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Abstract

In 1992, Barr et al. proposed a method for interpolating orien-
tations with unit quaternion curves by minimizing covariant ac-
celeration. This paper presents asimple improved method which
uses cubic basis functions to achieve a speedup of up to three
orders of magnitude. A new criterion for automatic refinement
based on the Euler-Lagrange error functional is also introduced.

CR Categories: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Splines; G.1.6 [Numerical
Analysis]: Optimization

Keywords. Euler-Lagrange error functional, Quaternions,
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1 Introduction

In this paper, we discuss the interpolation of keyframe rotations
with quaternion [6, 17] curves. Shoemake[16] introduced theidea
of interpolating rotations with quaternions, but the constructed
curves(slerps) did not satisfy an obviousvariational principle[21]
assplines[2] doinflat space. Gabriel and Kajiya[4] then proposed
amethod that solved the (intrinsic) Euler-Lagrange equations for
minimization of covariant acceleration onamanifoldwithametric
and applied these ideas to interpolation of rotations. In Barr
et a. [1], a simpler method to minimize covariant acceleration
using an extrinsic formulation based on quaternions was given.
However, their approach can take several minutes to hours to
compute the optimal curve. Analytic construction schemes such
asthose of Kim et a [10] are significantly faster and often yield
satisfactory curves.

This paper speeds up the method of Barr et a. [1] signifi-
cantly, thus allowing minimization of covariant acceleration to
be used as an interactive tool. We use simple cubic basis func-
tions and unconstrained minimization instead of the finite dif-
ference constrained optimization approach in [1]. Near-optimal
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Figure 1: The interpolation problem in quaternion space. The
large circles represent keyframes to be interpolated. The small
circles show “variableframes’ inserted by the system while com-
puting the optimized path (shown with a solid ling). A thin line
shows the unoptimized path which is seen to have undue acceler-
ations at the keyframes.

curves can be produced in a few seconds—two to three orders of
maghnitude faster than previous methods. Cubic basis functions
can be replaced by other construction schemes so our technique
can be used to refine analytic splining methods such as those
in[7,9,10, 11, 19].

Our work is closely related to other areas of research that
use optimization, such as spacetime constraints [3], dynamic
nurbs [18] and variational surface modeling [20]. An impor-
tant difference is the introduction of a new technique for auto-
matic adaptive refinement based on the “error” as measured by
the Euler-Lagrange error functional. Other differences include
the use of “variable frames’ (the system inserts these) and un-
constrained minimization. In optimizing over a small number of
variables for fast algorithms, our work is also similar to that of
Liuand Cohen[12].

Although this paper describes the creation of quaternion
splines primarily for animation, splining in curved spaces and
constructing minimal energy motions is important to other com-
munities such as computer aided geometric design, robotics and
kinematics. A few related papersarefound in [8, 15]. Our tech-
nigquescan also be generalized easily to handle objectivefunctions
more complex than covariant acceleration for quaternions. Thus,
our method can be used in conjunction with conventiona ani-
mation techniques for rapid automatic improvement of “rough”
animations or for sparser keyframing by interpolation[14].

Therest of this paper isorganized asfollows. In section 2, we



formulate the quaternion interpolation problem. We present our
solution in section 3 and discuss our resultsin section 4. Section
5 discussesfuture work and conclusions.

2 The Quaternion Interpolation Problem

As in [1], we want to minimize the net squared magnitude of
the covariant (tangential) acceleration in quaternion space, while
interpolating keyframe orientations and (if specified) angular ve-
locities at the end frames. The normal component of the accel-
eration is not penalized since it is necessary for maintaining unit
magnitude of the quaternions. This formulation is analogous to
minimizing angular acceleration.

Let ¢(t) denotethe quaternion path asafunction of time such
that at keyframetimestia, o, ..., tx , ¢(t;) = Q" where @' denotes
the quaternion at keyframe ¢ correspondingto time ¢;. Further, if
specified let w1 and wx denote the angular velocities at the end
frames. Then, the problem we solve can be formulated thus:
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Here, ¢" \ ¢ is the tangential or covariant acceleration® , and
Il ¢ \ ¢ || isits norm or magnitude.

