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Abstract

Monte Carlo analysis has so far been the corner stone
for analog statistical simulations. Fast and accurate sim-
ulations are necessary for stringent time-to-market, design
for manufacturability and yield concerns in the analog do-
main. Although Monte Carlo attains accuracy, it does so
with a sacrifice in run-time for analog simulations. In this
paper, we propose a fast and accurate probabilistic simula-
tion method alternative to Monte Carlo using deterministic
sampling and weight propagation. We furthermore propose
accuracy improvement algorithms and a fast yield calcu-
lation method. The proposed method shows accuracy im-
provement combined with a 100-fold reduction in run-time
with respect to a 1000-sample Monte Carlo analysis.

1 Introduction

Increased process variations and mismatch in new tech-
nologies make statistical simulation for analog systems a
necessity. Today’s requirements necessitate faster and more
accurate statistical simulations. One major target is yield
estimation under process variations. If yield estimation can
be done accurately and fast in the early stages of an analog
system design, costly design iterations can be avoided.

Output parameters are assumed to have Gaussian densi-
ties most of the time [25]. Although Gaussian assumption
might be sufficient for most input parameters, it is far from
being accurate as an assumption for most analog output pa-
rameters. Traditional techniques usually provide the mean
and the variance for an output parameter. Yet, capturing
the exact shape of a continuous density at the output is im-
portant when yield estimation is needed, as yield estimation
requires an accurate integral under the density with limits
determined by circuit parameter specification window.

Speed and accuracy of today’s yield estimation tech-
niques are lagging behind technology. Statistical simulation
of large blocks brings significant time burdens on system
designers. This has triggered us to come up with a tech-
nique to bring a solution to single input parameter statistical
simulations. Since individual blocks are highly important in
analog systems, single parameter simulations will give quite

a deal of information. The whole system can then either be
evaluated using single parameter as input and multiple pa-
rameters as output by selecting the dominant input parame-
ter, or using the proposed system for more input parameters
separately. The proposed estimation methods can be used
for optimization as well.!

We first introduce the basis of the proposed tech-
nique, where probability discretization and sample prop-
agation are implemented using a forward operation. We
have gained significant run-time improvement over Monte
Carlo through weight propagation and systematic sampling.
Then, we provide algorithms to convert the propagated sam-
ples to a continuous density. These algorithms are re-
binning, sample skipping and zero padding, followed by a
traditional spline interpolation. Then yield-estimation al-
gorithm is provided. We have used extensive behavioral
simulations on the jitter analysis of a phase-locked loop to
validate the proposed computational techniques.

2 Previous Work

A number of approaches for probabilistic simulation of
analog blocks has been proposed. [13] and [10] have used
principal component analysis on the correlation matrix of
process variations to reduce the number of variables that
are responsible for mismatch. In [23], sensitivity analysis
followed by response surface polynomial fitting and Monte
Carlo sampling is implemented. [28] has used regression
analysis including second order terms. [9] has used variance
propagation.

Particular interest in probabilistic simulation has been in
the area of mismatch and process variation simulation. [21]
has used Tailor series expansion. [6] has used sensitivity
analysis and assumed that there are at least the same num-
ber of output parameters as there are input parameters, all of
which are Gaussian. [18] has applied principal component
analysis to account for correlations between input parame-
ters. [30] has used hierarchical sensitivities for probabilistic
simulation. These methods are good for calculating mean
and variance. They will work accurate only if outputs are

Most multi-parameter optimization techniques also work on single pa-
rameters at a time for improved convergence [7].
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Gaussian, although it is known that this assumption fails for
analog circuits. Almost all designers count on Monte Carlo
methods for probabilistic simulations.

Analog fault simulation is another field where proba-
bilistic simulations have been important, since analog faults
are related to parameter probability densities. [20] has ap-
proximated mean and variances at the output analytically.
[15] has used a hierarchical variance analysis. [24] and [32]
have used a sensitivity-based Monte Carlo technique.

There are a number of Monte Carlo methods such as
Latin Hypercube sampling [16] or rejection sampling [17]
[3] [8]. Importance sampling and rejection sampling require
a sampling density. As long as the sampling density is sim-
ilar to the density to be estimated, these methods work fine.
If such a sampling density is not available, a set of densities
can be provided as in the Metropolis method. Yet, this re-
quires more samples eventually. Gibbs sampling works for
dimensions higher than 2, hence it is not applicable to the
problem in this paper [17] [2].

Propagation of the densities among parameters is also a
related topic. This can be handled through Monte Carlo by
propagating individual data points. Traditionally, variance
propagation has been used. Parametric approaches, such as
belief propagation [27], propagate certain moments of the
density.

