
512

⁄
0022-0000/01 $35.00
© 2001 Elsevier Science (USA)
All rights reserved.

Journal of Computer and System Sciences 63, 512–530 (2001)
doi:10.1006/jcss.2001.1774, available online at http://www.idealibrary.com on

Which Problems Have Strongly Exponential
Complexity?1

1 This research material is based upon work supported by NSF Grants CCR-9734911 and
CCR-0098197 from the Theory of Computing Program as well as by the grant #93025 of the joint
US-Checkoslovakia Science and Technology Program.

Russell Impagliazzo and Ramamohan Paturi

Department of Computer Science and Engineering, University of California—San Diego,
La Jolla, California 92093

and

Francis Zane

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974

Received January 1, 1999; revised December 1, 1999

For several NP-complete problems, there have been a progression of better
but still exponential algorithms. In this paper, we address the relative
likelihood of sub-exponential algorithms for these problems. We introduce a
generalized reduction that we call Sub-exponential Reduction Family (SERF)
that preserves sub-exponential complexity. We show that Circuit-SAT is
SERF-complete for all NP-search problems, and that for any fixed k \ 3, k-SAT,
k-Colorability, k-Set Cover, Independent Set, Clique, and Vertex Cover, are
SERF-complete for the class SNP of search problems expressible by second-
order existential formulas whose first-order part is universal. In particular,
sub-exponential complexity for any one of the above problems implies the
same for all others.

We also look at the issue of proving strongly exponential lower bounds for
AC0, that is, bounds of the form 2W(n). This problem is even open for depth-3
circuits. In fact, such a bound for depth-3 circuits with even limited (at most
n e) fan-in for bottom-level gates would imply a nonlinear size lower bound
for logarithmic depth circuits. We show that with high probability even
random degree 2 GF(2) polynomials require strongly exponential size for Sk3
circuits for k=o(log log n). We thus exhibit a much smaller space of 2O(n

2)

functions such that almost every function in this class requires strongly
exponential size Sk3 circuits. As a corollary, we derive a pseudorandom
generator (requiring O(n2) bits of advice) that maps n bits into a larger
number of bits so that computing parity on the range is hard for Sk3 circuits.
Our main technical lemma is an algorithm that, for any fixed e > 0, represents
an arbitrary k-CNF formula as a disjunction of 2 en k-CNF formulas that are
sparse, that is, each disjunct has O(n) clauses. © 2001 Elsevier Science (USA)

1. INTRODUCTION

In two areas of complexity, NP-completeness and lower bounds for constant
depth circuits, the complexity of specific, natural problems have been shown to be
weakly exponential (2n

W(1)
), either absolutely or under a reasonable complexity

assumption. However, the complexity of many such problems is believed to be
strongly exponential, 2W(n). In this paper, we make progress towards closing the gap
between weakly and strongly exponential bounds.

Surprisingly, the same technical lemma is useful in both situations. The Sparsifi-
cation Lemma implies that an arbitrary k-CNF formula can be written as a (rela-
tively small) disjunction of sparse k-CNF formulas, More precisely, the Sparsifica-
tion Lemma shows that for all e > 0, k-CNF F can be written as the disjunction of
at most 2 en k-CNF Fi such that Fi contains each variable in at most c(k, e) clauses,
for some function c. Moreover, this representation can be computed in
O(poly(n) 2 en) time. We apply the Sparsification Lemma to show that many natural
problems are complete for a large sub-class of NP under reductions preserving
strongly exponential complexity. We also apply the Sparsification Lemma to
construct sparse distributions on instances for the parity function which are almost
as hard for depth-3 circuits as arbitrary instances. In the rest of the section, we
elaborate on these two applications.

1.1. Reductions Preserving Strongly Exponential Complexity

Motivation. The theory of NP-completeness identifies a natural class of natural
combinatorial problems that are all equivalent with respect to polynomial-time
solvability. However, some NP-complete problems have ‘‘better’’ worst-case
algorithms than others. More recently, a series of papers have obtained improved
algorithms for Formula-SAT, CNF-SAT, and k-SAT [20, 27, 28, 18, 19, 21, 22,
29]. Similar sequences exist for other problems, such as graph 3-colorability [7, 11]
and independent set [37, 38]. Is there any complexity-theoretic reason to believe
that these improvements could not extend to arbitrarily small constants in the
exponent? Is progress on the different problems connected? Can we classify NP-
complete problems by their ‘‘likely complexity’’ to see how close we are to the best
algorithms?

We give formalizations and some preliminary answers to these questions.

1.1.1. Related Work

Our formalization differs from the previous approach to exact time complexity
by Hunt and Stearns ([31]) in that we look at the complexity of solving NP
problems in terms of the lengths of solutions rather than of instances. We feel this is
more natural, since the obvious exhaustive search algorithm is strongly exponential
in the solution size, but may be only weakly exponential in the instance size. Also,
for many of these problems, instance size is representation dependent, but solution
size is robust. Another difference is that we consider mainly whether the complexity

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 513

is 2W(n) or 2o(n). They instead considered the power index, which is defined to be the
infimum of all x for which the problem is in DTIME(2n

x
).

Despite these differences, the results in [31] are interesting both for what they
say and the limitations of the techniques used. It is hypothesized in [31] that the
Satisfiability problem has power index 1 and as a consequence of the hypothesis, it
is shown that Clique and Partition problems have power index 1/2 (in terms of the
problem size in matrix representation.) They get their results mainly by analyzing
how reductions change the input lengths. The less a reduction increases the input
size, the tighter the connection between the exact complexities of the problems. To
show stronger connections between problems, we will need to introduce a new
notion of reduction, that uses a small exponential amount of time, but only makes
queries to instances that are linearly related in size to the input.

Another related result was obtained via fixed parameter complexity. It is shown
that the tractability of the class of fixed parameter problems is equivalent to the
existence of subexponential-time algorithm for Circuit Satisfiability [1].

1.1.2. Complexity Parameters

As mentioned before, we feel that solution size is the most relevant parameter
when discussing exact complexities of NP problems. There are, however, a number
of other possible parameters, and relating results which use different parameters
can be difficult. For 3-SAT, natural choices could be n, the number of variables, m,
the number of clauses, or G((n+m) log n), the total length of its binary description.
Our results also relate the likelihood of being sub-exponential in some of the other
parameters in the literature. For example, it follows from our results that k-SAT
has a 2o(n) algorithm if and only if it has a 2o(m) algorithm. To discuss such results,
we define a notion of a general complexity parameter, which need not be the
instance or solution size. However, we will insist that the trivial search algorithm be
bounded by an exponential in this complexity parameter.

More precisely, a complexity parameter m(x) for L ¥NP must be polynomial
time computable and polynomially bounded in |x|. Also, there must be a polyno-
mial time relation R called the constraint, so that the search version of L can be
written in the form ‘‘Given x, find a y so that |y| [m(x) and R(x, y) (if such a y
exists).’’ We define SE (sub-exponentially solvable search problems) as the class of
those problems L ¥NP and complexity parameters m that can be solved in time
poly(|x|) 2 em(x) for every fixed e > 0.