Inthis paper, we use cubic polynomial swhich do not in general
lie on the unit sphere. We enforce the constraint of unit quater-
nions with a “soft constraint” and minimize the objective given
below (with the integrand put explicitly in terms of quaternion
componentsg ;)
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subject to the interpolation constraints. In the integrand in equa-
tion 3, thefirst two terms are the squared magnitude of the covari-
ant accel eration (an expanded form of theintegrandin equation 1).
The third term maintains quaternion magnitude, and « is a posi-
tive constant that forces the quaternionsto be nearly unitary. We
also require the path ¢(t) to be C'* continuous.

Use of Soft Constraints In this paper, we have used cubic
basis functions for simplicity, and “soft constraints’ to maintain
the unitary constraint. While soft constraints are just aweighting
term added to the objective, and do not ensurethe constraint is ex-
actly met, they are simple to use and often result in the constraint
being met well enough for our purposes. Any simple uncon-
strained minimization package can be used, and the techniqueis
faster than constrained optimization because the constraint does
not need to be evaluated and differentiated at each iteration.

*As explainedin [1], an explicit formulafor the i ** component of the covariant
accelerationis:
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j=0 45 45

z:izOQka

The squared magnitude of the covariant acceleration, || ¢ '’ \ ¢ ||?, is given by the
first two terms of the objectivein equation 3.
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3 Our Algorithm

Figure 2 presents a summary of our method. A more detailed
discussion of each step is given below.

Algorithm

1. Input user-specified keyframes, and number of
‘‘variable frames’’
(with optional angular velocities at
the end frames).

2. Guess quaternion velocities at the interior
keyframes and interpolate keyframes
and velocities with C! continuous
cubics.

3. An optimizer adjusts velocities at the interior
keyframes to minimize the objective
functional (equation 3).

4. “Variableframes’ areadded in a small number
of ‘‘segments’’ having the largest
average value for the Euler-Lagrange
error functional (after the average
Euler-Lagrange error functional in
each ‘‘segment’’ has been computed) .

5. Readjust variable frame quaternions and velocities in
addition to keyframe velocities to
minimize the objective functional
again.

Figure 2: An overview of the algorithm.

Discussion of algorithm

Step 1. User provides keyframes In part 1 of the algo-
rithm, the user must provide the keyframesto be interpolated. In
addition, angular velocities at the end frames may be provided if
wanted. Angular velocities are convertedinternally to quaternion
velocities: ¢'(t) = (1/2)wq(t).

The value of the soft constraint weighting factor o need also
be given. Sincewe want quaternions of nearly unit magnitude, o
should belarge. By making « approximately 1000 (with the time
difference between key framesnormalized to be of order 1), wetell
theoptimizer that maintai ning unit magnitudeissignificantly more
important than minimizing covariant acceleration. This works
well in that maximum deviation from unitarinessisfrequently less
than 1% (with the average deviation about one tenth of that), and
the contribution to the objective from the soft constraint is about
1 — 2% thus ensuring that the soft constraint does not dominate
the objective.

Step 2: Assign initial guess for quaternion velocities
At al keyframes for which the user has not supplied angular
velocities (interior keyframes and end-framesiif the user has not
specified angular velocities), the system guessesvel ocities with a
very simple algorithm such as:
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With these velocities? , suitable basis functions are used to
interpolate positionsand velocities at the keyframes. Inthis paper
we have used cubic polynomials, but there is no obstacle to us-
ing more advanced curves such as the hermite quaternion curves
of [10]. Each component of the quaternion path is described by
a piecewise cubic such that the position and velocity agree with
those user-specified or system-inserted at the keyframes (or in the
next stage, “variable frames’). Since both position and velocity
are well-defined at the keyframes, the resulting paths must be C'*
continuous as required.

The integra in equation 3 is then evaluated by any simple
numerical integration procedure.

