- Half sending rate when a packet is lost
- Result: underutilization of bandwidth

\[
BW \leq \left(\frac{MSS}{RTT} \right) \sqrt{\frac{3}{2}} \sqrt{\frac{1}{p}}
\]

BW: Bandwidth
RTT: round-trip time
MSS: Maximum segment size
p: packet loss rate
TCP stability

- **Assumptions**
 - Traffic is elastic
 - A packet loss will reduce the sending rate

- **Reality**
 - Traffic is inelastic
 - Most flows too short to see packet losses
 - Offered load driven by mouse clicks, not TCP congestion control
Informed Congestion Control

- **Key idea:**
 - Share network information among hosts
 - Make many small flows behave more like one large flow

- **What you do with it?**
 - Set initial RTT estimate
 - Set initial sending rate
 - Aggregate management of sending rate
 - Aggregate detection of congestion
Sample architecture

Congestion control gateway

<table>
<thead>
<tr>
<th>Network</th>
<th>RTT</th>
<th>Bttleneck capacity</th>
<th>Flows</th>
<th>Drop rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>washington.edu</td>
<td>50ms</td>
<td>4.0Mbps</td>
<td>7</td>
<td>0.02</td>
</tr>
<tr>
<td>mit.edu</td>
<td>30ms</td>
<td>8.6Mbps</td>
<td>5</td>
<td>0.00</td>
</tr>
<tr>
<td>whitehouse.gov</td>
<td>2ms</td>
<td>40Mbps</td>
<td>35</td>
<td>0.10</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ways to share information

- Hosts requests info (SPAND)
- Gateway piggybacks info on ACK (ECN)
- Gateway sends info out-of-band (IP SQ)
- Proxy TCP connections (I-TCP)
Potential for sharing information

- How frequently do flows share a network bottleneck?
- Conservative estimates
 - Destination host locality
 - Destination network locality
- Traces taken from UW and Harvard
Destination locality

Cumulative fraction vs Time (secs)

- UW: Networks
- UW: Hosts
- Harvard: Hosts
Adjusted destination locality
Conclusion

- TCP-style congestion control works poorly with short flows
 - End host starts knowing nothing
 - When host learns something, its all over
- There are many opportunities to share network performance information
Changes in assumptions

<table>
<thead>
<tr>
<th>The old Internet</th>
<th>Today’s Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Few long-lived flows</td>
<td>Many short-lived flows</td>
</tr>
<tr>
<td>Low bandwidth*delay</td>
<td>High bandwidth*delay</td>
</tr>
<tr>
<td>Low drop rates, < 1%</td>
<td>High drop rates, > 5%</td>
</tr>
<tr>
<td>Homogeneous & well-behaved traffic</td>
<td>Heterogeneous & inelastic traffic</td>
</tr>
</tbody>
</table>
Network measurement stability

How predictive is a measurement?
- Balakrishnan et al, SIGMETRICS 97
 - Throughput has temporal & spatial stability
- Seshan et al, SPAND
 - Predicts throughput within factor of 2 (~70%)
- Paxson, SIGCOMM 97, PhD Thesis
 - Loss rate measurement stable for mins/hours
 - Throughput estimate good for mins/hours