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Abstract

In 1992, Barr et al. proposed a method for interpolating orien-
tations with unit quaternion curves by minimizing covariant ac-
celeration. This paper presents a simple improved method which
uses cubic basis functions to achieve a speedup of up to three
orders of magnitude. A new criterion for automatic refinement
based on the Euler-Lagrange error functional is also introduced.
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Analysis]: Optimization
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1 Introduction

In this paper, we discuss the interpolation of keyframe rotations
with quaternion [6, 17] curves. Shoemake [16] introduced the idea
of interpolating rotations with quaternions, but the constructed
curves (slerps) did not satisfy an obviousvariational principle [21]
as splines [2] do in flat space. Gabriel and Kajiya [4] then proposed
a method that solved the (intrinsic) Euler-Lagrange equations for
minimization of covariant acceleration on a manifold with a metric
and applied these ideas to interpolation of rotations. In Barr
et al. [1], a simpler method to minimize covariant acceleration
using an extrinsic formulation based on quaternions was given.
However, their approach can take several minutes to hours to
compute the optimal curve. Analytic construction schemes such
as those of Kim et al [10] are significantly faster and often yield
satisfactory curves.

This paper speeds up the method of Barr et al. [1] signifi-
cantly, thus allowing minimization of covariant acceleration to
be used as an interactive tool. We use simple cubic basis func-
tions and unconstrained minimization instead of the finite dif-
ference constrained optimization approach in [1]. Near-optimal
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Figure 1: The interpolation problem in quaternion space. The
large circles represent keyframes to be interpolated. The small
circles show “variable frames” inserted by the system while com-
puting the optimized path (shown with a solid line). A thin line
shows the unoptimized path which is seen to have undue acceler-
ations at the keyframes.

curves can be produced in a few seconds—two to three orders of
magnitude faster than previous methods. Cubic basis functions
can be replaced by other construction schemes so our technique
can be used to refine analytic splining methods such as those
in [7, 9, 10, 11, 19].

Our work is closely related to other areas of research that
use optimization, such as spacetime constraints [3], dynamic
nurbs [18] and variational surface modeling [20]. An impor-
tant difference is the introduction of a new technique for auto-
matic adaptive refinement based on the “error” as measured by
the Euler-Lagrange error functional. Other differences include
the use of “variable frames” (the system inserts these) and un-
constrained minimization. In optimizing over a small number of
variables for fast algorithms, our work is also similar to that of
Liu and Cohen [12].

Although this paper describes the creation of quaternion
splines primarily for animation, splining in curved spaces and
constructing minimal energy motions is important to other com-
munities such as computer aided geometric design, robotics and
kinematics. A few related papers are found in [8, 15]. Our tech-
niques can also be generalized easily to handle objective functions
more complex than covariant acceleration for quaternions. Thus,
our method can be used in conjunction with conventional ani-
mation techniques for rapid automatic improvement of “rough”
animations or for sparser keyframing by interpolation[14].

The rest of this paper is organized as follows. In section 2, we



formulate the quaternion interpolation problem. We present our
solution in section 3 and discuss our results in section 4. Section
5 discusses future work and conclusions.

2 The Quaternion Interpolation Problem

As in [1], we want to minimize the net squared magnitude of
the covariant (tangential) acceleration in quaternion space, while
interpolating keyframe orientations and (if specified) angular ve-
locities at the end frames. The normal component of the accel-
eration is not penalized since it is necessary for maintaining unit
magnitude of the quaternions. This formulation is analogous to
minimizing angular acceleration.

Let q�t� denote the quaternion path as a function of time such
that at keyframe times t1� t2� ���� tK , q�ti� � Qi whereQi denotes
the quaternion at keyframe i corresponding to time ti. Further, if
specified let �1 and �K denote the angular velocities at the end
frames. Then, the problem we solve can be formulated thus:

minimize

Z tK

t1

k q�� n q k2 dt �1�

subject to the constraints:

INTERPOLATION: �i : 1 � i � K : q�ti� � Qi

UNITARINESS: �t : t1 � t � tK : q�t� � q�t� � 1

END-POINT ANGULAR VELOCITY:

2q��t1�q
�1�t1� � �1 2q��tK�q�1�tK� � �K (2)

Here, q�� n q is the tangential or covariant acceleration1 , and
k q�� n q k is its norm or magnitude.

