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ABSTRACT
GPUs are excellent accelerators for data parallel applica-
tions with regular data access patterns. It is challenging,
however, to optimize computations with irregular data ac-
cess patterns on GPUs. One such computation is the Sym-
metric Matrix Vector product (SYMV) for dense linear al-
gebra. Optimizing the SYMV kernel is important because
it forms the basis of fundamental algorithms such as linear
solvers and eigenvalue solvers on symmetric matrices. In
this work, we present a new algorithm for optimizing the
SYMV kernel on GPUs. Our optimized SYMV in single
precision brings up to a 7× speed up compared to the (lat-
est) CUBLAS 4.0 NVIDIA library on the GTX 280 GPU.
Our SYMV kernel tuned for Fermi C2050 is 4.5× faster than
CUBLAS 4.0 in single precision and 2× faster than CUBLAS
4.0 in double precision. Moreover, the techniques used and
described in the paper are general enough to be of interest
for developing high-performance GPU kernels beyond the
particular case of SYMV.
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Implementations of the Basic Linear Algebra Subprograms
(BLAS) interface are a major building block of dense linear
algebra (DLA) libraries and therefore have to be highly op-
timized. This is true for GPU computing as well, especially
after the introduction of shared memory in modern GPUs.
This is important because it enables fast Level 3 BLAS im-
plementations for GPUs [1, 2, 4, 5, 6]. Earlier attempts
(before the introductions of shared memory) could not rely
on memory reuse but on the GPU’s high bandwidth; as a
result Level 3 BLAS implementation on GPUs were slower
than the corresponding CPU implementations.

Despite the current success in developing highly optimized
BLAS for GPUs, the area is still new and presents numer-
ous cases and opportunities for improvement. Many of the
important BLAS kernels for DLA can be further optimized
even for the old GPUs, e.g., GTX 280. Moreover, the in-
troduction of the Fermi GPU architecture creates further
opportunities to design algorithms that will exploit the new
hardware features more efficiently [7].

This paper addresses one of the most important kernels –
the symmetric matrix-vector multiplication (SYMV) – which
is crucial for the performance of linear as well as eigen-
problem solvers on symmetric matrices. Implementing a
generic matrix-vector multiplication kernel is very straight-
forward on GPUs because of the data parallel nature of
the computation. Irregular data access patterns in SYMV
bring challenges in optimization however. In the GTX 280,
SYMV provided by NVIDIA’s CUBLAS 2.3 achieves up to
3 GFlops/s and 5 GFlops/s in single and double precision
respectively. Even though NVIDIA optimized SYMV in
their recent release of CUBLAS, the performance of the new
SYMV is not that attractive. CUBLAS 4.0’s SYMV achieves
up to 15 GFlops/s in single precision and 6 GFlops/s in dou-
ble precision on a GTX 280.

In this paper, we have provided two algorithms for SYMV.
The first one ( algorithm 1 ) achieves up to 50 GFlops/s in
single precision and 18 GFlops/s in double precision on a
GTX280. This version of SYMV was included in the Matrix
Algebra for GPU and Multicore Architectures (MAGMA)
version 0.2 Library [5], which was released at SC, 2009. This
particular SYMV in double precision was used to speed up
one of the mixed-precision iterative refinement linear solvers



in MAGMA 0.2.
Although algorithm 1 brought an excellent improvement

over the contemporary CUBLAS at the time (16 × faster
than CUBLAS-2.3), an optimality analysis showed that the-
oretically the SYMV kernel could be further accelerated.
This motivated us to look for an alternative solution and
we developed our second SYMV (algorithm 2). The SYMV
kernel in algorithm 2 achieves up to 105 GFlops/s in sin-
gle precision on a GTX 280, but incurs memory overhead
of about 0.78% of the matrix size. We implemented this
kernel in March 2010 [3], which at the time demonstrated
a 35 × speedup comparing to the contemporary CUBLAS-
2.3 in single precision arithmetic. Moreover, based on al-
gorithm 2, we developed a SYMV for the Fermi architec-
ture. The SYMV kernel for Fermi C2050 GPU achieves up
to 84 GFlops/s in single precision and 32 GFlops/s in dou-
ble precision, whereas CUBLAS 4.0’s SYMV gets up to 20
GFlops/s in single precision and 14 GFlops/s in double pre-
cision. The results of this work are included in the recently
released and freely available MAGMA 1.0 Library [8].