We view the relevant complexity parameter as being included in the problem
specification. If we do not explicitly state which parameter we are discussing, then
we mean the length of the (naive) solution. For example, if a result applies to
k-SAT, then unless we give another parameter, we mean k-SAT with parameter the
number of input variables. Confusion might arise because some problems also have
parameters which are more definitional than they are measures of complexity. For
example, the parameter k in k-SAT belongs to this category. We view these param-
eters as being fixed in the problem definition, not as complexity parameters of the
instance.

514 IMPAGLIAZZO, PATURI, AND ZANE

1.1.3. Our Results

All of the algorithms referred to earlier, while (for at least some relationships
between complexity parameters) much faster than exhaustive search, are of the
form 2cp for c > 0 a constant and p the relevant parameter. Later papers in the
sequence get better constants c. We ask ‘‘for which problems and choices of
parameters is there a non-trivial (> 0) limit to this sequence of improvements?’’ To
resolve this question completely, one would either need to give a sub-exponential
algorithm or prove strong lower bounds. However, we show that the answer to this
question is the same for many commonly studied NP-complete problems and for all
the commonly studied choices of parameters. To be more precise, we show that
problems such as k-SAT and k-colorability are complete for the class SNP [24]
under a notion of reduction that preserves subexponential complexity.

This extends the theory of NP-completeness to give a stratification of problems
based on their likely complexity. Other recent work has divided NP-complete
problems by their extent of approximability. The extension of NP-completeness
theory to a wide variety of approximation problems (See, e.g., [24, 10, 5, 15, 16]
and see [6] for a survey) has allowed researchers to compute sharp bounds on how
well one should be able to approximate solutions to NP-complete problems. This
work has spurred the discovery of new approximation algorithms for some
problems [4]. While not claiming the same depth or significance for our work, we
hope that this paper will further distinguish ‘‘easy’’ from ‘‘hard’’ problems within
the ranks of NP-complete problems, and lead to a similar systematic study of the
exact complexity of NP-complete problems.

1.1.4. Reductions That Preserve Sub-exponential Complexity

Since the standard reductions between NP-problems increase the problem
instance size, the question of whether the reductions preserve sub-exponential
complexity is delicate and depends on the choice of parameters. For example, an
instance of 3-SAT with n variables and m clauses maps to a graph with O(n+m)
nodes and edges in the standard reduction to independent set. So this reduction
would be sub-exponential time preserving if we measure in terms of edges and
clauses, but not in the more natural measure of variables and nodes.

SERF reducibility. Note that for a reduction to preserve sub-exponential time, it
is vital that the relevant parameters not increase more than linearly, but the time
complexity of the reduction is less important. Let A1 be a problem with complexity
parameter m1 and constraint R1 and A2 be a problem with complexity parameter m2
and constraint R2. For a many-one reduction f from A1 to A2 to preserve sub-
exponential complexity, we would want m2(f(x)) ¥ O(m1(x)). We will call such a
reduction a strong many-one reduction. Many of the standard reductions between
NP-complete problems are strong, at least for some choices of parameters, and it is
almost always a trivial review to verify that a reduction is strong. For example,
most of the reductions from k-SAT are strong if we use the number of clauses as
our parameter, but not if we use the number of variables.

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 515

To get a more complete web of reductions between natural problems and the
most natural parameters, we will need to consider significantly more complicated
forms of reduction. First, we will need Turing reductions rather than many-one
reductions. Secondly, we will trade off sparseness for time: we note that it is vital to
keep the condition that the complexity of the instances of A2 be linear in the com-
plexity of the instances of A1, but not that the reduction is polynomial-time.

We define a sub-exponential reduction family (SERF) as a collection of Turing
reductionsMA2

e from A1 to A2 for each e > 0, so that we have for each e > 0:

• MA2
e (x) runs in time at most poly(|x|) 2 em1(x)

• If MA2
e (x) queries A2 with the input xŒ, then m2(xŒ) ¥ O(m1(x)) and

|xŒ|=|x|O(1).

If such a reduction family exists, we say A1 is SERF-reducible to A2. Strong
many-one reducibility is a special case of SERF-reducibility. SERF-reducibility is
transitive, and, if A1 is SERF-reducible to A2 and if A2 ¥ SE then A1 ¥ SE. We note
that the definition of SERF reducibility can be simplified if the length of the input
is polynomially bounded in the complexity parameter.

Let A be a search problem with R(x, y) as the relation and m(x) as the complex-
ity parameter. If mŒ(x) \ m(x), the search problem with complexity parameter mŒ
and relation RŒ(x, y)Z R(x, y)N |y| [m(x) is an alternate formulation of A. So we
can talk about the same problem with different complexity parameters. If
mŒ(x) > m(x), then (A, mŒ) is always strong many-one reducible to (A, m) by the
identity function, but we may or may not also have a SERF-reduction in the oppo-
site direction.

Some standard reductions are seen to be strongly-preserving for solution size,
even if they are not for instance size. For example, it follows easily from the defini-
tion of complexity measure and strong reductions that:

Proposition 1. Circuit-SAT with the number of variables as the complexity
measure is complete for NP-search problems under strong many-one reductions.

Proof. Let L be a language in NP and m a complexity parameter for L. Then,
by the definition of complexity parameter, we can find a polynomial-time comput-
able relation R(x, y) so that x ¥ L iff there is a y, |y| [m(x) and so that R(x, y).
Then the (standard) reduction on input z computes a circuit C(x, y) that simulates
R(x, y) on inputs of size n and m(n), and then sets x=z. The number of inputs for
the resulting Circuit-SAT instance is m(x), so the reduction is strong. L

Our main technical contribution is that k-SAT with the number of variables as
the complexity parameter is SERF-reducible to k-SAT with the number of clauses
as the complexity parameter. It then easily follows by standard strong many-one
reductions that problems like Independent Set, k-Colorability, k-Set Cover, and
Vertex Cover are all SERF-equivalent under several natural complexity parameters.

SERF-Completeness for a logically defined class. We can make the complexity
implications of sub-exponential algorithms for the above problems more precise

516 IMPAGLIAZZO, PATURI, AND ZANE

using descriptive complexity, which specifies complexity classes in terms of the
quantifier structure in the problem definition.

In descriptive complexity, an input to a problem is viewed as a finite set of rela-
tions on a universe of n elements. Then the problem is whether a given logical
formula is true or false in the input model. Second order quantifiers quantify over
relations, first order quantifiers over elements of the universe.