In this paper,we use cubic polynomialswhich do not in general
lie on the unit sphere. We enforce the constraint of unit quater-
nions with a “soft constraint” and minimize the objective given
below (with the integrand put explicitly in terms of quaternion
components qj)
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subject to the interpolation constraints. In the integrand in equa-
tion 3, the first two terms are the squared magnitude of the covari-
ant acceleration (an expanded form of the integrand in equation 1 ).
The third term maintains quaternion magnitude, and � is a posi-
tive constant that forces the quaternions to be nearly unitary. We
also require the path q�t� to be C 1 continuous.

Use of Soft Constraints In this paper, we have used cubic
basis functions for simplicity, and “soft constraints” to maintain
the unitary constraint. While soft constraints are just a weighting
term added to the objective, and do not ensure the constraint is ex-
actly met, they are simple to use and often result in the constraint
being met well enough for our purposes. Any simple uncon-
strained minimization package can be used, and the technique is
faster than constrained optimization because the constraint does
not need to be evaluated and differentiated at each iteration.

1As explained in [1], an explicit formula for the i th component of the covariant
acceleration is:

�q�� n q�i � q
��

i � qi
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q��j qjP3
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The squared magnitude of the covariant acceleration, k q �� n q k2, is given by the
first two terms of the objective in equation 3.

3 Our Algorithm

Figure 2 presents a summary of our method. A more detailed
discussion of each step is given below.

Algorithm

1. Input user-specified keyframes, and number of
‘‘variable frames’’
(with optional angular velocities at
the end frames).

2. Guess quaternion velocities at the interior
keyframes and interpolate keyframes
and velocities with C

1 continuous
cubics.

3. An optimizer adjusts velocities at the interior
keyframes to minimize the objective
functional (equation 3).

4. “Variable frames” are added in a small number
of ‘‘segments’’ having the largest
average value for the Euler-Lagrange
error functional (after the average
Euler-Lagrange error functional in
each ‘‘segment’’ has been computed).

5. Readjust variable frame quaternions and velocities in
addition to keyframe velocities to
minimize the objective functional
again.

Figure 2: An overview of the algorithm.

Discussion of algorithm

Step 1: User provides keyframes In part 1 of the algo-
rithm, the user must provide the keyframes to be interpolated. In
addition, angular velocities at the end frames may be provided if
wanted. Angular velocities are converted internally to quaternion
velocities: q��t� � �1�2��q�t�.

The value of the soft constraint weighting factor � need also
be given. Since we want quaternions of nearly unit magnitude, �
should be large. By making � approximately 1000 (with the time
difference between key frames normalized to be of order 1),we tell
the optimizer that maintaining unit magnitude is significantly more
important than minimizing covariant acceleration. This works
well in that maximum deviation from unitariness is frequently less
than 1% (with the average deviation about one tenth of that), and
the contribution to the objective from the soft constraint is about
1 � 2% thus ensuring that the soft constraint does not dominate
the objective.

Step 2: Assign initial guess for quaternion velocities
At all keyframes for which the user has not supplied angular
velocities (interior keyframes and end-frames if the user has not
specified angular velocities), the system guesses velocities with a
very simple algorithm such as:

q�j�ti� �
qj�ti�1�� qj�ti�1�

ti�1 � ti�1



With these velocities2 , suitable basis functions are used to
interpolate positions and velocities at the keyframes. In this paper
we have used cubic polynomials, but there is no obstacle to us-
ing more advanced curves such as the hermite quaternion curves
of [10]. Each component of the quaternion path is described by
a piecewise cubic such that the position and velocity agree with
those user-specified or system-inserted at the keyframes (or in the
next stage, “variable frames”). Since both position and velocity
are well-defined at the keyframes, the resulting paths must be C 1

continuous as required.
The integral in equation 3 is then evaluated by any simple

numerical integration procedure.