The rest of the paper is organized as follows. Section 2
describes some of the basic principles of writing high perfor-
mance GPU kernels. Section 3 describes the state-of-the-art
in optimizing a Level 2 BLAS kernel for GPUs, in particu-
lar this is the matrix-vector multiplication (GEMV) kernel.
Section 4 contains the main contribution of this paper - al-
gorithm 1 and algorithm 2 for the SYMV kernel. Section 5
analyzes various overheads in algorithm 2. Section 6 explains
the different optimization techniques that we have used to
optimize algorithm 2. We introduce recursive blocking for
GPU kernels in this section, which is an important contribu-
tion in this paper. Two other optimization technique that
we used are autotuning and pointer redirecting. Section 7
shows the performance of our highly optimized SYMV ker-
nel on GTX 280 and Fermi C2050 GPUs. This kernel was
included in MAGMA 0.3 released in 2010. We also show
the impact of this kernel on higher level DLA algorithms.
Finally, we conclude in Section 8.

2. GPU KERNEL DEVELOPMENT
To achieve high performance, GPU kernels must be writ-

ten according to some basic principles/techniques, stemming
from the specifics of the GPU architecture. Some of these
principles are well recognized and established by now. In
particular, we stress on the following two:

Blocking Blocking is a DLA optimization technique where
a computation is organized to operate on blocks or
submatrices of the original matrix. The idea is that
blocks are of small enough size to fit into a particu-
lar level of the CPU’s memory hierarchy, so that once
loaded, one can reuse the blocks’ data to perform the
arithmetic operations that they are involved in. This
idea can be applied for GPUs using the GPUs’ shared
memory. The application of blocking is crucial for the
performance of numerous GPU kernels, including the
SYMV, as demonstrated in this paper.

Coalesced Memory Access GPU global memory accesses
are costly, making it crucial to have the right access
pattern in order to get maximum memory bandwidth.
There are two access requirements [9]. The first is to
organize global memory accesses in terms of parallel
consecutive memory accesses – 16 consecutive elements

at a time by the threads of a half-warp (16 threads)
– so that memory accesses (to 16 elements at a time)
are coalesced into a single memory access. This is
demonstrated in the kernels’ design throughout the pa-
per. Second, the data should be properly aligned. In
particular, the data to be accessed by half-warp should
be aligned at 16 ∗ sizeof(element), e.g., 64 for single
precision elements.

Clearly, fulfilling the above requirements will involve par-
titioning the computation into blocks of fixed sizes (e.g.,
multiple of 16) and designing memory accesses that are co-
alescent (properly aligned and multiple of 16 consecutive
elements). The problem of selecting best performing parti-
tioning sizes/parameters for the various algorithms, as well
as the cases where (1) the input data is not aligned to fulfill
coalescent memory accesses and (2) the problem sizes are
not divisible by the partitioning sizes required for achieving
high performance, need special treatment [10].

Further down a thread block will be denoted by TB, the
size of a computation block in a kernel will be denoted by
NTB (or NTBX ×NTBY in 2D), the number of threads in a
TB by NT (or NTX ×NTY in 2D), and the size associated
with second level blocking inside a TB by nb. In addition,
the matrices considered in this paper are stored in column
major data format.

3. LEVEL 2 BLAS ON GPUS
Level 2 BLAS routines are of low computational intensity

and therefore DLA algorithms must be designed (ideally) to
avoid them. This can be achieved for example using the de-
layed update approach where the application of a sequence
of Level 2 BLAS is delayed, and accumulated in order to
be applied at once as a more efficient single matrix-matrix
multiplication [11]. In many cases, like MAGMA’s mixed-
precision iterative refinement solvers [12] or two-sided ma-
trix factorizations [13], this approach only reduces the num-
ber of Level 2 BLAS, and therefore the availability of effi-
cient implementations are still crucial for the performance.
This section considers the GPU implementation of one fun-
damental Level 2 BLAS operation, namely the matrix-vector
multiplication routine for general dense matrices (GEMV).