Define SNP to be the class of properties expressible by a series of second order
existential quantifiers, followed by a series of first order universal quantifiers,
followed by a basic formula (a boolean combination of input and quantified rela-
tions applied to the quantified element variables.) This class is considered by
Papadimitriou and Yannakakis [24] for studying approximability of optimization
problems. The associated search problem looks for instantiations of the quantified
relations for which the resulting first-order formula is true. If the quantified rela-
tions are R1, ..., Rq and Ri has arity ai, the complexity parameter for the formula is
;q
i=1 n

ai, the number of bits to describe all relations. (In many cases of interest, the
relations in question are all monadic, i.e., take a single input, in which case the
complexity parameter is just O(n).)

To see that k-SAT ¥ SNP, view an input as 2k k-ary relations, Rs1, ..., sk where
si ¥ {+, −}. Rs1, ..., sk (y1, ..., yk) is true if the clause Jk

i=1 y
si
i is present among the

input clauses where y+i =yi and y−i =ȳi. Define I+(S, y) as the formula S(y) and
I−(S, y) as the formula ¬ S(y). Then we can express satisfiability of the formula
by:

,S[-(y1, ..., yk) -(s1, ..., sk) 5Rs1, ..., sk (y1, ..., yk)Q I
1 [i [k

Isi (S, y)6 ,

where S is a unary predicate (interpreted as ‘‘the variable y is set to true.’’).
We show that k-SAT and k-Colorability are SERF-complete for SNP. Problems

like Independent Set and k-Set Cover are SERF-equivalent to these, but are tech-
nically not in SNP because their statements involve minimization.

1.2. A Sparse Distribution for Parity That is Hard for Depth 3 Circuits

Considerable progress has been made in understanding the limitations of
unbounded fan-in Boolean circuits of bounded depth. The results of Ajtái, Furst,
Saxe, Sipser, Yao, Håstad, Razborov, and Smolensky [2, 12, 36, 14, 25, 30], among
others, show that if the size of the circuit is not too large, then any function
computed by such a circuit must be constant on a large subcube or can be approx-
imated by a small degree polynomial. Such limitations of small size bounded depth
circuits can be used to show that certain explicit functions such as parity and
majority require a large number of gates. More precisely, a result of Håstad [14]
says that computing the parity function in depth d requires W(2 en

1/(d−1)
) gates for

some e < 1. More recently, Paturi, Pudlák, and Zane [21] obtained the tight bound
G(n1/42 `n) for computing parity on depth-3 circuits. However, these and other
techniques seem incapable of proving a lower bound on depth-3 circuits of 2w(`n)

for any explicit Boolean function in NP.

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 517

To clarify the situation, it is useful to parameterize the lower bound in terms of
the maximum fan-in of the bottom gates. Define Skd to be the set of depth d circuits
with top gate OR such that each bottom gate has fan-in at most k. Then it follows
from [21] that any Sk3 circuit for the parity function or the majority function

requires W(2n/k) gates at level 2, and such bounds are tight for k=O(`n). For the
special case k=2, [23] proved strong exponential lower bounds of the form
W(2n−o(n)) for recognizing the codewords of a good error-correcting code. They
show that any 2-CNF accepting a large number of inputs must include a certain
generalized subcube of a large dimension and then diagonalize over such objects.
However, it does not seem that similar techniques will extend to the case k \ 3.

We would like to prove strongly exponential lower bounds on depth-3 circuits
that go beyond the above trade-off between bottom fan-in and size. The best such
trade-off is from [22], proving a lower bounds of the form W(2dk n/k) with dk > 1 for
recognizing the codewords of a good error-correcting code. (dk approaches 1.644
for large k). It is still open to prove a 2n/2 lower bound for Sk3 circuits even when k
is bounded. One compelling motivation for studying the depth-3 model with limited
fan-in is the result by Valiant [33] which shows that linear-size logarithmic-depth
Boolean circuits with bounded fan-in can be computed by depth-3 unbounded fan-
in circuits of size O(2n/log log n) and bottom fan-in limited by n e for arbitrarily small e.
If we consider linear-size logarithmic-depth circuits with the additional restriction
that the graph of the connections is series-parallel, then such circuits can be
computed by depth-3 unbounded fan-in circuits of size 2n/2 with bounded bottom
fan-in. Thus, strong exponential lower bounds on depth-3 circuits would imply
nonlinear lower bounds on the size of fan-in 2 Boolean circuits with logarithmic-
depth, an open problem proposed some twenty years ago [33]. For the depth-3
circuits constructed from such series-parallel circuits, we could obtain similar results
using simpler arguments, because the construction ensures that the depth-2 subcir-
cuits are sparse. Nonetheless, these methods yield interesting new results as well as
providing more general results.

Our approach to proving strongly exponential lower bounds is rooted in the
following observation: Computing parity even on much smaller subsets of the input
space requires a very large size for Sk3 circuits. More precisely, if A is a set of
random input instances of size 2O(n/k), then with high probability computing parity
on A requires 2W(n/k) gates for any Sk3 circuit. Our approach is to try to find an
explicit subset where this is true. We would like to find a ‘‘pseudo-randomly’’ gen-
erated set, i.e., the range of a function that maps n bits into more than n bits such
that computing parity on the range requires strongly exponential bounds for Sk3
circuits in the parameter n. From this, one can hope to prove the composition of
the map with the parity function requires strongly exponential lower bounds.

We give a probabilistic construction of such a function from maps {0, 1}n to
{0, 1}O(n

2) bits just using a family of randomly chosen monomials of degree 2 (AND
of two variables). Parity composed with such a function can be thought of as a
degree 2 polynomial over GF(2). Although the intuition is that computing parity on
the range is hard and that therefore the composition is also hard to compute, our
proof actually goes in the reverse direction. We directly prove that random degree 2

518 IMPAGLIAZZO, PATURI, AND ZANE

polynomials require strongly exponential size for Sk3 circuits for k=o(log log n).
We then show as a corollary that parity is hard on the corresponding subset of
inputs. Our proof relies on our ability to represent k-CNF as a subexponential
union of linear size k-CNFs (Sparsification Lemma) and an algebraic counting
technique. Although one can use the algebraic counting technique for showing that
almost every degree d GF(2) polynomial requires strongly exponential lower
bounds for Sk3 circuits as long as d > k, one needs the Sparsification Lemma to
show that even degree 2 polynomials suffice to obtain strongly exponential lower
bounds for Sk3 circuits for all k=o(log log n).

Furthermore, our result implies that computing parity on the range of the map
defined by randomly selected degree 2 monomials is hard for Sk3 circuits for
k=o(log log n). We thus exhibit a pseudorandom generator (which relies on about
O(n2) bits of advice) which amplifies its input bit string so that computing parity on
the range is hard for Sk3 circuits.

As in earlier papers [21, 22], we observe that certain characterizations of k-CNF
have applications to lower bounds on depth-3 circuits as well as upper bounds for
the satisfiability problem. The key to further constructivization of our arguments is
a better understanding of k-CNFs and their solution spaces. Such understanding
may have dividends for us in the form of improved worst-case algorithms for the
satisfiability problem as well as strongly exponential lower bounds for depth-3
circuits.