Step 3: Minimization of the objective functional over
keyframe velocities In part 3 of the algorithm, an uncon-
strained minimization package is used to alter our initial guess of
the velocity at interior keyframes to minimize the objectiveOBJ
given in equation 3. The variables over which the optimization is
done are the velocities at the keyframe times; the user has not con-
strained the angular velocity at the interior keyframes. Note that
since we have onlyC 1 continuity, the integrand in equation 3 may
be discontinuous, but this will not affect the objective functional
OBJ . We use the Sequential Quadratic Programming routine
E04UCF in the NAG libraries [13]. We note that although the
routine can do constrained optimization, it is significantly faster
when using soft constraints as we have formulated the problem.
To take advantage of sparseness in the problem, one may supply
partial derivatives (for which one need evaluate only a small part
of the region of integration since the cubic basis is local) instead
of having the optimizer evaluate them. Since the method is fast
enough even without this optimization, we have not used it in our
tests.

Step 4: Checking of Euler-Lagrange error functional
We divide the entire path into “segments” of time �t (segment n
ranges from tn to tn ��t). For each segment n, we compute the
deviation (using the optimized path Q�t� from step 3):

DEV �tn� �
1
�t

Z tn��t

tn

j EL�t� j dt �4�

where j EL j stands for the length of the Euler-Lagrange vector
in equation 7. We then pick the segments having the highest
values for DEV �tn� (and such that tn does not coincide with a
keyframe), and add in a “variable frame” at time tn . A “variable
frame” is like a keyframe except that not only the velocities but
also the positions qi can be varied by the optimizer in step 5.

The number of regions in which we add variable frames is a
tradeoff between accuracy (the more variable frames the better)
and speed (the more variable frames the slower). For our applica-
tions, we have found that nearly optimal results can be produced
with about 5 variable frames.

Some care must be taken in the way the path is divided into
segments. If the segments are too short, there may be too many
(and unnecessary) variable points inserted in one region at the
expense of other regions. On the other hand, the segments should
be near enough for multiple variable points to be concentrated in
a region. For these reasons, we typically divide each time-interval
between keyframes into 4 to 5 segments.

2At the end-points, we can only take one sided differences:

q
�

j�t1� �
qj�t2� � qj �t1�

t2 � t1
q
�

j �tK� �
qj �tK� � qj �tK�1�

tK � tK�1

Note that we use aneffectively continuous representation (with
only fine-grain discretization for numerical integration). This is
equivalent to sayingnumerical quadrature is done at several points
within a segment. Further, since we generally want to add a small
number of variable frames at the right places, it is appropriate to
use a few segments in each interval between keyframes. Hence
our recommendation above.

Since our method is relatively fast, the user may interactively
modify the segment lengths if he wishes, but this should not be
necessary in most cases.

Step 5: Optimizing again using variable frames We
now repeat the optimization process of step 3 introducing some
numberM of additional optimization variables in the form of the
positions and velocities at the variable frames. Thus, the mini-
mizer now varies interior keyframe velocities as well as variable
frame positions and velocities in order to minimize the objective
functional. Figure 1 showsan exampleof anoptimized quaternion
spline along with keyframes, variable frames and the unoptimized
“keyframish” path.

Euler-Lagrange Error functional

Let F �qi� q
�

i� q
��

i � denote the integrand in equation 3 (the integral
of which is the objective function OBJ ). Then, the variational
calculus [21] tells us that the optimal curve satisfies the corre-
sponding Euler-Lagrange equations:

ELi �
�F

�qi
�

d

dt

�F

�q�i
�

d2

dt2
�F

�q��i
� 0 �5�

There are four equations corresponding to each componentq i .
By measuring the magnitude (Euler-Lagrange error) of the left-
hand side of the equation above, we can get an idea of where to
refine our coarse representation. The equations for the objective
of equation 3 are given below.

Define:

a �

3X
j�0

qjq
��

j

b �

3X
j�0

qjqj

T �
a

b

U�i� � qiT
2 � q��i T

V �i� � q��i � qiT

W �i� � 2��b� 1�qi

d2

dt2
V �i� � q����i � �q��i T � 2q�iT

� � qiT
��� (6)

In the notation of the canonical equation 5, U�i� corre-
sponds to the term �F��qi for covariant acceleration. W �i�
is the corresponding term for maintenance of unitary quaternions.
V �i� corresponds to the term �F��q��i in equation 5. The term
�F��q�i � 0 since the objective function does not dependdirectly
on q� .