The GEMV multiplication routine performs one of:

y := αAx+ βy or y := αATx+ βy,

where A is an M by N matrix, x and y are vectors, and α
and β are scalars. The two cases are considered separately
in the following two subsections.

3.1 Non-Transposed Matrix
The computation in this case can be organized in one di-

mensional grid of TBs of size NTB where each block has
NT = NTB threads, as shown in Figure 1. Thus, each thread
computes one element of the resulting vector y.

GEMV is the first of the kernels considered to which block-
ing can be applied. Although matrix A cannot be reused in
any blocking, vector x can be reused by the threads in a
TB. Specifically, the computation is blocked by loading nb
consecutive elements of x at a time into the shared mem-
ory (using all NT threads). This part of x is then used by
all NT threads in a TB to multiply it by the corresponding
NTB×nb submatrix of A. The process is repeated N

nb
times.



Figure 1: Algorithmic view of matrix-vector multiplication
on GPUs where matrix A is non-transposed. A TB accesses
a submatrix (NTB × nb) of matrix A. Each arrow in that
submatrix denotes the activity of a single thread in a TB.

Note that the algorithm as described depends on two pa-
rameters – NTB and nb. The starting addresses of A, x, and
y are taken to be divisible by 16 ∗ sizeof(element) and the
leading dimension of A is divisible by 16. This guarantees
that all memory accesses in the algorithm are coalescent.

3.2 Transposed Matrix
Following the non-transposed approach will lead to poor

performance because the memory accesses are not going to
be coalesced (see Figure 2). To improve the speed on ac-
cessing the data, blocks of the matrix A are loaded into the
shared memory using coalesced memory accesses and then
the data from the shared memory is used to do all the nec-
essary computations (see Figure 3).

Although the new version significantly improves the per-
formance, experiments that increase the design space of the
algorithm show that further improvements are possible. In
particular, one exploration direction is the use of higher
number of threads in a TB (e.g., 64) as high performance
DLA kernels are associated with the use of 64 threads (and
occasionally more) for Tesla GPUs preceding the Fermi and
256 threads for Fermi [2, 7]. The use of 64 threads (for GPUs
prior to Fermi) does not improve performance directly be-
cause the amount of shared memory used (a 64×64 matrix)
gets to be excessive, prohibiting the effective scheduling of
that amount of threads [9]. It is possible to decrease the use
of shared memory while having higher thread level paral-
lelism (e.g., 32× 32 matrix in shared memory with a thread

Figure 2: Basic implementation of matrix-vector multiplica-
tion on GPUs where matrix A is transposed.

Figure 3: Optimized implementation of matrix-vector mul-
tiplication on GPUs where matrix A is transposed.

block size of 32× 2) in the following way: (1) two groups of
32×1 threads each, e.g., denoted by 32j where j = 0/1, load
correspondingly the two 32 × 16 submatrices of the shared
memory matrix using coalesced memory accesses, (2) each
group performs the computation from the second GEMV
version, but is constrained to the 16 × 32 submatrix of the
shared memory matrix, accumulating their independent yj
results. The final result y := y0 + y1 can be accumulated by
one of the j = 0/1 threads. The same idea can be used with
more threads, e.g., 32 × 4, while using the same amount of
shared memory.

4. SYMMETRIC DENSE MATRIX VECTOR
MULTIPLICATION ON GPUS

The SYMV multiplication routine performs:

y := αAx+ βy,

where α and β are scalars, x and y are vectors of size N ,
and A is an N by N symmetric matrix.

4.1 Symmetric Storage
As the matrix is symmetric, it is sufficient to store half

of the matrix. The matrix is stored in the upper or lower
triangular part of a two-dimensional array of size N ×N , as
shown in Figure 4. The difficulty of designing a high perfor-
mance SYMV kernel stems from the triangular data storage,
for which it is challenging to organize a data parallel com-
putation with coalescent memory accesses (both load and
store). Indeed, if A is given as an N ×N array storing both
the upper and lower triangular parts of the symmetric ma-

Figure 4: Symmetric matrix storage format (left figure shows
the matrix stored in the lower triangle, right figure shows the
matrix is stored in the upper triangle).



Figure 5: Three cases of TB computations in SYMV with
algorithm 1: left is type A, middle is type B, and right is
type C.

trix A, the SYMV kernel can be implemented using GEMV.
We describe our two SYMV algorithms in the following two
subsections.