For behavioral simulations, particular attention has been
on phase-locked loop simulations. [12] has introduced RF
front-end models both for time and frequency domains. [19]
has proposed a model calibration method for PLLs. [4]
has compared numerical methods for phase/delay-locked
systems. Behavioral simulations for phase-locked loops
(PLLs) are important as most analyses require transient sim-
ulations over many cycles, indicating high run-times. The
probabilistic nature makes the problem harder.

Although probabilistic simulation has been traditionally
used for analog circuits, digital circuits within the last cou-
ple of years took its portion [33] [14] [26] [34]. Recently,
major contributions have come in the digital domain due to
the necessity to have probabilistic static timing and leakage
analysis. These methods are usually specific to the particu-
lar problem but not suitable for black-box-type simulations.
For example, only a limited set of all possible non-linear
operators, e.g. addition and maximum operations, are tar-
geted in the probabilistic timing simulations in the literature
and the formulae that tie inputs to outputs are assumed to be
analytically provided. RF domain yield estimation [1] and
communication systems, on the other hand, are very simi-
lar to the analog system studied herein and hence can take
advantage of the proposed techniques in this paper.

An accurate yet computationally expensive hierarchical
version of the proposed method has been introduced for
probabilistic device simulation [31] and preliminary algo-
rithms for analog systems were presented as a poster at
[29]. In this paper, we introduce new algorithms for black-
box type of system simulations suitable for very fast analog

behavioral simulations specialized in accurate density and
yield estimation. In particular, we introduce algorithms for
accuracy improvement and yield estimation over [29].

3 Preliminaries

In order to introduce forward discrete probability propa-
gation (FDPP), a number of definitions will be useful. Let
X be a random variable. We will denote the probability
density of X as pdf (X). pdf(X) is assumed to be contin-
uous. We propose to attain an approximation of this pdf by
sampling the pdf at equidistant points of the random vari-
able X.

3.1 Deterministic Sampling

The sampling can be done by dividing the pdf(X) to
bins and approximating the values that fall in any bin by the
value at the mid-point of the bin. The bins are generated
such that the highest and lowest samples are accounted for.
Let b; be an enumeration over the bins where 1 < ¢ < N
and N is the total number of bins. b; will be defined to be
bounded by [m + (¢ — 1)A, m + iA), where A is the step-
size defined by "]’Vm. The N’th bin, however, is bounded by
[m+ (N — 1)A;m + NA], which is equal to [n — A, n].
We denote the sampled pdf (X) as ¢(X) or spdf (X).

The procedure of converting a pdf to an spdf will be
represented with the Qs operator:

P(X) = Qn(pdf (X)) ()

The domain of this operator is a pdf, and the range of
this operator is an ¢(X). The result of this operator on the
pdf of random variable X, ¢(X), is essentially a Riemann
sum of samples and is given by:

G(X)= > pidlw—w) 2
1€l..N
where
m4iA
pi = / pdf (X)dz A3)
m~+(i—1)A
wi:er(ifl)% (€]

In these equations, p; is the sample height, which corre-
sponds to the integral in the corresponding bin b;. wj is the
mid-point in the particular bin b;.

3.2 Forward Propagation

Assume that we have a random variable given as X
whose spdf is given by ¢(X). Let Y be another random
variable that is given by a deterministic function f of the
given random variable: Y = f(X). Then ¢(Y") is given by
the F operator as:
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o(Y) = F(o(X)) Q)
which is defined as being equivalent to:
(V)= > pibly— f(ws)) ©)
ie(X)

Algorithm Implementing the 7 Operator:
[1] While all samples of the target pdf computed
[2] For each sample in X
[3] Place an sample with height p; at x=f{w;)
Here, Y is the output parameter to be observed and X
is the input parameter. The domain and the range of the F
operator is an ¢. This operator presents a one-to-one rela-
tionship. The F operator essentially produces a new spdf,
where the multiplication term p; denotes the probability at
the point f(w;). ieX indicates all samples which belong to
the spdf of X.

4 Yield Estimation

Yield estimation requires an accurate shape for the den-
sity function so that the density can be integrated. But since
f is a non-linear function, the samples may no longer be sit-
uated at fixed distances. Hence the sample and weight prop-
agation step should be followed by another binning process.