2. SPARSIFICATION LEMMA

Call an instance of k-SAT sparse if it has m=O(n) clauses, where n is the
number of variables. Our main technical lemma is the following algorithm that
reduces a general k-SAT formula to the disjunction of a collection of sparse
instances. This gives a SERF-reduction from k-SAT with parameter n to k-SAT
with parameter m. It also gives a normal form for depth-3 circuits with bottom
fan-in k.

One of the basic techniques for solving search problems is back-tracking. In back-
tracking one narrows in on a solution meeting certain constraints through case
analysis and deductions. Typically the case analysis for satisfiability involves a
single variable. One searches for a solution where that variable is TRUE, and then
if that search fails, backs up and searches given the variable is FALSE. To narrow
the search, we look for other facts about the solution that are forced by the other
constraints. Intuitively, back-tracking is more effective in highly constrained
searches where each constraint is simple; for example, in dense instances of k-SAT.
Our proof is a formalization of that intuition: we show that back-tracking works
well until the formula becomes sparse. We argue that each time we branch while the
formula is dense, we can create many simpler constraints, i.e., smaller clauses.
Eventually, the process must create many clauses of size 1, i.e., force many
variables.

Our back-tracking algorithm sometimes branches on an OR of variables rather
than a single variable. This is to avoid the situation where we have too many
constraints involving a single variable. Although such a variable is in itself good,

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 519

because we get much information by setting it, the creation of those constraints
might have required more branching increasing the number of leaves in the tree. If
it required several branches to obtain many clauses of the form xKyi, the new
clauses tell us strictly less than if we had branched on x being true immediately. By
trying to simplify small clauses first, and by branching on OR’s of variables as soon
as they appear in many clauses, we can avoid excessive branching which creates
redundant constraints. (If the problem originally involved redundant constraints,
that does not hurt us.)

It is somewhat simpler and general to state and prove the lemma for k-Set Cover
rather than k-SAT, and derive the version for k-SAT as a Corollary. k-Set Cover
has as an instance a universe of n elements x1, ..., xn and a collection S of subsets
S ı {x1, ..., xn} with |S| [k for each S ¥S. A set cover for S is a set C ı

{x1, ..., xn} so that C 5 S]” for each S ¥S. Let s(S) be the collection of all set
covers of S. The k-Set Cover problem is to find a minimal size set cover.
T is a restriction of S if for each S ¥S there is a T ¥T with T ı S. Obviously,

if T is a restriction of S, then s(T) ı s(S).
We can represent k-SAT as a k-Set Cover problem in a canonical way. The uni-

verse is the set of 2n literals. We first define U to be the family of sets {xi, x̄i}. It is
obvious that the coverings of U of size n are exactly all the assignments to the input
variables. Then we add, for each clause, the set of its literals. S is the collection of
all such sets. Clearly any cover of S of size n is a satisfying solution of the underly-
ing formula. Conversely, any family of sets over the universe of 2n literals can be
interpreted as a formula given by a conjunction of disjunctions, and moreover if the
family includes all the sets in the family U, then any cover of size n is a satisfying
instance of the formula.

When we view k-SAT as a special case of k-Set Cover, the underlying sets are sets
of literals. Thus, we never explicitly have to require that exactly one of the literals
{xi, x̄i} has to be in the cover. This makes the analysis easier although it seems
somewhat artificial for k-SAT.

Call a formula F a restriction of Y if each clause of Y contains some clause of F.
Then a restriction of the k-Set Cover instance corresponds to a restriction of the
k-SAT formula.

Theorem 1. For all e > 0 and positive k, there is a constant C and an algorithm
that, given an instance S of k-Set Cover on a universe of size n, produces a list of
t [2 en restrictions T1, ...,Tt of S so that s(S)=1 t

i=1 s(Ti) and so that for each
Ti, |Ti | [Cn. Furthermore, the algorithm runs in time poly(n) 2 en.

Proof. Choose integer a so that a/log(4a) > 4k2ke−1. Let h0=2, bi=(4a)2
i−1−1

and hi=abi for i=1, ..., k−1. We say that a collection, S1, ..., Sc, of sets of size j
is a weak sunflower if H=4c

i=1 Si]”. We call H the heart of the sunflower, and
the collection S1−H, ..., Sc−H the petals. Each petal has the same size, j− |H|,
called the petal size. The size of the sunflower is the number of sets in the collection.
By a j-set, we mean a set of size j. For a family of sets S, let p(S) ıS be the
family of all sets S in S such that no other set SŒ in S is a proper subset of S. Thus
p(S) is an antichain.

520 IMPAGLIAZZO, PATURI, AND ZANE

We start with the collection S and apply the following algorithm, Reduce, which
outputs the families Ti.

Reduce(S: a collection of sets of size at most k)

1. SP p(S)
2. FOR j=2 TO k DO
3. FOR i=1 to j−1 DO
4. IF there is a weak sunflower of j-sets and petal size i where the number of
petals is at least hi, that is, if there are S1, ..., Sc ¥S, |Sd |=j for d=1, ..., c \ hi,
and with |H|=j−i where H=4c

d=1 Sd,
5. THEN Reduce(S 2 {H}); Reduce(S 2 {S1−H, ..., Sc−H}); HALT.
6. Return S; HALT.

As usual, we can think of the execution of a recursive procedure as described by a
tree. Each node is naturally associated with a family SŒ of sets. The p operator is
applied to SŒ resulting in the elimination of any supersets. If p(SŒ) contains a
sunflower, then the node branches into two children. The family associated with
one child is created by the adding the petals of the sunflower to SŒ and the other
family is created by adding the heart to SŒ. Otherwise, the node is a leaf. We con-
sider the collection S as it changes along a path from the root to a leaf. New sets
can be added to the collection S at a node due to a sunflower. Existing sets can be
eliminated from S by the p operator. Note that a set SŒ can only be eliminated if
some proper subset S is in S; we then say that S eliminated SŒ.

We first observe some basic properties of the algorithm Reduce.
Consider a collection T associated with a node other than the root and the

collection TŒ associated with its parent node. If the set S ¥T eliminated the set
SŒ ¥T, then S must be either the heart or a petal of the sunflower in TŒ that
caused the branching. After the p operator is applied to T, no proper superset of S
would ever be present in any of the families associated with the descendants of T.
All the sets eliminated by a set S are eliminated in the next application of the p
operator immediately after the set S is added to the collection.

The next observation states that T is a covering of S if and only if it is a
covering of one of the families output by the algorithm.

Lemma 1. Reduce(S) returns a set of restrictions of S,T1, ...,Tt, with s(S)=
1 t
l=1 s(Tl).

