
Volume xx (200y), Number z, pp. 1–13

MesoGAN: Generative Neural Reflectance Shells

S. Diolatzis1,2,3 , J. Novak3 , F. Rousselle3 , J. Granskog4 , M. Aittala3 , R. Ramamoorthi3,5 , G. Drettakis1,2

stavros.diolatzis@inria.fr jnovak@nvidia.com frousselle@nvidia.com jonathan@runwayml.com maittala@nvidia.com ravir@cs.ucsd.edu george.drettakis@inria.fr

1INRIA 2 Université Côte d’Azur 3NVIDIA 4Runway 5University of California San Diego

Ours ConditioningGround Truth

↑ Length
↑ SaturationFID: 9.01

Path Tracer Integrationa)

Shell Mapping

Arbitrary Extent

b)

c)

Figure 1: Our method combines the strengths of StyleGAN and volumetric neural field rendering to generate a 3D mesoscale texture that can
be mapped to objects and used in a path tracer (c). We train on datasets of synthetic patches (a); our method can generate textures that have
artistic parameters (such as fur saturation and length) which can be used to create shell maps of arbitrary extent (b).

Abstract
We introduce MesoGAN, a model for generative 3D neural textures. This new graphics primitive represents mesoscale appearance
by combining the strengths of generative adversarial networks (StyleGAN) and volumetric neural field rendering. The primitive
can be applied to surfaces as a neural reflectance shell; a thin volumetric layer above the surface with appearance parameters
defined by a neural network. To construct the neural shell, we first generate a 2D feature texture using StyleGAN with carefully
randomized Fourier features to support arbitrarily sized textures without repeating artifacts. We augment the 2D feature texture
with a learned height feature, which aids the neural field renderer in producing volumetric parameters from the 2D texture. To
facilitate filtering, and to enable end-to-end training within memory constraints of current hardware, we utilize a hierarchical
texturing approach and train our model on multi-scale synthetic datasets of 3D mesoscale structures. We propose one possible
approach for conditioning MesoGAN on artistic parameters (e.g., fiber length, density of strands, lighting direction) and
demonstrate and discuss integration into physically based renderers.

Keywords: generative adversarial networks, ray tracing, shell mapping

CCS Concepts
• Computing methodologies → Reflectance modeling; Neural networks; Ray tracing;

submitted to COMPUTER GRAPHICS Forum (5/2023).

https://orcid.org/0000-0001-6051-372X
https://orcid.org/0000-0002-8320-9584
https://orcid.org/0009-0003-2978-2130
https://orcid.org/0000-0002-7068-7085
https://orcid.org/0000-0003-0988-5397
https://orcid.org/0000-0003-3993-5789
https://orcid.org/0000-0002-9254-4819

2 Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN

1. Introduction

We tackle the problem of modeling and rendering complex
mesoscale structures, such as grass, fur, or fabrics. We target a
method that can be directly integrated into a path tracer, provides
a compact representation that allows artistic control over a set of
parameters, and that can be applied to objects as a non-repetitive 3D
neural texture with arbitrary extent. Our solution leverages the com-
bined power of volumetric neural fields and generative adversarial
networks (GANs) to achieve these goals, as shown in Fig. 1.

The inherent volumetric nature of mesoscale structures [KK89,
Ney98] makes neural fields [MST∗20, XTS∗22] a natural choice
for their representation. Unfortunately, neural fields typically have
restricted spatial extent, resulting in repetition artifacts and diffi-
culty handling anisotropy when applied as a texture [BGP∗21]. In
addition, visual quality often degrades when they are conditioned
with several variable parameters [MBRS∗21, BGP∗21]. GANs have
shown great promise in rendering high-quality realistic images, e.g.,
StyleGAN and derivatives [KLA∗20, KAL∗21]. However they typ-
ically require convolutions in screen-space, which precludes their
use as material primitives in light transport simulators such as path
tracing, due to their effect on multi-view consistency and the inabil-
ity to perform local operations when tracing independent rays for
multiple bounces.

Our method uses StyleGAN3 to generate features that are then
interpreted as a volumetric neural field. Such solutions have shown
promising results for 3D synthesis, demonstrated on specific datasets
such as faces [CMK∗20, CLC∗22]. However, end-to-end training
of neural fields in conjunction with GANs is very memory inten-
sive, severely limiting the resolution of the volumetrically rendered
images.

