TABS: Temperature Aware Thread Block Scheduling in GPGPUs

Rajib Nath‡, Raid Ayoub‡, Tajana Šimunić Rosing‡

‡ Intel Lab, ‡ UCSD

Thermal Problems in GPGPUs

- Single GPGPU
 - There is no thermally aware scheduling in current GPGPUs
 - Recent GPGPUs allow multiple kernels to run concurrently
 - High GPGPU temperature
 - Computation slowdown due to throttling
 - High leakage power
 - High cooling costs
 - High energy consumption

- Multiple GPGPUs
 - Kernels are scheduled to dedicated GPGPUs
 - GPGPUs share a single fan
 - Computation slowdown
 - High leakage power and cooling costs
 - High energy consumption

- Setup
 - Modified hotspot simulator for GPGPUs
 - Developed thermal model for GTX280
 - Ambient temperature set to 45°C
 - Used merge benchmark suite

Thermal Management via Thread Block Scheduling

Motivation and Novelty

- Workload Characteristics
 - TBs have a short life time (μs to ms) and a stable power profile
 - Abundance of TBs
 - Thermal heterogeneity between kernels

- Our Contribution
 - Intermixing TBs from heterogeneous kernels to minimize thermal power
 - Intermix TBs without any thread migration
 - Extended the solution for multi-GPGPU
 - Provided a H/W+S/W approach

- **Heterogeneous Mixing**
 - Alternate
 - Mixed Alternate
 - Default
 - Mixed Uniform
 - Mixed Non-Uniform

- **TABS Architecture**
 - OS Scheduler is aware of power density index & lifetime
 - Scheduling Policy
 - New policy set by the OS scheduler
 - Used merge benchmark suite

- **Results**
 - Our Baseline policy clock gates GPGPU SMs until SM temperature falls below 85°C
 - TABS is implemented with four different intermixing policies: A, MU, MNU, MA
 - In the absence of heterogeneous kernels, TABS employs DVFS
 - Improvements indicates reduction in computation slowdown due to throttling

Single GPGPU

- **Improvements over Baseline**
 - TABS improves over Baseline by 57%-60% on average
 - TABS improves over DVFS by 40%-45% on average
 - Improvement is higher when heterogeneity is higher– up to 97%
 - Improvement is 82%-86% on average for the target cases (WL1-WL6)

- **Energy Savings over Baseline**
 - Average energy savings with TABS is 6.75%
 - DVFS saves 1.8% energy on average
 - Higher heterogeneity leads to higher energy savings (e.g., 15.75%)
 - Energy savings are 9.48% on average for the target cases (WL1-WL6)

Multiple GPGPU

- **Improvements over Baseline**
 - Baseline and DVFS have similar performance and energy consumption
 - TABS improves over Baseline by 44%-48% on average
 - Benefit exists when memory overhead is less than the gain through thermally aware scheduling

- **Effect of Memory Technology**
 - As the memory and the interconnect technology improves the gain through TABS gets larger

Interactions

- Intermixes kernels whenever possible
- Looks for a cold kernel during thermal emergencies
- In the absence of a thermal emergency, it looks for a hot kernel to spread the heat over time
- Intermixes kernels in a given intermixing window
- Works proactively

Setup

- GTX 280 Graphics Card
- Intel Xeon X5650 (2.67GHz)
- NVIDIA GTX 690
- Target workloads
 - Single GPGPU: Intel TBB benchmark suite
 - Multiple GPGPU: Mixed Uniform (MU) and Mixed Alternate (MA) policies