4.2 Algorithm 1: Storage Oblivious
Similar to GEMV, the computation is organized in one

dimensional grid of computational blocks of size NTB . One
computational grid is assigned to a single TB where each
TB has NT = NTX × NTY threads. For this algorithm
NTB = nb. This choice will divide the matrix into a 2D grid
of |TB| × |TB| blocks where |TB| = N

nb
. Thread block TBi

will access blocks {Ai,j : 1 ≤ j ≤ i} ∪ {Aj,i : i ≤ j ≤ |TB|}
from matrix A. A TB computation can be classified as one
of three cases (see the illustration in Figure 5):

• Type A – TB threads do a SYMV followed by a GEMV
(transpose);

• Type B – TB threads do a GEMV (non-transpose)
followed by a SYMV and a GEMV (transpose);

• Type C – TB threads do a GEMV (non-transpose)
followed by a SYMV.

This way the computation within a TB is converted into
one/two GEMVs (to reuse the GEMV kernels) and a SYMV
involving a diagonal submatrix of size NTB × NTB . The
remaining SYMV is also converted into a GEMV by loading
the NTB ×NTB matrix into the GPU’s shared memory and
generating the missing symmetric part in the shared memory
(a process defined as mirroring). Figures 6 and 7 compare
the performance for a kernel with parameters NTB = nb =
32, NT = 32× 4 with that of CUBLAS.
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Figure 6: Performance of MAGMA’s SYMV in single preci-
sion with algorithm 1 on a GTX 280.
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Figure 7: Performance of MAGMA’s SYMV in double pre-
cision with algorithm 1 on a GTX 280.

This SYMV kernel was included in the release of MAGMA
0.2. Although the algorithm described above yields better
performance compared to CUBLAS on a GTX 280, the ob-
served performance is far from the theoretical peak perfor-
mance that relates to the bandwidth of the GPU. SGEMV
gets up to 66 GFlops/s in a GTX 280 where the bandwidth
is 140 GBytes/s. One might expect that the performance
of SSYMV will be in the vicinity of 99 GFlops/s (see Sec-
tion 7.2). Algorithm 1 does not fully take the structure of
the symmetric matrix into consideration. It loads the full A
matrix whereas loading half of the symmetric matrix would
have been sufficient. This insight provides the motivation
for finding a better algorithm for SYMV that runs efficiently
on GPUs by taking advantage of the data storage format of
a symmetric matrix. This will reduce the loads from the
GPU’s global memory by half.

4.3 Algorithm 2: Storage Aware
The computation in this SYMV algorithm is organized in

one dimensional grid of computational blocks of size NTB ,
as it was done for the previous algorithm. One compu-
tational grid is assigned to a single TB where each TB
has NT = NTX × NTY threads. The layout of the thread
block is irrelevant as inside a single kernel one can rearrange
the threads configuration on the fly to match the required
computation or memory access pattern. For this algorithm
NTB = nb. This choice will divide the matrix into a 2D grid
of |TB| × |TB| blocks where |TB| = N

nb
. Thread block TBi

will access blocks {Ai,j : 1 ≤ j ≤ i} from matrix A as shown
in Figure 8. Some blocks {Ai,j : i 6= j} will be used twice

Figure 8: Data access pattern in SYMV with algorithm 2.



Figure 9: Results produced by each TB in SYMV with al-
gorithm 2.

to compute partial results of resultant vectors yi and yj .
Therefore, instead of computing a single final vector yi, TBi

will be computing partial results of vectors {yj : 1 ≤ j ≤ i}.
These partial result vectors produced by TBi are named as
{yij : 1 ≤ j ≤ i} as shown in Figure 9. The computation by
TBi can be summarized as follows:

yij := AT
i,jxi for j = 1 to i− 1

yii :=

j=i∑
j=1

Ai,jxj .

As described in the first algorithm, the missing symmetric
parts in the diagonal blocks (Ai,i) are produced using mir-
roring. This completes the first phase of the new SYMV
algorithm. In the second phase another kernel of the same
one dimensional grid format is launched to compute the final
yi’s as follows:

yi :=

j=|TB|∑
j=i

yji .

Here |TB| is the number of TBs required for a matrix of size
N , i.e., |TB| = d N

NTB
e.