Proof. Clearly, if S … SŒ ¥S, then covers s(S)=s(S−{SŒ}). If S1, ..., Sc ¥S

form a weak sunflower with heart H, and T is a cover of S, then either T 5H]”

or T 5 (Sl−H)]” for each 1 [l [c. So s(S)=s(S 2 {H}) 2 s(S 2 {Sl−H | 1
[l [c}). The lemma then follows by a simple induction on the depth of recursion.

L

Lemma 2. For 1 [i [k, every family T output by Reduce(S) has no more than
(hi−1−1) n sets of size i.

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 521

Proof. If there were more than (hi−1−1) n sets of size i in T, then there would
be an element x in at least hi−1 of them by the pigeonhole principle. The sets con-
taining x would form a weak sunflower with petal size at most i−1, so the program
would branch rather than halt. L

As a consequence, it follows that every element of Reduce(S) has no more than
Cn sets where C is set to be Ski=1 (hi−1−1). Thus, the sparseness property is
satisfied.

The most difficult part is to show t [2 en, where t is the number of families
output, which is the same as the number of leaves in the recursion tree. We do this
by showing that the maximum length of any path in the tree is O(n), whereas the
maximum number of nodes created by adding petals rather than the heart is at
most kn/a. To prove this, for 1 [i [k, we show that the following invariant,
Ji(T), holds for any family T in any path as long as a set of size i has been added
to one of the predecessor families in the path. Ji(T) is the condition that no
element x appears in more than 2hi−1−1 sets of size i in T. As a consequence of
the invariant, we show that any set added to such a family eliminates at most
2hi−1−1 sets of size i during the next application of the operator p. Since we can
have at most n sets of size one in any family, we show by induction that the total
number of sets of size at most i that are ever added to all the families along a path
is at most bin. Since at least hi petals are added to any family created by adding
petals of size i, it follows that at most kn/a families are created due to petals. We
now prove our assertions.

Lemma 3. For any family T such that a set of size i has been added to it or any
of its predecessors in the path, the invariant Ji(T) holds: no element x appears in
more than 2hi−1 sets of size i inT.

Proof. It suffices to prove the lemma for the families created by adding sets of
size i. Let T be such a family obtained by adding some sets of size i to the family
TŒ. Consider the sunflower in the family TŒ that created these sets. The sunflower
must be a family of sets of size j > i. Furthermore there is no sunflower of i-sets in
TŒ with hi−1 petals of petal size i−1 so we can conclude that no element x appears
in more than hi−1−1 sets of size i in TŒ. Either T is created by adding the petals of
the sunflower or the heart. If the petals are added to T, no element x is contained
in more than hi−1−1 petals since otherwise TŒ would contain a sunflower of j-sets
with hi−1 petals of size i−1. Thus, no element x is contained in more than 2hi−1−1
i-sets of the family T. If the heart is added to T, only one set of size i is added to
the family T and since hi−1 \ 1, the conclusion holds as well in this case. L

Lemma 4. At most 2hi−1 of the added sets of size i can be eliminated by a single
set.

Proof. If a set S of size i has been added to a family T associated with a node,
then after an application of p,T and all its successor families in the tree, would

522 IMPAGLIAZZO, PATURI, AND ZANE

satisfy the invariant Ji by Lemma 3. Hence, for such families, no element x appears
in more than 2hi−1−1 sets of size i. Let S be a set added to a family and let x ¥ S.
Since all the sets S eliminates contain x and are eliminated during the next applica-
tion of p, we conclude that S can eliminate at most 2hi−1−1 sets of size i. L

Lemma 5. The total number of sets of size [i that are added to the families
along any path is at most bin.

Proof. By induction on i. First, for i=1, each added set is a new element of the
universe, so there are at most b1n=n such sets. Assume at most bi−1n sets of size
[i−1 are added to the families along a path. Each added set of size i is either eli-
minated subsequently by a set of size at most i−1 or is in the final collection of sets
output by the algorithm. By Lemma 2, there are at most hi−1n sets of size i in the
final collection. By the induction hypothesis and Lemma 4, each of at most bi−1n of
the added smaller sets eliminates at most 2hi−1 sets of size i. Thus, the total
number of added sets of size [i is at most 2bi−1hi−1n+hi−1n[4bi−1hi−1n=(4ab

2
i−1) n

=bin. L

Lemma 6. Along any path, at most kn/a families are created by adding petals.

Proof. There are at most bin sets of size i that are ever added to all the families
along any path. If a family is created by adding petals of size i, then at least hi such
petals are added. Thus, there are at most bin/hi=n/a such families. Summing over
all sizes i gives the claimed bound. L

Lemma 7. The algorithm outputs at most 2 en families.

Proof. It is sufficient to upper bound the number of paths from the root to a
leaf. A path is completely specified by the sequence of decisions taken at each of the
nodes along the path. Each decision corresponds to whether the heart or the petals
are added to the family. Since a set of size at most k−1 is added to the family at
every step, there are a total of at most bk−1n sets ever added to the families along
the path by Lemma 5. At most nk/a of these families are created by adding petals,
by Lemma 6. Thus, there are at most ; Nnk/aM

r=0 (
bk−1n
r) paths. Using the approximation

(ada) [2
h(d) a where h(d)=−d log2 d−(1−d) log2(1−d) is the binary entropy

function, we see that this is at most 2bk−1nh(k/(abk−1)) [2 ((2k/a) log(abk−1/k)) n [
2((2k/a) log(a(4a)

2k−2−1)) n [22k2
k−2(log(4a)/a) n[2en. The first inequality follows from h(k/(abk−1)

[2k/(abk−1) log(k/(abk−1)) since k/(abk−1) [1/2 and the last inequality by our
choice of a. L

The Theorem then follows from Lemmas 1, 2 (setting C=;k−1
i=1 hi), and 7, and

the observation that the algorithm Reduce takes polynomial time per path.
Using the formulation of k-SAT as a Set Cover problem, we then obtain:

Corollary 1. For all e > 0 and positive k, there is a constant C so that any
k-SAT formula F with n variables, can be expressed as F=J t

i=1 Yi, where t [2
en

and each Yi is a k-SAT formula with at most Cn clauses. Moreover, this disjunction
can be computed by an algorithm running in time poly(n) 2 en.

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 523

The algorithm Reduce gives us a family of reductions from k-SAT to sparse
k-SAT:

Corollary 2. k-SAT with complexity measure n, the number of variables, is
SERF-reducible to k-SAT with measure m, the number of clauses.

3. COMPLETE PROBLEMS FOR SNP

In this section, we combine standard reductions with Corollary 2 to show that
many of the standard NP-complete problems are equivalent as far as having sub-
exponential time complexity. We show that the question of whether these problems
are sub-exponentially solvable can be rephrased as whether SNP ı SE. We
also look at complete problems for more general classes. We show that SERF-
reductions can be composed and preserve membership in SE.

Lemma 8. If (A1, m1) SERF-reduces to (A2, m2), and (A2, m2) SERF-reduces to
(A3, m3), then (A1, m1) SERF-reduces to (A3, m3).