None of the previous methods simultaneously overcomes the lim-
itations mentioned above, i.e., avoiding screen-space convolutions
to enable path tracer integration, generating texture of arbitrary ex-
tent and resolution and artistic control with several parameters. We
address these shortcomings by introducing three contributions:

• We show that, for 3D mesoscale textures without large-scale
structure, we can create 3D textures without repetition artifacts
with arbitrary extent by introducing randomized Fourier features
in the layers of StyleGAN3 [KAL∗21] (Sec. 4.1).

• We introduce neural shell maps that take the volumetric texture
generated by our generator and use the neural field to apply
the learned mesoscale appearances to surfaces (Sec. 4.2). Our
method allows artistic control by conditioning geometry and ap-
pearance parameters in the StyleGAN mapping network and the
neural field multi-layer perceptron (MLP) decoder respectively
(Sec. 4.3).

• To overcome memory limitations of the end-to-end pipeline and
to reduce aliasing, we utilize filtering together with progres-
sive multi-scale training (Sec. 5.1). This allows our combined
StyleGAN3/neural field architecture to generate high-quality
3D textures of mesoscale materials at different scales.

Our results show that our approach successfully exploits the com-
bined power of GANs and neural fields, allowing the generation of
path-traced images with 3D mesoscale textures with artistic control
such as length of fur, roughness, lighting direction, etc.

2. Related work

In this section, we relate our approach to previous work in the fields
of material models and deep learning.

Conventional models of mesoscale appearance. Mesoscale materials
are diverse and complex, with each class of mesostructures often
being modeled using a tailored approach. For example, curves are
typically used for fur and hair [MJC∗03], alpha-masked polygo-
nal meshes are commonly used for vegetation [WM19], whereas
spherical proxies are used to approximate grains in large granular
assemblies [MPG∗16]. In some cases, volumetric primitives are
employed to represent leaves and fur [KK89, DN09, Ney98]. Each
representation has specific weaknesses, e.g., poor filtering (curves
and meshes), high memory consumption, or limited artistic control
(volumetric representations). The lack of a single versatile mesoscale
primitive to handle all these cases robustly is apparent; MesoGAN
addresses these shortcomings.

Neural material models. Recent years have seen the emergence of
neural bidirectional texture function (BTF) models [DvGNK99]
suitable for representing mesoscale structures [RJGW19, RGJW20].
Such neural models can be extended to perform filtered queries for
robust level-of-detail rendering [KMX∗21] and to take curvature
into account to achieve accurate silhouettes [KWM∗22]. However,
BTFs still operate strictly in texture space and do not consider the
spatial extent of these materials. Instead, we opt to explicitly model
the mesoscale structure as a volume, which allows us to blend them
with other traditional meshes in our renderings (Figure 1).

Neural Fields. Neural networks have proven to be remarkably ef-
ficient at encoding scene information, such as radiometric quanti-
ties [RWG∗13,MRKN20,HCZ21], signed distance fields [SCT∗20],
and textures [OMN∗19, HMR20a]. Neural radiance fields (NeRF),
which are of particular relevance to our work, have found adoption
in many applications [TTM∗21, XTS∗22]. In the original NeRF
paper, Mildenhall et al. [MST∗20] propose to represent volumetric
radiance and volumetric density using an MLP. The MLP-inferred
values are optimized by numerically estimating incident radiance on
the image plane and minimizing the loss with respect to a ground
truth image (typically a photo). A suitable encoding of the MLP
input, such as Fourier features [TSM∗20] or an integrated encoding
[BMT∗21], can significantly increase the reconstruction quality.

Baatz et al. [BGP∗21] leverage the concept of neural fields for
representing mesoscale structures. The NeRF texture is optimized
to represent reflectance of a mesostructure slab, which permits in-
stantiating (and relighting) small patches of the mesostructure on an
arbitrary surface. Artistic control of the mesostructure appearance
is paramount for future adoption in production. Hence the authors
propose to condition the MLP on a set of parameters to facilitate
different looks (e.g., straight vs. curly fur). Unfortunately, increasing
the number of conditioning parameters leads to a drop in reconstruc-
tion quality. The limited degree of visual diversity and complete lack
of stochastic detail in NeRF textures are severe drawbacks, which
we solve using a generative approach that features rich, controllable
variations.

Generative approaches. We learn generative textures, and our
approach is related to a number of recent efforts on genera-
tive NeRF models [SLNG20, CMK∗20, GLWT21, NG21] and 3D

submitted to COMPUTER GRAPHICS Forum (5/2023).

Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN 3

�������������������§�����
����������� ��

��

������

	��������������������
������������

���������������

�����
������

	�������������
��
��������
��������
�§�����

����������
���������

����������

�����������

���
�����
������������ ��������������§����

�����������
	�����������������§�����

���������������

���
�������
�§�����

�����������������
�����������

��������������� ������������

Figure 2: Overview: We use the StyleGAN3 generator, which we extend by injection of phase-randomized Fourier features, to produce a
hierarchical feature texture. The texture, when mapped on a surface, conditions an MLP that infers density and reflectance values of the
mesostructure in a volumetric shell above the surface. Given a point (e.g., on a primary ray) inside the shell, the inferred reflectance values
can be used to evaluate transport (illustrated as yellow paths) between this point and another point on the top boundary of the shell.

texture synthesis [HMR20b, PBG20]. We draw inspiration from
EG3D [CLC∗22], which employs a two-stage process where a Style-
GAN2 generator [KLA∗20] drives a subsequent NeRF model using
three orthogonal 2D textures. The generation of details and struc-
tures are done in 2D, then lifted into 3D using an MLP to provide
multi-view consistency. We introduce randomized Fourier features
to our StyleGAN generator to achieve 3D textures with arbitrary
extent that can be applied to objects in a path tracer.

3. Overview

We introduce a mesoscale primitive that provides 3D mesoscale
detail mapped to a surface (see Figure 1). Our model needs to: i)
generate a mesoscale structure of a given extent that is consistent
when viewed from different directions, and free of seams, aliasing,
and repetition artifacts, ii) integrate well into a path tracer avoiding
neighborhood operations during rendering, such as convolutions and
spatial upsampling, and iii) permit relighting and artistic control
over a selected set of conditioning parameters.

To satisfy these requirements, we combine 2D generative mod-
eling and volumetric neural fields as shown in Fig. 2. A 2D Style-
GAN3 generator (left) is used to produce a feature texture and height
in a preprocessing stage. The texture and height vector condition a
MLP (middle) during rendering, which infers appearance parame-
ters of the mesostructure. The powerful convolutional architecture
of the generator enables the use of a smaller MLP [CLC∗22], and
scales better to high-dimensional conditioning parameters.

There are three key elements to our method: First, we inject
randomized Fourier features in the StyleGAN3 generator to allow
synthesizing feature textures of any size (Sec. 4.1). Second, we im-
pose an interpretation on the MLP-inferred values that is compatible
with path tracing queries (Section 4.2), and we reduce the evalua-
tion cost by inferring only inside a geometric shell [PBFJ05] that
bounds the mesostructure. Third, the model is trained end-to-end by

discriminating rendered and reference images, both conditioned on
appearance parameters to enable artistic control.

4. Method

We next describe the key components of our method: the generator
of arbitrarily-sized feature textures, the mesoscale neural reflectance
shell, conditioning on artistic parameters, and multi-scale training.

4.1. Feature Texture & Height Generator

Our goal is to create a texture generator that avoids repetitions and
outputs a feature texture and height that can be applied to objects
of any size. We use a generator based on StyleGAN3 [KAL∗21]
that we augment by injecting noise in the form of random Fourier
features.

Translated by −1 in x No translation Translated by +1 in x

Figure 3: StyleGAN3 can be employed to generate fixed-size tex-
tures (middle) but the static Fourier features utilized by the generator
limit the amount of translation that can be applied until artifacts
appear (left/right); the model was trained using the Describable
Textures Dataset [CMK∗14].

The idea of injecting noise into the generator was first utilized in
the original StyleGAN [KLA19], but dropped in later versions. In
our case, we found that providing the generator with a well-formed

submitted to COMPUTER GRAPHICS Forum (5/2023).

4 Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN

1st Fourier map Feature texture Mesostructure Mesostructure
16×16 256×256 (top view) (side view)

Figure 4: Once trained, the StyleGAN generator transforms patterns
in Fourier maps into patterns in the feature texture. We demonstrate
this for two random instances by visualizing the first 3 channels
in the Fourier map and the resulting feature texture. The rendered
mesostructure is shown in the right two columns (top and side view).
Notice how the mesostructure changes between the two rows.

source of noise improves synthesis of stochastic details. Hence, we
reintroduce randomness in the form of randomized Fourier features.
Fourier features [TSM∗20, XWC∗21] have already been employed
in the original StyleGAN3 architecture, but those were kept static
to aid learning of specific visuals in specific locations (e.g., eyes,
nose). The architecture is thus limited in the range of translation that
can be applied, see Fig. 3, and can only target the specific texture
resolution used during training.