5. OVERHEAD ANALYSIS
Algorithm 1 is aware of the symmetric data storage format

but it does not exploit it. In contrast, Algorithm 2 is very
promising as it exploits the symmetric data storage. How-
ever it has some overhead in terms of execution time and
memory space as it launches an additional kernel to add up
the partial results (yij), and requires some extra memory to
store the partial results. In addition, TBs are doing different
amounts of work, which may lead to load imbalance. Hence,
there are four kinds of overheads: (a) space overhead, (b)
memory allocation overhead, (c) reduction overhead, and (d)
load imbalance overhead. We discuss these overheads in this
section and point out circumstances where these overheads
are insignificant.

5.1 Space Overhead
The extra memory requirement for algorithm 2 is:

NTB × |TB| × (|TB|+ 1)

2
∗ sizeof(element) Bytes.

Figure 10 shows the memory overhead for different values of
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Figure 10: Memory overhead of MAGMA’s SYMV in single
precision with algorithm 2 on a GTX 280.

NTB (32 and 64). The space overhead is 1.56% and 0.78% of
the matrix size with NTB = 32 and NTB = 64 respectively.
Hence using a big NTB is beneficial.

5.2 Memory Allocation Overhead
We have to allocate the additional memory to run algo-

rithm 2. Figure 11 shows that the allocation overhead in-
creases linearly with the space overhead. This also motivates
us to use bigger value for NTB .

Usually in high level DLA algorithm, we allocate the re-
quired workspace once and reuse it several times. Mixed-
precision Iterative refinement solvers for example call the
matrix-vector product several times. Tridiagonalization also
calls the matrix-vector product multiple times. For these
two algorithms, allocation overhead will not be an issue.

Figure 12 shows the percentage of time the kernel spends
in allocating workspace and computing the matrix-vector
product. As the matrix size gets larger, the percentage of
time spent in workspace allocation decreases. So, for a larger
problem size, the allocation overhead will be amortized if
algorithm 2 brings very good performance for SYMV.

5.3 Reduction Overhead
As mentioned before, algorithm 2 requires some extra mem-

ory to store the partial results. It launches an extra kernel
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Figure 11: Allocation overhead of MAGMA’s SYMV in sin-
gle precision with algorithm 2 on a GTX 280.
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Figure 12: Distribution of kernel execution time and addi-
tional memory allocation time in the SYMV kernel in single
precision with algorithm 2 on a GTX 280.

Figure 13: Distribution of kernel time spent in computing
product and doing reduction in SYMV kernel in single pre-
cision with algorithm 2 on a GTX 280.

to add up the partial results yij . The performance benefit
comes by paying this small extra reduction cost. Figure 13
shows the relative portion of kernel time spent in computing
products (product kernel) and doing reductions (reduction
kernel). Later in the performance section, we will show that
algorithm 2 brings good performance despite all the over-
heads.

5.4 Load Imbalance Overhead
TBs are doing different amounts of work. During the

product computation phase, the amount of work done by
TBi is ∆ + (i − 1) × ∇, where ∇ is work required in an
off diagonal block and ∆ is the work required in a diagonal
block. The difference between amount of work assigned to
two adjacent TBs (adjacent in terms of TB IDs, e.g. TBi

and TBi+1 ) is ∇, which is a very small constant. If the TBs
are scheduled in a monotonically increasing order according
to their IDs, algorithm 2 will not experience load imbalance
problems. The performance section validates this assertion.

6. FURTHER OPTIMIZATION
In this section, we highlight all the tunable parameters

in algorithm 2 and describe an autotuning approach to tune
those parameters. We also introduce a recursive blocking op-
timization technique to minimize the overhead as discussed

Parameter Description

NTB Blocking Size
NTX Number of threads in X dimension
NTY Number of threads in Y dimension

Table 1: Tunable parameters in algorithm 2.

in the previous section. Later on we describe our solution of
generalizing the SYMV kernel to remove performance oscil-
lations.

6.1 Autotuning
Automatic performance tuning (optimization), or auto-

tuning in short, is a technique that has been used intensively
on CPUs to automatically generate near-optimal numerical
libraries. For example, ATLAS [15, 16] and PHiPAC [17]
are used to generate highly optimized BLAS. In addition,
FFTW [18] is successfully used to generate optimized li-
braries for FFT, which is one of the most important tech-
niques for digital signal processing. Empirical auto-tuning [19]
has also been used to optimize high level DLA algorithms [20].