Step 3: Minimization of the objective functional over
keyframe velocities In part 3 of the algorithm, an uncon-
strained minimization packageis used to alter our initial guess of
thevelocity at interior keyframesto minimize the objective OB J
given in equation 3. The variables over which the optimization is
donearethevelocities at the keyframetimes; the user hasnot con-
strained the angular velocity at the interior keyframes. Note that
sincewe have only C'* continuity, theintegrand in equation 3 may
be discontinuous, but this will not affect the objective functional
OBJ. We use the Sequential Quadratic Programming routine
EO4UCF in the NAG libraries [13]. We note that although the
routine can do constrained optimization, it is significantly faster
when using soft constraints as we have formulated the problem.
To take advantage of sparsenessin the problem, one may supply
partial derivatives (for which one need evaluate only asmall part
of theregion of integration since the cubic basisis local) instead
of having the optimizer evaluate them. Since the method is fast
enough even without this optimization, we have not used it in our
tests.

Step 4: Checking of Euler-Lagrange error functional
We divide the entire path into “segments’ of time At (segment
rangesfrom ¢,, to ¢, + At). For each segment n, we computethe
deviation (using the optimized path Q(¢) from step 3):

1 tn+ At
DEV (t,) = N /tn | EL(t) | dt (4
where | £’ | stands for the length of the Euler-Lagrange vector
in equation 7. We then pick the segments having the highest
valuesfor DEV (t,) (and such that ¢,, does not coincide with a
keyframe), and add in a“variableframe” at time ¢,,. A “variable
frame” is like a keyframe except that not only the velocities but
also the positions ¢; can be varied by the optimizer in step 5.

The number of regions in which we add variable framesis a
tradeoff between accuracy (the more variable frames the better)
and speed (the more variable frames the slower). For our applica-
tions, we have found that nearly optimal results can be produced
with about 5 variable frames.

Some care must be taken in the way the path is divided into
segments. If the segments are too short, there may be too many
(and unnecessary) variable points inserted in one region at the
expense of other regions. On the other hand, the segments should
be near enough for multiple variable points to be concentrated in
aregion. For thesereasons, wetypically divide eachtime-interval
between keyframesinto 4 to 5 segments.

2At the end-points, we can only take one sided differences:

4;(t2) = ¢;(t1) JHix) = 95 (k) = 45(tr—1)
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Notethat we use an effectively continuousrepresentation (with
only fine-grain discretization for numerical integration). Thisis
equivalent to saying humerical quadratureisdoneat several points
within asegment. Further, sincewe generally want to add asmall
number of variable frames at the right places, it is appropriate to
use afew segments in each interval between keyframes. Hence
our recommendation above.

Since our method is relatively fast, the user may interactively
modify the segment lengths if he wishes, but this should not be
necessary in most cases.

Step 5: Optimizing again using variable frames We
now repeat the optimization process of step 3 introducing some
number M of additional optimization variablesin theform of the
positions and velocities at the variable frames. Thus, the mini-
mizer now varies interior keyframe velocities as well as variable
frame positions and velocities in order to minimize the objective
functional. Figure 1 showsan exampleof anoptimized quaternion
splineaong with keyframes, variable frames and the unoptimized
“keyframish” path.

Euler-Lagrange Error functional

Let F(gs,q.,q!) denotethe integrand in equation 3 (the integral
of which is the objective function OB J). Then, the variational
calculus [21] tells us that the optimal curve satisfies the corre-
sponding Euler-Lagrange equations:
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Therearefour equationscorresponding to each component g ;..
By measuring the magnitude (Euler-Lagrange error) of the left-
hand side of the equation above, we can get an idea of whereto
refine our coarse representation. The equations for the objective
of eguation 3 are given below.
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In the notation of the canonical equation 5, U(:) corre-
sponds to the term 9F/dq¢; for covariant acceleration. W (<)
isthe corresponding term for maintenanceof unitary quaternions.
V(i) correspondsto the term 9 F/8q!" in equation 5. The term
dF/8q; = 0sincetheobjectivefunction doesnot dependdirectly
on q'.