Our goal is to permit variations of a greater degree in order to
create rich, non-repetitive textures that can be applied to objects of
any size. We thus introduce two key novelties: 1) We randomize
the phases of Fourier features during training, and 2) we inject a
collection of these Fourier features into every level of the generator.
We will refer to the collection of features as the Fourier map.

4.1.1. Phase Randomization.

A Fourier map Γ has N channels where each channel k contains a
2D sinusoid with different frequency fk ∈ R2 and phase φk ∈ R2;
Γk = sin(2π(fkx+φk)). We randomize the sinusoids as follows.
The frequencies of the sinusoid are initialized to random values
and kept constant during training so that the generator can learn
specific operations for each frequency. In contrast, the phase of each
sinusoid φk is randomly sampled in each training iteration.

The phase randomization forces the network to translate local
patterns in the Fourier map into patterns that exist in the target
material, as shown in Fig. 4, allowing for a continuous synthesis of
large mesostructures with unique details.

4.1.2. Per-Layer Noise Injection.

The StyleGAN3 generator consists of L levels. In our method, we
inject a random unique Fourier map into each level of the generator,
see Fig. 5 for an illustration. To ensure that the frequency content of
each Fourier map is appropriate for the level, we inject frequencies
only between the cutoff frequency of the previous layer and the

���������

�����

�����

����������������
	
�����������������
������������������

����������������ϕ��

����������������ϕ��
����������������ϕ��

�����������������ϕ���

��
��
��

���

�������
��������

������
���
���

Figure 5: Illustration of our randomized Fourier feature injec-
tions to allow the creation of feature textures with arbitrary size.
Blue boxes depict new and changed components that we added to
StyleGAN3.

cutoff frequency of the current level; see Karras et al. [KAL∗21] for
a thorough explanation of cutoff frequencies.

More formally, for level l, which in the original generator con-
sumes an input tensor with k channels, we create a Fourier map with
k sinusoids. The frequencies of the sinusoids are chosen prior to
training by sampling a 2D annulus with min and max radii set to the
cutoff frequencies fc,l−1 and fc,l , respectively. The phases are ran-
domized at each training iteration, φk ∼ U(0,1). The sinusoids are
discretized using a grid with resolution equal to the width × height
of the input tensor, and the Fourier map is injected by addition to
the input tensor.

In the original StyleGAN3 generator, the width and height of
input tensors at each level (and thus the resolution of our Fourier
maps) are derived from the resolution of the output image using a
carefully designed heuristic; we inherit this strategy from Karras et
al. [KAL∗21]. We only differ in using different output resolutions
between training and inference. During training, the output feature
textures have resolution 256×256, the feature height 1×256 and
the rendered image depicts only a small extent of the mesostructure;
this is to accommodate large memory requirements of the backward
pass. At inference, the resolution of the feature texture is far less
constrained as we perform only the forward pass. The resolution is
set by the user according to the desired extent of the mesostructure;
we used up to 3k×3k feature textures. The feature height has the
same resolution (256) as in training, since the mesostructure has
similar extent vertically between training and rendering.

4.2. Mesoscale 3D neural primitives

In this section, we describe the process of lifting the 2D feature
texture into a 3D volume using an MLP. We start by postulating
the requirements for integrating the resulting volumetric neural
primitive into a light transport simulation. We are interested in

submitted to COMPUTER GRAPHICS Forum (5/2023).

Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN 5

creating a volumetric primitive with a clearly defined boundary (e.g.,
the shell in Fig. 2). Such primitives can be easily integrated into
physically based renderers, as long as we can relate the incident and
outgoing radiance functions at the boundary.

4.2.1. Internal transport

The radiance Lo(x,ω) outgoing from a point on the boundary is
defined as the amount of incident flux that hits the boundary, prop-
agates through the volume, and exits at (x,ω). Lo is a sum of two
terms: scattered radiance, i.e., light that interacts with the volume,
and uncollided radiance, i.e., light that passes through unobstructed.