With the success of auto-tuning techniques on generating
highly optimized DLA kernels on CPUs, it is interesting to
see how the idea can be used to generate near-optimal DLA
kernels on modern high-performance GPUs. Indeed, work in
this area [4] has already shown that auto-tuning for GPUs
is a very practical solution to easily port existing algorith-
mic solutions on quickly evolving GPU architectures, and to
substantially speed up even highly hand-tuned kernels.

There are two core components in our auto-tuning system:

Code generator The code generator produces code vari-
ants according to a set of predefined, parameterized
templates/algorithms. The code generator also applies
certain state of the art optimization techniques.

Heuristic search engine The heuristic search engine runs
the variants produced by the code generator, and finds
out the best one using a feedback loop, e.g., the perfor-
mance results of previously evaluated variants are used
as a guidance for the search on currently unevaluated
variants.
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SYMV kernels in single precision with algorithm 2 on a GTX
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Our SYMV algorithm has three tuning parameters as shown
in Table 1. Figure 14 shows the performance of automat-
ically generated kernels with different values for these pa-
rameters. Usually bigger values of NTB bring greater per-
formance. This strengthens the results from the overhead
analysis section.

However, the autotuner failed to get beyond NTB = 32
because there is not enough shared memory on the GTX
280. With NTB = 64, we will need 64 × 64 dimension of
shared memory for the on the fly mirroring operation in the
diagonal computations, Ai,i × xi.

6.2 Recursive Blocking
Due to the limited amount of shared memory in GPUs

(GTX 280), algorithm 2 fails to work with NTB = 64.
This limitation can be overcome by using recursive blocking
as shown in Figure 15. Recursive blocking is one of the
important contributions in this work.

With NTB = 64 and NT = 256, a 64 × 16 dimension
matrix is allocated in shared memory. In the off-diagonal
computations, AT

i,j × xi where i 6= j or Ai,j × xj where
i 6= j, the layout of the thread block is NT = 256 =
64 × 4. The mechanisms for these off-diagonal computations
are straightforward. The diagonal computations, Ai,ixi, are
performed in a recursive way, using the same kernel with
block size NTB = 32.

As we can see from Figure 15, we will get two diagonal
subblocks and one off diagonal subblock after applying re-
cursive blocking in a diagonal block. These three subblocks
are processed sequentially by the same 256 threads. During
the recursive part of the kernel, 256 threads inside a thread
block rearrange themselves as 32 × 8 threads to meet the
computation and data access pattern. All of the intermedi-
ate results are stored in registers instead of in global memory.

6.3 Optimizing for Generic Size
Most of the available BLAS for GPUs achieve very high

performance when the matrix size is divisible by the internal
blocking size of the underlying algorithm or specific imple-
mentation. But there are performance dips when the user
gives an irregular problem size (size that is not multiple of
internal blocking size). BLAS with performance oscillation
restricts us to use it in a generic way.

A few possibilities of dealing with matrix dimensions not
divisible by the blocking size have been explored. We discuss
three of them here:

Conditional Statement One approach is to have some
“boundary” TBs doing selective computation. This
will introduce several if-else statements in the kernel

Figure 15: Recursive blocking in SYMV with algorithm 2.

Figure 16: Possible illegal memory reference after blocking a
matrix whose size is not a multiple of the blocking size. This
happens if we let the threads in boundary blocks reference
memory without readjusting the index.

Figure 17: Last valid access (The gray box shows the
original matrix. The Outer white box shows the matrix
of a higher dimension to make the dimension multiple
of the blocking size. The dark black row and column
show the last valid row and column in the original
matrix respectively).

which will prevent the threads inside a TB to run in
parallel.

Padding Another approach is to use padding. Padding is
the technique where a matrix of higher dimension (to
make the new size divisible by NTB) is allocated on
the GPU memory, and the extra elements initialized
by zero. Now the computation occurs in a natural way
as elements with zero value will not change the final
result.