Proof. Let e > 0. LetMA2
e/2 be the member of the SERF-reduction from (A1, m1)

to (A2, m2). Let C be such that m2(xŒ) [Cm1(x) for every query xŒ made by MA2
e/2

on x. Let NA3e/(2C) be the member of the SERF-reduction from (A2, m2) to (A3, m3).
Simulate MA2 except that for each query xŒ simulate NA3e/(2C) on xŒ. Any query y

made to A3 in the simulation was part of the run of NA3e/(2C) on some xŒ queried by
MA2
e/2 on x. Then m3(y))=O(m2(xŒ))=O(m1(x)). The total time taken by the

simulation is at most the product of the time taken byMA2
e/2 on x and the maximum

time taken byNA3e/(2C) on some query xŒ, which is at most poly(|x|) 2 (e/2) m1(x) f poly(|xŒ|)
2 (e/ZC) m2(xŒ) [poly(|x|) 2 (e/2) m1(x) f poly(poly(|x|)) 2 (e/2C) Cm1(x) [poly(|x|) 2 em1(x). L

Lemma 9. If (A1, m1) SERF-reduces to (A2, m2), and (A2, m2) ¥ SE, then
(A1, m1) ¥ SE.

Proof. Let e > 0. Let MA2
e/2 be the member of the SERF reduction from A1 to

A2. Let C be such that m2(xŒ) [Cm1(x) for any query xŒ thatMA2
e/2 makes on x. Let

N solve A2 on xŒ in time poly(|xŒ|) 2 (e/2C) m2(xŒ). Then using N to simulate queries
in MA2

e/2 solves A1 in time poly(|x|) 2 e/2m1(x) f poly(|xŒ|) 2 (e/2C) m2(xŒ) [poly(|x|) 2 e/2m1(x)

f poly(poly(|x|)) 2 (e/2C) Cm1(x) [poly(|x|) 2 em1(x). L

We can now show that many of the standard NP-complete problems have sub-
exponential complexity if and only if the same is true for any problem in SNP.
First, we show that each problem in SNP has a strong many-one reduction to
k-SAT for some k. Then, we use Corollary 2 to reduce k-SAT to sparse instances of
itself, or more precisely, from treating n as the parameter to treating m as the
parameter. Then we show the standard reduction from k-SAT to 3-SAT is strong in
m. This shows that 3-SAT, and hence k-SAT for any k > 3, is SERF-complete for
SNP.

524 IMPAGLIAZZO, PATURI, AND ZANE

Theorem 2. Let A ¥ SNP. Then there is a k so that A has a strong many-one
reduction to k-SAT with parameter n.

Proof. Let

,R1 · · ·,Rq -z1 · · ·-zrF(I, R1, ..., Rq, z1, ..., zr)

be the formula representing A where I is the structure representing the input. Let ai
be the arity of the relation Ri. Let k be the number of occurrences of the relation
symbols R1, ..., Rq in F. For each ai-tuple, yF of elements of the universe, introduce
a variable xi, yF representing whether Ri(yF) is true. Note that we have exactly ;i nai
variables, the complexity parameter for A. For each zF ¥ {1, ..., n} r, we can look at
F(zF) as a boolean formula where we replace any occurrence of the relation
Ri(zj1 , ..., zjai) with the corresponding Boolean variable. Since each F(zF) depends
on at most k variables, we can write each such formula in conjunctive normal form
to get an equivalent k-CNF. L

Next, we can apply Corollary 2 to conclude:

Corollary 3. Any problem in SNP SERF-reduces to k-SAT with parameter m
for some k.

The next link is to reduce sparse k-SAT to 3-SAT:

Lemma 10. For any k \ 3, k-SAT with parameter m strongly many-one reduces
to 3-SAT with parameter m (and hence also with parameter n).

Proof. Let F be a k-SAT formula. For every clause x1..., J xj with j [k,
introduce j−1 new variables y1, ..., yj−1 and create the j clauses x1 Ky1,yi−1 K
xi Kyi, for 2 [i [j−1 and yj−1 Kxj. Thus the number of clauses in the resulting
3-CNF formula will be at most k times that of the original formula. L

Summarizing:

Theorem 3. For any k \ 3, k-SAT is SNP-complete under SERF-reductions,
under either clauses or variables as the parameter. Consequently k-SAT ¥ SE if and
only if SNP ı SE.

We can then combine these with known reductions:

Theorem 4. k-Colorability is SNP-complete under SERF reductions for any
k \ 3.

Proof. k-Colorability is in SNP. 3-SAT with parameter m has a strong many-
one reduction to 3-colorability. See [9], p. 962, ex. 36-2. 3-colorability has a strong
many one reduction to k-colorability for k \ 3. L

Many natural problems like Independent Set are not obviously in SNP.
However, they are in a small generalization that is equivalent as far as sub-expo-
nential time. A size-constrained existential quantifier is one of the form ,S, |S| À s,
where |S| is the number of inputs where relation S holds, and À ¥ {=, < , > }.
Define Size-Constrained SNP as the class of properties of relations and numbers
that are expressible by a series of possibly size-constrained existential second-order
quantifiers followed by a universal first-order formula. L

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 525

Theorem 5. The following problems are Size-Constrained SNP Complete under
SERF reductions: k-SAT for k \ 3, k-Colorability Independent Set, Vertex Cover,
Clique, and k-Set Cover for k \ 2.

Proof. (Sketch) All of the above are in Size-Constrained SNP. Like before, any
problem in Size-Constrained strong many-one reduces to k-SAT for some k. The
new part is to realize that the size constraints can be computed by a linear sized
circuit, and hence using the usual reduction from circuit-SAT to 3-SAT only intro-
duces a linear number of new variables, one per gate. It follows that since any SNP-
Complete problem is equivalent to k-SAT, that any SNP-Complete problem is also
Size-Constrained SNP Complete.

The usual reduction from 3-SAT with parameter m to Independent Set is strong
[9]. We introduce 3 nodes per clause, and connect all nodes from the same clause
and all inconsistent nodes. (Before doing this reduction, we can, for each variable
that appears more than 8 times, introduce a new variable, setting it to be equal to
the old one, and using it in half of the clauses. Then the reduction is also strong in
the number of edges.) Independent Set, Vertex Cover and Clique are easily seen to
be equivalent under strong reductions (in the number of nodes).

The reduction from Vertex Cover to 2-Set Cover that simply makes each edge a
set is strong. L

Also, we can find other problems that are SNP hard. For example, the usual
reduction from 3-SAT with parameter m to Hamiltonian Circuit with parameter |E|
is strong [9]. Thus, if we could improve arbitrarily the hidden constant on the 2O(n)

algorithm for Hamiltonian Circuit, even for sparse graphs, then SNP ı SE.