4.1 Sample Grouping

Yield estimation requires an integral under the probabil-
ity density. Hence, the shape of the density needs to be
known. To convert the FDPP samples into a density, spline
interpolation is used on the samples. Interpolation requires
equidistant samples. Hence, a re-bin operator needs to be
implemented to separate out the samples evenly. Samples
that fall in any particular bin will be approximated by a sin-
gle sample at the center of the corresponding bin, with the
height of this sample being the sum of the samples that fall
into this bin. Binning of samples makes interpolation of the
samples possible; without the binning process, neighboring
samples with largely differing sample probabilities would
cause a great amount of distortion over the density. The
re-bin operator is defined as:

¢'(X) = Ru(o(X)) (7

where the prime indicates a new spdf. The re-bin operator

can be implemented using the following algorithm:
Algorithm Implementing the R Operator:

[1] Find maximum and minimum values w; within propa-

gated samples

[2] Divide this range into M bins

[3] For each bin

[4] Place a quantizing sample at the center of the bin

with a height p; equal to the sum of all samples within the

bin

The complexity of this algorithm is O(N.M) where N
is the number of initial samples and M is the number of
final samples. Since these numbers are rather small, the
run-time is highly efficient. The domain and range of the
re-bin function is an spdf. The result of R s can be written
as:

¢(X) = Zpié(x — w;) (8)

where p; = 3 jiw,eb, Pi @nd w;’s can be written according
to the new bin locations. M corresponds to the new number
of bins, as the re-bin operator can bin the samples into a dif-
ferent number of bins than the one used in the spdf that this
operation is applied to. The re-bin operation is illustrated in
Figures 1 to 3.

4.2 Sample Skipping and Zero Padding

After re-binning, some of the new bins might be empty
as samples initially falling into this bin might have been
pulled in with the samples on the neighboring bins. If spline
interpolation was applied to get the final density, the density
would end up having dips that are not supposed to be there
in reality. We provide an algorithm for sample skipping be-
low. On line 3, the much greater sign >> is introduced for
the case when one of the neighboring samples is also close
to 0 and the other neighbor is large. Spline interpolation
would end up acquiring a dip with a value lower than 0 if
such a sample is removed. This would reveal a contradic-
tion to the definition of a density function, each point of
which must be greater than or equal to zero.

As the density needs to die out to 0 on both ends, zero-
padding is employed to the samples whenever the last sam-
ples is not 0. This is because we know that the density
should die out to O so that the underlying area is restricted
by 1.

Sample Skipping Algorithm:

[1] For i=2 to number of FDPP samples-1,
[2] If (Probability of i’th sample is 0

[3] & Probability of at least one of neighboring
samples >>0)
[4] Remove sample

The complexity of this algorithm is O(N), where N is
the number of input samples.

4.3 Yield Estimation Algorithm

Yield is given by:
b
yield =1 — / pdf (X)dz 9)

where a and b are lower and upper limits respectively for the
pass/fail criteria. After a P-point interpolation, the estimate
density is given by the set of point pairs :

{(ws,pi) st. iel..P} (10)

and hence the percentage yield can be calculated by:
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spdf(X) ®
spdfi(X) N
spdf(X)
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Figure 1. An illustrative example Figure 2. Samples added to bin ) )
of samples generated through . - Figure 3. Interpolation over
o centers during the re-binning
FDPP before the re-binning oper- samples
- process
ation
Figure 4. Samples before sample ::?u;:\rﬁ. Isep"snkei mit:rp(:zgogearz Figure 6. Reference 10k
skipping and zero padding amp ppIng Monte Carlo run
padding
yield(X) = (1 — > pi)* 100 (11) -
iel..P&w; <a&w;>b 70% ——
The complexity of this algorithm is O(N), where N is o
the number of input samples.? T
5 Experimental Results 0% — E
Estimation of parameter densities at the behavioral block :j
level can be useful when process variations need to be con- ' meto wetoo wot FoPPIO Motk

sidered. Most high-level analog blocks exhibit probability
densities for their output parameters instead of a constant
nominal value. For example, the loop filter in Figure 8 ac-
quires a probability density for its output frequency as a re-

Figure 7. Yield estimate comparisons

sult of process variations, as does the charge pump for the Phase-locked loops, being analog components, are an
charged current. The deviation from a Gaussian density for important part of almost all large-scale digital and mixed-
both of these examples has been confirmed in the experi- signal systems. Their gate-accurate simulation takes very
ments we have conducted. long time as transient analysis has to be done for many cy-

cles. That’s why, in this paper, we have chosen this block as
our benchmark. The behavioral simulator described in [22]

2Note that re-binning consumes the bulk of the runtime, whereas the
implemented post processing algorithms consume only a fraction of this

time for all the samples. is used for the analysis.
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Figure 8. PLL architecture used in experiments

In support of our proposal, we have conducted a set of
experiments centered largely on a PLL architecture as pre-
sented in [22]. This architecture is shown in Figure 8. Mat-
lab R12 was employed for mathematical evaluations, by in-
corporating a Perl script to calculate the rms jitter at the
voltage controlled oscillator output [11]. For each sample,
3E+5 simulations steps are run with a sample period of 1E-
11s. Each sample took about 10 seconds to simulate on a
1.44GHz desktop. The output current of the charge pump is
assumed to vary with a probability density function with a
o of 10%. These densities stem from mismatch or process
variations in the charge pump and are to be extracted using
transistor level accurate simulations.