The ith component of the Euler-Lagrange deviation or error
is then:

ELi � 2�U�i� �
d2

dt2
V �i� �W �i�� �7�

Since the first and second derivatives for T are complicated,
and our calculations need only be accurate enough to order the



segments by deviation, it may be simpler to differentiate T numer-
ically rather thananalytically. For reference, the analytic formulae
(assuming cubic basis functions so the fourth derivative vanishes)
are given below:

First, we must define:

dij � dji �

3X
k�0

q
�i�
k q

�j�
k

t1 �
2d13 � d22

d00
� 4

d01�d12 � d03�

�d00�2

t2 � �2
d02�d02 � d11�

�d00�2

t3 � 8
�d01�

2d02

�d00�3
(8)

where the superscripts on the quaternions stand for the appropriate
derivatives. Note that d00 � b, and d02 � a. We can now write:

T � �
d12 � d03

d00
� 2

d01d02

�d00�2

T �� � t1 � t2 � t3 (9)

As our “error” function for adaptive refinement (Step 4 in
our algorithm), we use the length of the Euler-Lagrange vector

EL �

qP3
i�0 EL

2
i .

It should be noted that the Euler-Lagrange error functional
vanishes as expected in case the path followed is a unit great circle
(and thus has no covariant acceleration). For instance, consider
the path:

q0�t� � cos�t� q1�t� � sin�t� q2�t� � q3�t� � 0

It is clear that for this path,

q��i � �qi b � 1 a � T � �1

Using these relations, it can readily be verified that
U�i� � V �i� � W �i� � 0, and the Euler-Lagrange error func-
tional correctly recognizes that the path is optimal. Since all
great circles can be constructed by rotating the example given,
the Euler-Lagrange error functional vanishes for great circles as
expected.

Euler-Lagrange Error Functional as a Metric for Adap-
tive Refinement We believe our use of Euler-Lagrange equa-
tions for adaptive refinement is an improvement over other ap-
proaches such as objective or constraint based subdivision [20]
because the Euler-Lagrange equations should be 0 on complete
minimization while the objective need not go to 0. Thus, a high
objective doesnot necessarily indicate a large error while a “large”
value for the Euler-Lagrange deviation is generally a sure indica-
tion of a “bad” region. This paper thus also showshow to combine
Euler-Lagrange and gradient based methods effectively.

Here, we have used the Euler-Lagrange error functional only
for adaptive refinement. An alternative approach that could be
tried in the future is to solve the Euler-Lagrange equationsdirectly
or to minimize the Euler-Lagrange error functional instead of the
objective function of equation 3. Note that while we have derived
analytic formulae for the error functional, numerical approaches
basedon numerically approximating the left hand side of equation
5 can also be used, and may be necessary if more complicated
objective functions than the one in this paper are used.

Advantages of Cubics There are a number of advantages
that continuous (in our case cubic) basis functions possess over
discrete methods [1, 4] of which some of the most important are
given below.

� Accurate formulae for quaternion derivatives with respect
to time are provided.

� An accurate representation of a curve can be made from a
very small number of basis functions, leading to extremely
fast algorithms.

Importance of Variable Frames Variable frames (where
the optimizer can vary the position and velocity) have some ad-
vantages over approaches based on spline coefficients [3].

� Since variable frames correspond directly to frames on the
actual animation path, they are easier to understandand deal
with, especially for a user. Changes in variable frame posi-
tions or velocities usually correspond in a simple manner to
changes in the actual animation. Large coefficient changes
may balanceeach other, and may not correspondas directly
and intuitively to the final animation.

� The use of variable frames ensures that keyframe interpo-
lation is automatic. With coefficient based methods, con-
straints need to be added to ensure keyframe interpolation.
This may require a more complex optimizer and/or a more
time-consuming algorithm.

4 Results

We present a representative example with 7 keyframes. Figure
1 shows the path on the sphere (one quaternion component is
zero always as are end-point velocities). Large dots represent
keyframes; small dots are variable frames.
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Figure 3: A very small number of variable frames can yield
near-optimal results. As described in the text below, each circle
represents an increasing number of variable frames or a higher
level of optimization.

Performance

We show the decrease in objective (as a function of program
execution time) as more variable frames are added in figure 3.
Each circle on the graph shows a further level of optimization.
The first circle shows no optimization, the second adjustment



only of velocities at keyframes, the third addition of one variable
frame, the fourth two variable frames and so on. We see that with
4 variable frames, we have a result that is only �1% away from
optimal.