The scattered term Ls is illustrated in Fig. 6 and can be formalized
by integrating contributions from the boundary along ray (x,−ω):

Ls =
∫ b

0
T (x,y)σ(y)

∫
A

∫
H2

f (y,ω,z,ω′)Li(z,ω
′)dω′dzdt, (1)

where b is the length of the ray, T (x,y) is transmittance, and σ(y)
is the extinction coefficient at point y = x− tω. The inner double
integral accounts for all incident radiance Li that hits the boundary
with total area A through the upper hemisphere H2, and, after inter-
acting with the medium, “enters” the ray by scattering at position y
in direction ω′. The transport through the medium is quantified by
the function f (z,ω′,y,ω), which includes also the albedo and phase
function at y. Our goal is similar to other NeRF techniques, i.e., to
estimate Lo by a small amount of numerical integration on top of
values inferred by the MLP.

In order to facilitate pretraining of the model in a canonical setup,
i.e., without having to account for macroscopic variations, we intro-
duce the following assumption. We assume that the volume relevant
for evaluating the triple integral is small in contrast to macroscale
variations (NeRF-Tex [BGP∗21] uses the same assumption). This
allows us to treat all sources of illumination as distant, i.e., produc-
ing parallel, spatially invariant incident radiance Li(ω

′). Second, we
assume that the volume receives light through the top and bottom
sides of the boundary only. Incorporating these assumptions and
swapping the inner two integrals yields:

Ls =
∫ b

0
T (x,y)σ(y)

∫
H2

Li(ω
′)
∫

A
f (y,ω,z,ω′)dz︸ ︷︷ ︸

ρ(y,ω,ω′)

dω′dt, (2)

We train our neural model to infer i) the extinction coefficient σ(y)
and ii) the transport function f integrated over the boundary (the
inner-most integral), which we will denote ρ(y,ω,ω′). The remain-
ing two integrals are evaluated numerically. To estimate Li(ω

′) we
find an exit point z by shooting a ray from within the shell and
intersecting it with the boundary.

The uncollided term equals to radiance incident at the other side
of the boundary attenuated by transmittance through the shell.

The approximation error due to the aforementioned assumption
manifests typically as incorrect brightness of the mesostructure
in regions where the mesostructure ends. This is a price that we
are currently willing to pay as this assumption allows us to create
material primitives that can be applied to any geometry after the
neural components have been trained, and allow easy integration
into a path tracer.

��������

Figure 6: In order to enable pre-training, we assume that i) internal
light paths (yellow) that contribute radiance to a ray (blue) are
confined to a locally flat region of the mesostructure, and ii) that
incident radiance Li is spatially invariant at the top and bottom
sides of this region, i.e., the size of the region is negligible compared
to the distance to sources of illumination.

4.2.2. Conditioning on feature texture

Next, we describe how to condition the MLP using the generated
feature texture and height vector to obtain the parameters of the
mesostructure. Given a query point, we first map it to the base
surface using orthogonal projection. This yields (u,v) coordinates,
at which we bilinearly interpolate the feature texture F obtaining
a feature vector F(u,v). We then map the query point on the 1D
feature vector using its height h and use linear interpolation to
acquire the feature F(h). We add the two vectors to get the final
features Ftotal(u,v,h) = F(u,v)+F(h). We also condition the MLP
on the relative height h within the volumetric primitive, as well
as the incoming and outgoing directions ω′ and ω. The extinction
coefficient and the transport function at the query point are obtained
by evaluating the MLP as follows:

[σ(y),ρ(y,ω,ω′)] = MLP(Ftotal(u,v,h),ω,ω′;θ), (3)

Our approach bears similarity with the EG3D method [CLC∗22],
which conditions the MLP using three orthogonal feature images
generated by StyleGAN. While the EG3D setup is well suited for
scenes that are well bounded by a cube, we opted for a single-texture
plus height approach that is better suited for mesostructures that are
typically shallow in contrast to their lateral extent.

In order to place the neural mesostructure into a 3D scene, we use
a base mesh extruded into a volumetric shell [PBFJ05]. We intersect
each ray against the shell and perform ray marching to sample a
collision with the mesostructure, performing the aforementioned
queries of the MLP at each step. Depending on whether a collision is
simulated, we evaluate either the scattered or the uncollided radiance.
In both cases the ray is continued further into the scene, either from
the exit point at the boundary (uncollided radiance), or from a
sampled location at the boundary to estimate the incident radiance
Li(ω

′). Details of ray marching through the shell are discussed in
Appendix A.

submitted to COMPUTER GRAPHICS Forum (5/2023).

6 Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN

Geometry Conditioning

Appearance Conditioning

Varying Saturation Varying Hue

Varying Lean Angle Varying Braiding

Figure 7: Our neural 3D textures can be controlled by artist-
friendly parameters modifying the geometry and appearance of the
material. Here we show an instance of fur with varying length and
color.