Pointer Redirecting We adopt a different approach, in
particular pointer redirecting. Our approach is to, in-
stead of preventing certain threads from computing
(with if-else statements), to let them do similar work
as the other threads in a TB, and discard saving their
results at the end. This can lead to some illegal mem-
ory references as illustrated in Figure 16. The pointer
redirecting techniques redirect the illegal memory ref-
erences to valid ones, within the matrix of interest, in
a way that would allow the memory accesses to be coa-
lescent. The specifics of the redirecting depend on the
kernel, but in general, if a thread is to access invalid
rows/columns of a matrix (beyond row/columnM/N),
the access is redirected towards the last row/column.
This is shown in Figures 17, 18, and 19. In summary,
each illegal memory address is converted into a mem-
ory address (inside the matrix of interest) which is the



Figure 18: Pointer redirecting (Arrows indicate redirection
of accesses. A thread destined to access an element at the
start of the arrow will access the element pointed to by the
end of the arrow).

closest to the illegal address in terms of cartesian dis-
tance in two dimension.

The case where the starting address of a data stream
is not a multiple of 16∗sizeof(element) (but the lead-
ing dimension is multiple of 16) is handled similarly
– threads that must access rows “before” the first row
are redirected to access the first row.

Pointer redirecting has no memory overhead as we see
in padding. If the input matrices have irregular dimen-
sions and are given on the GPU memory, then padding
cannot be as efficient as there would be memory and
data copying overhead.

We adopted the pointer redirecting approach to make the
SYMV kernel generic. We extended the previously proposed
pointer redirecting to work in the upper and lower part of
the matrix. This was initially done to accommodate the
tridiagonalization routine as most of the SYMV in it start
from an address that is not divisible by 16. As a result
we would not have been able to keep the fully coalesced
memory accesses to the GPU global memory. More details
about pointer redirecting approach can be found here [10].

7. EXPERIMENTAL RESULTS
In this section, we give performance results of the final

kernel and its impact on a high level DLA algorithm.

7.1 Kernel Performance
Figure 20 compares the performance of the new SYMV

kernel optimized with recursive blocking and CUBLAS on
a GTX 280 ( performance for double precision is shown in

Figure 19: Mirroring (Hatched portion indicates that the
elements here are replications of some valid element inside
the original matrix. Replication is done in terms of cartesian
distance from the source to any element inside the matrix.)
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Figure 20: Performance of the new SYMV kernel in single
precision with algorithm 2 on a GTX 280. Recursive block-
ing was used in this kernel.

Figure 21). The parameters of this kernel are : NTB = 64
and NT = 256 = 32×8 = 64×4. With NTB = 32, the space
overhead is 1.56% of the matrix size, and with NTB = 64 the
space overhead is 0.78% of the matrix size. Not only does
NTB = 64 with recursive blocking offer better performance
(105 GFlops/s vs 70 GFlops/s), it also reduces the space
overhead by a factor of two compared to the kernels with
NTB = 32. This performance number is valid when we
ignore the space allocation time overhead. If we consider
the space allocation time overhead, the maximum achievable
performance drops from 105 GFlops/s to 90 GFlops/s. The
performance of the kernel with and without space allocation
overhead is also shown in Figure 20. However, by changing
the SYMV interface we can incur this allocation overhead
only once for many kernel calls. Our kernel performs worse
than CUBLAS 4.0 when matrix size is less than 1600 when
we consider the allocation overhead. When the matrix size
is bigger than 1600, the allocation overhead is amortized
and our kernel performs significantly better than CUBLAS.
The only problem with this algorithm is that if there is not
enough memory available on the GPU, the code will not be
able to execute.

Figure 22, shows the performance of a generic SYMV ker-
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Figure 21: Performance of the new SYMV kernel in double
precision with algorithm 2 on a GTX 280.
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Figure 22: Performance of a generic SYMV kernels in sin-
gle precision with algorithm 2 on a GTX 280. Recursive
blocking and pointer redirecting was used in this kernel.

nel for matrix sizes from 14172 to 14200. It is evident that
the pointer redirecting approach works really well by remov-
ing the performance oscillation.