Unit Magnitude

In figure 4 we show the unit magnitude being maintained. The
initial path (blue dotted) has many placeswhere quaternions are far
from unit magnitude. Our optimized path—4 variable frames and
� � 1000—(magenta dashdot) is within 1% of unit magnitude,
while the solid red line shows the effect of making � � 10000
and having 24 variable frames. We see that the quaternions are
practically indistinguishable from having unit magnitude (The
maximum deviation is �07% in the last example).
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Figure 4: Maintaining unit magnitude. In the original path (blue
dotted), there are significant deviations, while increasing levels
of optimization (magenta dashdot and red solid line) bring the
quaternions very close to unit magnitude.

Euler-Lagrange error functional

The Euler-Lagrange deviation before and after optimization are
shown in figure 5. We see that our method has equidistributed the
Euler-Lagrange error well.

Comparison to previous work

Our result with 4 variable frames took 4 seconds to compute. We
did not make use of sparseness in the E04UCF routine. We also
implemented a discrete method as in [1] where we used the for-
mulae for derivatives given there [except that a factor of two must
multiply their results for correctness]. Within this framework,
we used the same optimization method and objectives as for the
method described in this paper (but since we supplied derivatives,
we did make use of sparseness in this case). The running time for
the discrete method [1] was 8800 seconds, a factor of more than
2000 slower! (of course, the exact timings may vary dependingon
the specific machine and minimizer used). While we used 4 vari-
able frames in our approach, we had to use the entire 600 frames
over which the integral was evaluated in the discrete method. Our
method is significantly faster because a much smaller number of
variables are optimized.
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Figure 5: The blue dotted graph shows the initial Euler-Lagrange
error. The solid red graph shows how this error is significantly
decreased upon optimization.

Animations

The animations3 accompanying this paper show some examples
of rotational paths created using the methods in the paper. Our
first example is the rotation of a rigid object similar to the example
discussedabove (except that there is more rotation which involves
all four quaternion components). Figure 6 shows the (I-shaped)
object rotating while moving in a parabola. The trunks are black
for keyframes (which also have a dark circle behind them that
makes their position clear), blue for variable frames and red for
the few computed animation frames that are shown.

Figure 6: Showing the object path. Keyframes have a dark circle
behind them. Variable frames have blue trunks and those for
computed animation frames are red. The top and bottom of the
object are shown in green and yellow consistently for all frames.

Our second example is derived from a molecular dynamics
simulation (with exotic initial conditions). We resampled the
rotations sparsely, interpolating to make animations. We show an
example using 4 keyframes. A still is shown in figure 7.

3The animations are present on the CD-ROM accompanying the proceedings,
and can be accessed via our website:
http://www.gg.caltech.edu/Animations/quaternions.html



Figure 7: A still from an animation on the CD-ROM/website.
The animation is derived from a molecular dynamics simulation
of iodine and benzene molecules slowed down by a factor of
approximately 1012.

5 Conclusion and Future Work

We have shown how to construct quaternion splines orders of
magnitude faster than previous methods and introduced a new
technique for adaptive refinement based on the Euler-Lagrange
error functional. While the results are encouraging, improvements
can be made in the following areas:

� Deriving theoretical bounds on the error in the objective
using the Euler-Lagrange error functional and comparing
Euler-Lagrange based adaptive refinement to other meth-
ods. We [14] have derived a physical interpretation for the
Euler-Lagrange error functional and some simple bounds,
but these are currently too loose for meaningful error esti-
mates.

� Using more advanced basis functions. Our current esti-
mate for quaternion velocities (step 2 of the algorithm) can
be improved. In addition, we use simple cubics. Using
quaternion curves such as the B-spline quaternion curves
of [10] for the initial guess of quaternion velocities and the
corresponding hermite quaternion curves for interpolation
instead of cubics might yield faster results. This would
also allow the optimization procedure to be carried out on
the quaternion sphere directly [5] instead of using soft con-
straints.

� Higher degrees of continuity and better objective functions
This paper has discussedcurves withC 1 continuity. A sim-
ple way of achieving C 2 continuity is with interpolating
B-splines as in [14]. Perceptually (rather than mathemati-
cally) basedobjective functions also need to be investigated.
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