4. LOWER BOUNDS FOR DEPTH-3 CIRCUITS

In this section, we prove that almost all degree 2 GF(2) polynomials require
strongly exponential lower bounds for Sk3 circuits for k=o(log log n). We prove
this by showing that very few degree-2 polynomials can be computed by depth-3
subexponential size circuits of fan-in k.

Theorem 6. Almost every degree 2 GF(2) polynomial requires W(2n−o(n)) size Sk3
circuits for k=o(log log n).

As a corollary, we derive a pseudorandom generator (requiring O(n2) bits of
advice) that maps n bits into a larger number of bits so that computing parity on
the range is hard for Sk3 circuits.

Corollary 4. There is a pseudorandom map defined by a family of degree 2
monomials (requiring O(n2) bits of advice) that maps {0, 1}n bits into {0, 1}O(n

2) bits
such that computing parity on the range of the map requires W(2n−o(n)) size Sk3
circuits for k=o(log log n).

Proof. Let f(x1, ..., xn) be a degree 2 polynomial that requires W(2n−o(n)) size
Sk3 circuits for k=o(log log n) as specified in Theorem 3. Order the monomials

526 IMPAGLIAZZO, PATURI, AND ZANE

that occur in f and let g=(y1, ..., ym) denote the sequence of the monomials where
each yi is the product of two variables xi1 , and xi2 . Since the monomials have
degree 2, m=O(n2). Let C be a Sk3 circuit of size s with m inputs, y1, ..., ym that
computes parity on the range of the map g. We compute each yi=xi1 Nxi2 and
ȳi=x̄i1 K x̄i2 from the inputs x1, ..., xn. The resulting circuit CŒ with inputs x1, ..., xn
can be represented as a S2k3 circuit of size O(s). Since CŒ computes the polynomial
f, the composition of g with parity function, we have s=W(2n−o(n)). L

We now prepare to prove Theorem 3. Let C be a Sk3 circuit of size s computing a
Boolean function on n inputs for k=o(log log n). Let 0 < e < 1/2 be any constant.
We want to prove a lower bound on s of the form 2 (1−2e) n. Define c(k, e)=
(2/e)O(k2

k). Rewrite each depth-2 subcircuit of C, a k-CNF, as the union
of 2 en of k-CNFs with at most c(k, e) n clauses as permitted by Corollary 1. We
thus have an equivalent circuit C (by a slight abuse of notation) with at most s2 en

depth-2 subcircuits.
Assume for the purpose of contradiction that s < 2 (1−2e) n. The circuit C computes
f, a degree 2 polynomial over GF(2). Unless f is trivial, |f−1(0)|=O(|f−1(1)|).
Since the top gate of C is an OR, it follows that C contains a k-CNF F with
c(k, e) n clauses such that F accepts O(2en) inputs and F−1(1) ı f−1(1). Our goal
now is to show that for most degree 2 GF(2) polynomials f, no such CNF F exists;
this implies that s \ 2 (1−2en) and the theorem follows.

Our proof strategy is similar to that of [23]. We show that among the inputs
accepted by F, there is a subcollection of 2 l inputs with certain special structure.
The existence of such a structure is proved based solely on the density of F. We
then prove that almost all degree 2 GF(2) polynomials cannot be constant on any
such structure, contradicting the fact that F accepts a large set of inputs where the
polynomial is 1.

Let A=F−1(1), and let l be the least integer such that S li=1 (
n
i) > |A| \ 2

en. From
the work of [26, 35], we know that there is a set of l variables which are shattered
by A. That is, A contains a subset B of size 2 l such that B restricted to those l
variables still has size 2 l, so all possible assignments to those variables appear in B.
If more than one such subset exists, fix one in a canonical fashion. Without loss of
generality, we assume that x1, ..., xl represent the l shattered variables. We call
x1, ..., xl free variables since, for any instantiation of these variables, we can find an
element of B that agrees with the instantiation. l \ dn for some constant d=
d(e) > 0. We call the other n−l variables, xl+1, ..., xn, nonfree variables. Each
such nonfree variable can be functionally expressed in terms of the free variables.
Using the fact that every Boolean function is represented by a unique GF(2)
polynomial with degree at most the number of input variables, we define xj=
fj(x1, ..., xl) for l+1 [j [n. Thus B is the set of 2 l solutions of a system of n−l
polynomial equations, xj=fj(x1, ..., xl), in l free variables.

We now argue that not too many degree 2 GF(2) polynomials can be constant
when restricted to such a set B.

Lemma 11. Let B be a set of size 2 l given by the solutions of a system of poly-
nomial equations, xj=fj(x1, ..., xl), for l+1 [j [n, where fj are degree l GF(2)

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 527

polynomials. Then there are at most 21+(n−l)(n+l+1)/2 polynomials of degree at most 2
which are constant when restricted to the set B.

Proof. Let G2(n) be the group of all GF(2) polynomials of degree at most 2 in n
variables. The restriction of a polynomial p ¥ G2(n) to the set B can be obtained by
substituting the nonfree variables by the corresponding polynomial in the l free
variables. Consider the monomials of degree at most 2 in the resulting polynomial.
Call the GF(2) sum of these monomials pŒ. Note that pŒ is a polynomial of degree at
most 2 in l variables. Observe that the map from G2(n)Q G2(l) that maps p to pŒ is
a surjective group homomorphism. For the restriction of p to B to be constant, it is
necessary that pŒ be a constant polynomial. By the unique representation of GF(2)
polynomials, there are precisely two constant polynomials, 0 and 1. Hence, at most
21+(n−l)(n+l+1)/2 polynomials of degree at most 2 are constant when restricted to B.

L

Now, since B ı A=F−1(1), the polynomial f must be identically 1 on B since C

computes f. Every circuit of size at most s which computes a non-zero degree 2
polynomial f has an associated k-CNF F accepting many inputs, but by the lemma
above, each such F is consistent (that is, F−1(1) ı f−1(1)) with only a few polyno-
mials f. Furthermore, F has at most c(k, e) n clauses, and there are at most ((2n)

k

c(k, e) n)
such formulae. Thus, the number of polynomials which have some sparse k-CNF F
consistent with them is at most

21+(n−l)(n+l+1)/22 (1+log n) kc(k, e) n

Recall that l \ d(e) n and d(e) is a constant and thus w(`log n/n). Thus, only an
exponentially small (in n) fraction of all degree 2 GF(2) polynomials can have Sk3
circuits of size 2 (1−2e) n.

ACKNOWLEDGMENTS

The authors thank Sanjeev Arora, Will Evans, Satya Lokam, Pavel Pudlák, Toni Pitassi, Mike Saks,
Janos Simon, and Avi Wigderson for useful discussions. We also thank the referees for the useful
comments.

REFERENCES

1. K. A. Abrahamson, R. G. Downe, and M. R. Fellows, Fixed parameter tractability and complete-
ness IV: On completeness for W[P] and PSPACE analogues, in ‘‘Annals of Pure Applied Logic,’’
Vol. 73, pp. 235–276, 1995.