We tuned algorithm 2 for getting an optimized SYMV
kernel in Fermi C2050. The SYMV kernel for the Fermi
C2050 GPU gets up to 83 GFlops/s in single precision and
32 GFlops/s in double precision, whereas CUBLAS 4.0’s
SYMV gets up to 20 GFlops/s in single precision and 14
GFlops/s in double precision. The performance is shown in
Figures 23 and 24. Although the global memory bandwidths
of GTX 280 and Fermi C2050 are close, SYMV in Fermi is
slow for two reasons. First, our kernel depends highly upon
reusing data from shared memory. Second, the shared mem-
ory access latency of Fermi is higher than that of GTX 280.
The results of this work are included in the recently released
and freely available MAGMA 1.0 [8].

7.2 Optimality Analysis
The optimal performance for memory bound kernels can

be easily computed taking into account the machine’s band-
width. For example, the SYMV kernel needs to access N2 ∗
sizeof(element)/2 Bytes in order to make 2N2 Flops. In
other words, for each Byte transferred one can do one single
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Figure 23: Performance of SYMV in single precision with
algorithm 2 on a Fermi C2050.
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Figure 24: Performance of SYMV in double precision with
algorithm 2 on a Fermi C2050.

precision Flop (or 0.5 Flops in double precision). Thus, the
theoretical optimal performance for the SYMV on a GPU
like GTX280 with a memory bandwidth of 141.7 GB/s, is
141.7 GFlops/s in single and 70.85 GFlops/s in double pre-
cision arithmetic.

7.3 Impact on High Level DLA algorithms
The end goal of optimizing the SYMV kernel was to opti-

mize the tridiagonal factorization routine. Previously in [14],
we restricted ourselves from using the SYMV kernel imple-
mented with algorithm 1, as 50% of the operations in the
tridiagonal factorization were done in the SYMV kernel, and
GEMV was faster (66 GFlops/s in single precision) than
SYMV (45 GFlops/s in single precision) on a GTX 280.
Therefore we used GEMV and adopted another optimiza-
tion, namely a GPU implementation of symmetric matrix
rank-2k update (SYR2K) that explicitly generates the entire
symmetric matrix resulting from the operation so that we
could use GEMV in the panels instead of the slower SYMV.
That approach did not need extra memory. That partic-
ular implementation of the tridiagonalization scaled up to
80 GFlops/s in single precision on a GTX 280. With the
new SYMV kernel, achieving up to 105 GFlops/s in sin-
gle precision on a GTX 280, the tridiagonalization in single
precision achieves up to 120 GFlops/s on a GTX 280 and
thus brings up of 50% performance improvement over the
old version [14]. The performance is shown in Figure 25.
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Figure 25: Performance of MAGMA’s Tridiagonalization in
single precision on a GTX 280.



8. CONCLUSION
We presented a highly optimized SYMV kernel for mod-

ern GPUs. The first version of the SYMV kernel in double
precision, algorithm 1, was developed for MAGMA’s iter-
ative refinement procedure in 2009 [12]. The single preci-
sion version outperformed a contemporary CUBLAS 2.3’s
SYMV kernel by 40 GFlops/s on a GTX 280. Even though
the kernel was 25x faster than CUBLAS 2.3’s SSYMV, we
could not use it in MAGMA’s tridiagonalization [14]. Later
on SYMV was optimized more to improve tridiagonalization
and we improvised algorithm 2. Our contribution shows how
GPU kernels should be written for irregular data access pat-
terns. With the introduction of recursive blocking for shared
memory in algorithm 2, we showed how GPU kernels can
work with higher block size with limited amount of shared
memory. This particular version of SYMV, developed in
March 2010[3], was 50× faster than contemporary CUBLAS
2.3’s SYMV kernel with a little memory overhead (0.78%
of matrix size). It is also 7× faster than recently released
CUBLAS 4.0. With this kernel, tridiagonalization was 50%
faster than MAGMA’s previous implementation. Later on
we tuned algorithm 2 for getting an optimized SYMV kernel
on Fermi C2050. The SYMV kernel for Fermi C2050 GPU
gets up to 84 GFlops/s in single precision and 32 GFlops/s
in double precision, whereas CUBLAS 4.0’s SYMV gets up
to 20 GFlops/s in single precision and 14 GFlops/s in double
precision. We are currently investigating how SYMV can be
optimized further in Fermi. The results of this work are in-
cluded in the recently released and freely available MAGMA
version 1.0RC [8].
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