The i** component of the Euler-Lagrange deviation or error

isthen:
2
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Since the first and second derivatives for 7' are complicated,
and our calculations need only be accurate enough to order the



segmentsby deviation, it may besimpler to differentiate 7" numer-
icaly rather thananalytically. For reference, theanalyticformulae
(assuming cubic basisfunctions so the fourth derivative vanishes)
are given below:

First, we must define:
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wherethe superscriptson the quaternionsstandfor the appropriate
derivatives. Notethat dog = b, and dox = . We can now write:

d12 + dos doidoz
T = -2
doo (doo)?
T = t14+12413 9)

As our “error” function for adaptive refinement (Step 4 in
our agorithm), we use the length of the Euler-Lagrange vector

EL=4/3°  ELZ

It should be noted that the Euler-Lagrange error functional
vanishesas expectedin casethe path followed isaunit great circle
(and thus has no covariant acceleration). For instance, consider
the path:

go(t) = cos(t) qa(t) =sin(t)

It is clear that for this path,

q2(t) = q3(t) =0

@' =—qi b=1 a=T=-1

Using these relations, it can readily be verified that
U(r) = V(i) = W(3i) =0, and the Euler-Lagrange error func-
tional correctly recognizes that the path is optimal. Since all
great circles can be constructed by rotating the example given,
the Euler-Lagrange error functional vanishesfor gresat circles as
expected.

Euler-LagrangeError Functional asaMetric for Adap-
tive Refinement  We believe our use of Euler-Lagrange equa-
tions for adaptive refinement is an improvement over other ap-
proaches such as objective or constraint based subdivision [20]
because the Euler-Lagrange equations should be 0 on complete
minimization while the objective need not go to 0. Thus, a high
objectivedoesnot necessarily indicatealargeerror whilea“large”
valuefor the Euler-Lagrange deviation is generally asureindica-
tion of a“bad” region. Thispaper thusal so showshow to combine
Euler-Lagrange and gradient based methods effectively.

Here, we have used the Euler-Lagrange error functional only
for adaptive refinement. An alternative approach that could be
tried inthefutureisto solvethe Euler-L agrange equationsdirectly
or to minimize the Euler-Lagrange error functional instead of the
objective function of equation 3. Note that while we have derived
analytic formulae for the error functional, numerical approaches
based on numerically approximating the left hand side of equation
5 can aso be used, and may be necessary if more complicated
objective functions than the onein this paper are used.

Advantages of Cubics There are a number of advantages
that continuous (in our case cubic) basis functions possess over
discrete methods [1, 4] of which some of the most important are
given below.

¢ Accurate formulae for quaternion derivatives with respect
to time are provided.

¢ An accurate representation of a curve can be made from a
very small number of basisfunctions, leading to extremely
fast algorithms.

Importance of Variable Frames Variable frames (where
the optimizer can vary the position and velocity) have some ad-
vantages over approachesbased on spline coefficients[3].

¢ Since variable frames correspond directly to frames on the
actual animation path, they are easier to understandand deal
with, especially for auser. Changesin variable frame posi-
tionsor velocities usually correspondin asimple manner to
changesin the actual animation. Large coefficient changes
may balanceeach other, and may not correspondasdirectly
and intuitively to the final animation.

e Theuse of variable frames ensures that keyframe interpo-
lation is automatic. With coefficient based methods, con-
straints need to be added to ensure keyframe interpolation.
This may require a more complex optimizer and/or amore
time-consuming algorithm.

4 Results

We present a representative example with 7 keyframes. Figure
1 shows the path on the sphere (one quaternion component is
zero always as are end-point velocities). Large dots represent
keyframes; small dots are variable frames.

550

50008 q
4500

P
 4000H]

IV

Objecti

w
a
o
o

3000

2500

1 | . f 1 1 1 | 1
200 0 5 10 15 20 25 30 35 40 45 50

Time(s) —>

Figure 3: A very small number of variable frames can yield
near-optimal results. As described in the text below, each circle
represents an increasing number of variable frames or a higher
level of optimization.

Performance

We show the decrease in objective (as a function of program
execution time) as more variable frames are added in figure 3.
Each circle on the graph shows a further level of optimization.
The first circle shows no optimization, the second adjustment



only of velocities at keyframes, the third addition of one variable
frame, the fourth two variable frames and so on. We seethat with
4 variable frames, we have a result that is only .1% away from
optimal.