2. M. Ajtái, S11-formulae on finite structures, Ann. Pure Appl. Logic 24 (1983), 1–48.

3. N. Alon, J. Spencer, and P. Erdős, ‘‘The Probabilistic Method,’’ Wiley, New York, 1992.

4. S. Arora, Polynomial time approximation schemes for Euclidean TSP and other geometric problems,
in ‘‘Proc. 37th IEEE Symposium on Foundations of Computer Science (FOCS),’’ pp. 2–11, 1996.

5. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szeged, Proof verification and hardness of
approximation problems, in ‘‘Proc. 33rd Symposium on Foundations of Computer Science
(FOCS),’’ pp. 14–23, 1992.

528 IMPAGLIAZZO, PATURI, AND ZANE

6. M. Bellare, Proof checking and approximation: Towards tight results, Complexity theory column,
Sigact News 27 (1996).

7. R. Beigel and R. Eppstein, 3-Coloring in O(1.3446n) time: A no-MIS algorithm, in ‘‘Proceedings of
the 36th Annual IEEE Symposium on Foundations of Computer Science,’’ pp. 444–453, 1995.

8. R. Boppana and M. Sipser, The complexity of finite functions, in ‘‘The Handbook of Theoretical
Computer Science,’’ Vol. A, Elsevier, Amsterdam, 1990.

9. T. Cormen, C. Leiserson, and R. Rivest, ‘‘Introduction to Algorithms,’’ MIT Press, Cambridge,
MA, 1990.

10. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy, Approximating Clique is almost
NP-complete, in ‘‘Proc. 32nd IEEE Symposium on Foundations of Computer Science,’’ pp. 2–12,
1991.

11. T. Feder and R. Motwani, Worst-case time bounds for coloring and satisfiability problems,
manuscript, September 1998.

12. M. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hierarchy, Math.
Systems Theory 17 (1984), 13–28.

13. M. R. Garey and D. S. Johnson, ‘‘Computers and Intractability,’’ Freeman, San Francisco, CA,
1979.

14. J. Håstad, Almost optimal lower bounds for small depth circuits, in ‘‘Proceedings of the 18th ACM
Symposium on Theory of Computing,’’ pp. 6–20, 1986.

15. J. Håstad, Clique is hard to approximate within n1− e, in ‘‘37th Annual Symposium on Foundations
of Computer Science,’’ pp. 627–636, 1996.

16. J. Håstad, Some optimal inapproxibility results, in ‘‘Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing,’’ pp. 1–10, El Paso, TX, 4–6 May 1997.

17. J. Håstad, S. Jukna, and P. Pudlák, Top-down lower bounds for depth 3 circuits, in ‘‘Proceedings of
the 34th Annual IEEE Symposium on Foundations of Computer Science,’’ pp. 124–129, 1993.

18. E. A. Hirsch, Two new upper bounds for SAT, in ‘‘ACM-SIAM Symposium on Discrete
Algorithms,’’ pp. 521–530, 1998.

19. O. Kullmann and H. Luckhard, Deciding propositional tautologies: Algorithms and their complex-
ity, submitted.

20. B. Monien and E. Speckenmeyer, Solving satisfiability in less than 2n steps, Discrete Appl. Math. 10
(1985), 287–295.

21. R. Paturi, P. Pudlák, and F. Zane, Satisfiability coding lemma, in ‘‘Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science, October 1997,’’ pp. 567–574.

22. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane, An improved exponential-time algorithm for k-SAT,
in ‘‘1998 Annual IEEE Symposium on Foundations of Computer Science,’’ pp. 628–637.

23. R. Paturi, M. E. Saks, and F. Zane, Exponential lower bounds on depth 3 Boolean circuits, in
‘‘Proceedings of the 29th Annual ACM Symposium on Theory of Computing,’’ pp. 86–91, May
1997.

24. C. Papadimitriou and M. Yannakakis, Opimization, approximation and complexity classes,
J. Comput. System Sci. 43 (1991), 425–440.

25. A. A. Razborov, Lower bounds on the size of bounded depth networks over a complete basis with
logical addition, Mat. Zameti 41 (1986), 598–607. [In Russian; English translation in Math. Notes
Acad. Sci. USSR 41, 333–338.]

26. N. Sauer, On the density of families of sets, J. Combin. Theory Ser. A 13 (1972), 145–147.

27. I. Schiermeyer, Solving 3-satisfiability in less than 1.579n steps, in ‘‘Selected papers from CSL ’92,’’
Lecture Notes in Computer Science, Vol. 702, pp. 379–394, Springer-Verlag, Berlin, 1993.

28. I. Schiermeyer, Pure literal look ahead: An O(1.497n) 3-satisfiability algorithm. Workshop on the
satisfiability problem, technical report, Siena, April 29–May 3, 1996, University of Köln, Report
96-230.

WHICH PROBLEMS HAVE STRONGLY EXPONENTIAL COMPLEXITY? 529

29. U. Schöning, A probabilistic algorithm for k-SAT and constraint satisfaction problems, in ‘‘1999
Annual IEEE Symposium on Foundation of Computer Science,’’ pp. 410–414, 1999.

30. R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in
‘‘Proceedings of the 19th ACM symposium on Theory of Computing,’’ pp. 77–82, 1987.

31. R. E. Stearns and H. B. Hunt, III, Power indices and easier hand problems, Math. Systems Theory
23 (1990), 209–225.

32. D. S. Johnson and M. Szegedy, What are the least tractable instances of Max Clique? in ‘‘ACM–
SIAM Symposium on Discrete Algorithms,’’ pp. 927–928, 1999.

33. L. G. Valiant, Graph-theoretic arguments in low-level complexity, in ‘‘Proceedings of the 6th
Symposium on Mathematical Foundations of Computer Science,’’ Lecture Notes in Computer
Science, Vol. 53, pp. 162–176, Springer-Verlag, Berlin, 1977.

34. J. H. Van Lint, ‘‘Introduction to Coding Theory,’’ 2nd ed., Springer-Verlag, Berlin, 1992.

35. V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of
events to their probabilities, Theory Probab. Appl. 16 (1971), 264–280.

36. A. C-C. Yao, Separating the polynomial hierarchy by oracles, in ‘‘Proceedings of the 31st Annual
IEEE Symposium on Foundations of Computer Science,’’ pp. 1–10, 1985.

37. R. Tarjan and A. Trojanowski, Finding a maximum independent set, SIAM J. Comput. 7 (1977),
537–546.

38. J. M. Robson, Algorithms for maximum independent set, J. Algorithms 7 (1986), 425–440.

530 IMPAGLIAZZO, PATURI, AND ZANE

	1. INTRODUCTION
	2. SPARSIFICATION LEMMA
	3. COMPLETE PROBLEMS FOR SNP
	4. LOWER BOUNDS FOR DEPTH-3 CIRCUITS
	ACKNOWLEDGMENTS
	REFERENCES