4.3. Artistic Control

As artistic control is crucial in our generative neural primitives, we
condition the model on additional parameters to enable appearance
modifications at inference time. Since we train on synthetic data,
we can easily construct large labeled datasets with multiple modes
of variation. We split the labels into two categories: geometry and
appearance parameters represented by β and α respectively.

The generator of StyleGAN is conditioned on different styles w,
which are generated by a mapping network (an MLP). In our case,
it maps the geometric conditioning parameters β, such as fur length,
to the style latent space W (see Fig. 7 and 9). We input only the ge-
ometric parameters, which change the structure of the texture, to the
mapping network. The appearance parameters α are concatenated to
the feature vector F(u,v) to condition only the MLP as they affect
the final color and not the geometry of the mesostructure.

5. Data Generation and Training

Our goal is to apply the once-trained mesostructures to many sur-
faces of different sizes. We therefore train the model in a canonical
scene with a relatively small volume of the mesostructure that is
free of any macro-scale variations. The mesostructure is placed
inside a unit box and illuminated by a single distant light source.
In this setup, mapping of points inside the cube to UV and height
coordinates becomes the trivial identity map.

5.1. Multi-scale training

The main challenge with training our model is overcoming the
high memory requirements during optimization. When combining
StyleGAN-based generators with volumetric neural fields, the maxi-
mum training resolution of ray-marched images is 128x128 before
GPU memory runs out (we used V100 GPUs). This heavily re-
stricts the amount of visual detail that can be learned by the model.

No Mipmapping OursMulti-Scale Dataset

Figure 8: When we train on a multi-scale dataset (left), the network
is not aware of the scale when queried, resulting in aliasing (mid-
dle). Our mipmapping approach on the feature textures removes the
aliasing issue (right).

Previous methods try to overcome this using convolutional super-
resolution leading to view inconsistencies [CLC∗22] or by limiting
gradients [ZXNT21] resulting in unreasonably long training times.
Neither is acceptable in our context.

Instead, we propose to train the model using a progressive multi-
scale dataset, where individual images capture a patch of mesostruc-
ture from different distances. Naively training on such dataset with
point queries leads to aliasing when the material is rendered from
far away and blurriness when rendering close ups (see Figure 8). It
is thus vital that we employ the filtered lookups.

To overcome the issues of aliasing, we use mipmapping for the
learned feature texture and height. We follow MipNeRF [BMT∗21]
using cones instead of rays, with cone footprints being approximated
by 3D Gaussians. We project each 3D Gaussian to the tangent plane
at the corresponding (u,v,h) coordinate. For the learned height,
we use the extent of the 3D Gaussian for filtering by bilinearly
interpolating based on the height and scale. For the learned 2D
texture, the 3D Gaussian becomes an ellipse (x,y) = (acos t,bsin t),
which we approximate with a circle of filtering radius r, where
r = min(a,b). The size of the circle is used to trilinearly interpolate
the levels of the feature mipmap.

Our multi-scale training procedure optimizes fine mip levels of
the feature texture when the camera is close to the mesostructure,
and coarse mip levels when the camera is far (Figure 8). With this
approach, the visual quality of mesostructures produced by our
model is less restricted by the low resolution of training images
(128×128) but rather by the resolution of the StyleGAN-generated
feature texture; we were able to generate feature textures up to
3k×3k resolution in our experiments.

To ensure that the generator learns the higher level structure first,
we place the camera far away from the mesostructure during early
parts of the training and progressively allow it to get closer as the
training converges.

Discriminator. We use the same architecture of the discrimi-
nating network and the non-saturating logistic loss as in Style-
GAN3 [KAL∗21]. The main difference is that we also provide
the discriminator with the geometry and appearance labels, and the
camera pose. We train the model end-to-end using datasets discussed
next.

submitted to COMPUTER GRAPHICS Forum (5/2023).

Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN 7

R
iv

er
 G

ra
ss

B
ed

ro
om

 C
at

M
an

n
eq

u
in

↑ Grass Age

↑ Roughness ↑ Lean Different Lean Angle ↑ Braiding Different Hue

Roughness↑

Saturation

↑

Figure 9: Path-traced images of scenes with global illumination featuring three different mesostructures using our generative models. With
Meso-GAN these materials can be rendered with full support of global illumination effects such as the reflections in RIVER GRASS and in
MANNEQUIN. We also show the many different appearances that our models can represent in MANNEQUIN.