Unit Magnitude

In figure 4 we show the unit magnitude being maintained. The
initial path (bluedotted) has many placeswhere quaternionsarefar
from unit magnitude. Our optimized path—4 variableframes and
a = 1000—(magenta dashdot) is within 1% of unit magnitude,
while the solid red line shows the effect of making « = 10000
and having 24 variable frames. We see that the quaternions are
practically indistinguishable from having unit magnitude (The
maximum deviation is .07% in the last example).
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Figure 4: Maintaining unit magnitude. In the original path (blue
dotted), there are significant deviations, while increasing levels
of optimization (magenta dashdot and red solid line) bring the
quaternions very closeto unit magnitude.

Euler-Lagrange error functional

The Euler-Lagrange deviation before and after optimization are
shownin figure5. We seethat our method has equidistributed the
Euler-Lagrange error well.

Comparison to previous work

Our result with 4 variable frames took 4 secondsto compute. We
did not make use of sparsenessin the EO4UCF routine. We also
implemented a discrete method asin [1] where we used the for-
mulaefor derivatives given there [except that afactor of two must
multiply their results for correctness]. Within this framework,
we used the same optimization method and objectives as for the
method described in this paper (but sincewe supplied derivatives,
we did make use of sparsenessin this case). The running time for
the discrete method [1] was 8800 seconds, a factor of more than
2000slower! (of course, the exact timings may vary dependingon
the specific machine and minimizer used). While we used 4 vari-
able frames in our approach, we had to use the entire 600 frames
over which theintegral was evaluated in the discrete method. Our
method is significantly faster because a much smaller number of
variables are optimized.
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Figure 5: The blue dotted graph showstheinitial Euler-Lagrange
error. The solid red graph shows how this error is significantly
decreased upon optimization.

Animations

The animations® accompanying this paper show some examples
of rotational paths created using the methods in the paper. Our
first exampleistherotation of arigid object similar to the example
discussed above (except that there ismore rotation whichinvolves
all four quaternion components). Figure 6 shows the (1-shaped)
object rotating while moving in a parabola. The trunks are black
for keyframes (which aso have a dark circle behind them that
makes their position clear), blue for variable frames and red for
the few computed animation frames that are shown.

Figure 6: Showing the object path. Keyframes have adark circle
behind them. Variable frames have blue trunks and those for
computed animation frames are red. The top and bottom of the
object are shown in green and yellow consistently for all frames.

Our second example is derived from a molecular dynamics
simulation (with exotic initial conditions). We resampled the
rotations sparsely, interpolating to make animations. We show an
example using 4 keyframes. A still isshownin figure 7.

3The animations are present on the CD-ROM accompanying the proceedings,
and can be accessed viaour website:
http://www.gg.cal tech.edu/A nimations/quaternions.html
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Figure 7: A still from an animation on the CD-ROM/website.
The animation is derived from a molecular dynamics simulation
of iodine and benzene molecules slowed down by a factor of
approximately 102,

5 Conclusion and Future Work

We have shown how to construct quaternion splines orders of
magnitude faster than previous methods and introduced a new
technique for adaptive refinement based on the Euler-Lagrange
error functional. Whiletheresultsare encouraging, improvements
can be madein the following areas:

¢ Deriving theoretical bounds on the error in the objective
using the Euler-Lagrange error functional and comparing
Euler-Lagrange based adaptive refinement to other meth-
ods. We [14] have derived a physical interpretation for the
Euler-Lagrange error functional and some simple bounds,
but these are currently too loose for meaningful error esti-
mates.

e Using more advanced basis functions. Our current esti-
mate for quaternion velocities (step 2 of the algorithm) can
be improved. In addition, we use simple cubics. Using
quaternion curves such as the B-spline quaternion curves
of [10] for theinitial guessof quaternion velocities and the
corresponding hermite quaternion curves for interpolation
instead of cubics might yield faster results. This would
aso allow the optimization procedure to be carried out on
the quaternion sphere directly [5] instead of using soft con-
straints.

¢ Higher degreesof continuity and better objective functions
This paper hasdiscussed curveswith C'* continuity. A sim-
ple way of achieving C? continuity is with interpolating
B-splinesasin [14]. Perceptualy (rather than mathemati-
cally) based objectivefunctionsal so needto beinvestigated.
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