We have started FDPP with a forward operator on the
density samples of the charge pump output current. 10 sam-
ples have been used according to the error bounds given in
[51°. The application of the forward operation is followed
by a re-bin operation which re-bins the 10 samples. Sample
skipping resulted in eliminating one of the samples and zero
padding added two zeros on both ends.

Monte Carlo runs for the same example consume long
run-times for the same accuracy. Since we do not know the
true density for the output jitter, a Monte Carlo run with 10k
samples is assumed to give the reference true density. In re-
ality, a Monte Carlo run with a sample number approaching
infinity in the limit would give the true density. But since
this is practically unattainable, 10k runs are assumed to give
the true density.

Sample skipping and zero padding steps are shown on
the experimental data in Figures 4-5. Since the z axis values
are many decimals accurate, they are simplified such that
1.221293E-11 seconds is represented as 93, 1.221294E-11
seconds is represented as 94 and so on. The fourth sam-
ple is skipped and two 0’s are padded to each end of the
density. The >> operation is used to avoid deletion of sam-
ples such as the seventh. Figure 5 also shows the spline
interpolation after this step. y axis shows the values before

3The sample number selection in the re-bin operator is not automated
but is given to the user as a choice and a theoretic limit because of similar
issues in most mesh generation algorithms. Accordingly, one way to vali-
date the correct selection is to repeat the calculations with finer bin widths
and compare that the results are same.

ref(t) Phase e Charge Loop v(t) out(t)
Frequency Pump Filter = —
Detector

normalization, which will satisfy the condition that the sum
of all points add up to 1. A comparison with Monte Carlo
with 10k samples is shown in Figure 6. The deviation from
Gaussian due to nonlinear nature of the system is captured
as a bulgy tail in both methods.

A fair comparison is particularly paid attention whereby
Monte Carlo samples are first binned into 10 bins, the same
number of samples used as in FDPP. Then, a 500 point
spline interpolation is used for all methods. To calculate
yield, the rms jitter is assumed to be limited by lower and
upper bounds as the passing criteria.* The absolute values
of yield are plot in Figure 7. M C and FF'DPP in the fig-
ure correspond to Monte Carlo and the proposed method re-
spectively, and the appended number is the number of sam-
ples used in the corresponding method. The reference simu-
lation is indicated with a diagonal pattern and the proposed
one with a pattern different than others. Here, FDPP gives
the closest match to the reference 10k-sample Monte Carlo
run with an error rate of 1.44%. Not only the error rate of
10-sample FDPP is better than a 1k-sample Monte Carlo,
which has an error rate of 2.87%, but also the run-time for
10-sample FDPP is 100 times less than a 1k-sample Monte
Carlo and FDPP has better accuracy for yield.> Monte Carlo
runs with 10 and 100 samples do not even come close to the
reference yield estimate, leaving the 1k sample Monte Carlo
as the only rival. Furthermore, FDPP gives a lower yield
than the 10k-sample Monte Carlo as shown in Figure 7.
This and the decreasing nature of yield as Monte Carlo sam-
ples are increased suggests that 10k-sample Monte Carlo
may not be giving the true yield and that FDPP may pos-
sibly be more accurate than the 10k-sample Monte Carlo
(perhaps as accurate as a 100k run).

6 Summary

Forward discrete probability propagation (FDPP) has
been suggested as an alternative to the Monte Carlo method.
FDPP requires a far smaller number of samples than Monte
Carlo using weight propagation and deterministic sampling.
We introduce herein FDPP for behavioral level fast and ac-
curate yield estimation. Behavioral simulations are increas-
ingly popular as large circuits with possible feedback loops
take a long time to simulate. Re-binning, sample skipping
and zero padding have been used to implement the accurate
yield estimation system that uses deterministic sampling
and probability weight propagation as the basis. FDPP, us-
ing a recent PLL structure as an example, is shown to be
highly efficient for behavioral level yield estimation and
simulation by showing improved accuracy and 100 times
run-time speed-up as compared to a standard 1000 sample
Monte Carlo.

4 Although the lower the jitter the better, the lower limit is assumed to be
provided as a sanity check as it could be the case that jitter values smaller
than the lower limit could indicate faults at other blocks of the circuit.

5The run-time is approximately proportional to the number of samples.
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