5.2. Datasets

We tested our method on three different mesostructures; grass, car-
pet and fur. The grass mesostructure has artistically controllable
appearance using the age parameter, which modulates the albedo
and transparency. The appearance of the carpet can be controlled
via hue and saturation parameters, and its geometry via length, lean,
lean angle, roughness and braiding parameters. The fur model al-
lows control of its geometry through length and roughness and its
appearance through color.

The datasets for these mesostructures were created in Blender

using the Cycles renderer. Each dataset contains 25k images, and
is rendered as follows: We instantiate a slab of the mesostructure
randomizing the procedural modeling through geometric and ap-
pearance parameters. Only about one ninth of the slab (a cubical box
in the center) is visible to primary rays, the rest of the mesostructure
is visible to secondary rays only to correctly simulate global illumi-
nation near the box boundaries. We place the camera randomly on a
hemisphere above the scene and point it towards the center of the
box. The hemisphere has randomized radius to facilitate multi-scale
training described in Sec. 5.1. Our datasets bear similarity with those
created for NeRF-Tex [BGP∗21]. The main difference is the random

submitted to COMPUTER GRAPHICS Forum (5/2023).

8 Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN

instancing of geometry to facilitate generative modeling in our case.
The remaining differences are described in Appendix B.

6. Implementation and Results

Figure 10: Our model naturally supports anisotropic materials.

We integrated our method in the Mitsuba 2 path tracer [ND-
VZJ19], and used the system to render images in Figures 1, 9 and
10. We will release all code for training and rendering) and datasets
on publication. The architecture of the feature-texture generator
matches StyleGAN3 [KAL∗21]. The MLP that infers the parame-
ters of the mesostructure has 4 hidden layers with 64 neurons and
ReLU activations.

We trained our models on 8 NVIDIA V100 32GB GPUs for 4
days. Our GPU memory usage for each GPU is 21 GB for a resolu-
tion of 128x128 and a batch size of 4 per GPU. Higher resolutions
require GPUs with larger memory, or smaller batch sizes and conse-
quently smaller optimization steps, in both cases yielding training
times on the order of weeks.

In Figures 1 and 9 we demonstrate how our mesoscale 3D neural
textures can be used in scenes with global illumination effects. In
the MANNEQUIN scene we demonstrate the range of appearances
our models can represent while being used in a path tracer with
accurate reflections and global illumination effects. Please also see
the supplemental videos, showing paths in these scenes with varying
parameters during camera motion. These videos illustrate the power
of Meso-GAN that allows direct generation of an infinite variety of
mesoscale appearance.

6.1. Comparison to π-GAN and StyleNeRF

A number of 3D-aware image synthesis techniques combining con-
cepts from NeRF [MST∗20] and StyleGAN [KLA19] have been pro-
posed. In Fig. 11, we compare to two of these, π-GAN [CMK∗20]
and StyleNeRF [GLWT21].

π-GAN is arguably the most direct realization of this idea, propos-
ing a generative NeRF modeled using an MLP that is conditioned
on a noise vector produced by a StyleGAN-inspired mapping net-
work. As the MLP output is further processed only by a simple
integration scheme (ray marching), π-GAN naturally inherits the
multi-view consistency of NeRF, and is amenable for integration
into path tracers.

StyleNeRF offers a marked visual improvement over π-GAN
achieved through the use of a post-process spatial upsampling. While
the use of spatial upsampling offers compelling benefits, it also
comes at the cost of (mild) multi-view inconsistency. Most impor-
tantly though, spatial upsampling in post-process is fundamentally
at odds with integrating the method as a scene primitive into a path
tracer, where the primitive will be hit by incoherent secondary rays.

We report the Fréchet inception distance (FID) [HRU∗17] for our
π-GAN, StyleNeRF and our method in Table 1. We compute these
metrics at the same resolution (128x128) to be fair to all methods.
We explain why StyleNeRF has higher FID scores in Appendix C.

Our approach shares similarities with the EG3D [CLC∗22] archi-
tecture, in the sense that we first employ a convolutional component
and afterwards interpret its output using point-wise MLP queries.
However, unlike StyleNeRF and EG3D, we do not further upsam-
ple the MLP output using spatial convolutions. This allows us to
reap the benefits of the powerful StyleGAN generator in ways that
are compatible with integration into path tracers. The added ben-
efit is that the expensive feature-texture generation happens in a
pre-process; during rendering we evaluate only the MLP.

CARPET 2D GRASS
π-GAN 200.51 214.98
StyleNeRF 60.24 32.54
Ours 9.01 4.40

Table 1: FID results for our comparisons to StyleNeRF and π-GAN.

6.2. Comparison to EG3D

Our method is inspired by EG3D and its triplane volumetric rep-
resentation. In this comparison we demonstrate the limitations of
EG3D in terms of view consistency and show that there is no elegant
way to directly apply the triplane representation in our scenario of
neural reflectance shells, motivating the use of our proposed neural
feature plane and height approach.

In Figure 12 we show qualitative and FID results when we train
EG3D on our synthetic GRASS patch dataset. In the supplementary
video we also demonstrate that like StyleNeRF, EG3D is not view
consistent. To improve the view consistency we would have to
increase the ray marching resolution and rely less on image space
upsampling. As we show in Table 2 this takes the memory usage
over the available 32GB in each GPU when we train on 8 V100
GPUs. This motivates our mipmapping approach which improves
the quality of the learned volume without an increase in memory
usage.

While EG3D achieves an FID of 7.44 (see appendix C) the vanilla
approach cannot be integrated directly with our shell maps. Their
super-resolution module operates on image space and needs access
to neighboring pixels to apply convolutions and bilinear upsampling.
As a result we cannot compare with EG3D on full path traced scenes
but we choose to provide an alternative variant of our method named
Triplanes using the orthogonal planes suggested by EG3D.

The three orthogonal planes of EG3D are generated by the same
generator and they are entangled. New variations in the shape of the

submitted to COMPUTER GRAPHICS Forum (5/2023).

Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN 9

Carpet

Grass

Ours π-GAN

Ground Truth Style-NeRF

Ours π-GAN

Ground Truth Style-NeRF

Figure 11: Four views of a single instance of the carpet and the grass mesostructures synthesized by other generative approaches and our
method. In contrast to StyleNeRF, which yields comparable quality to our method, our method is multi-view consistent and free of appearing
and disappearing visual features (see the highlighted region and supplementary video).

mesoscale material are controlled by the random noise z. To use this
approach without changing the triplane approach we break the single
shell into smaller randomly rotated ones. Each patch now has its own
triplanes to make use of the generative aspect of the method. The
resulting rendering is shown in Figure 12. The instantiated patches
result in 9.78× more rendering time since different rays need to
decode several feature planes to get reflectance. In comparison our
method has more stochastic structure and runs the decoder only
once on the scaled feature planes and height, demonstrating that in
the scenario of integrating neural reflectance shells into path tracing
our approach is the best fit.

6.3. Comparison to NeRF-Tex

NeRF-Tex [BGP∗21] proposes to model mesostructures using
an MLP conditioned on various artistic parameters authored as
2D textures. Our work can be viewed as an extension to NeRF-
Tex [BGP∗21] where we add an extra, StyleGAN-generated feature
texture for conditioning the MLP. This greatly expands the capabil-
ities of the model: instead of optimizing the MLP to “memorize”
a single instance of the mesostructure, we train it to map feature

EG3D
Ray Marching Resolution 128 256
Memory Usage 25 GB Over 32 GB

Ours
Ray Marching Resolution 128 128 + MipMapping
Memory Usage 20 GB 20 GB

Table 2: The only option to improve view consistency in EG3D is to
increase the ray marching resolution and reduce the importance of
the image space upsampling. This leads to an explosion in memory
usage going over the 32GB of a modern GPU. In comparison our
proposed mipmapping can improve the quality of the learned 3D
volume, as is shown in Table 3, without an increase in memory
usage.

textures to 3D assemblies, thereby allowing to create an arbitrary
number of novel mesostructures.

We compare our method to NeRF-Tex in Fig. 13 where we in-
crease the number of conditioning artistic parameters from 2 to 8.
The modeling capacity of the NeRF-Tex MLP is quickly exhausted,

submitted to COMPUTER GRAPHICS Forum (5/2023).

10 Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN

EG3D Ours Ground Truth

Ours Triplanes
FID:7.44 FID: 4.40

Time per spp: 7.37 s (1.0x) Time per spp: 72.1 s (9.78x)

Figure 12: Comparison of our method to EG3D on the Grass dataset with FID (top). We also create the Triplanes variant of our method
to demonstrate the limitations of the orthogonal planes representation when applied to shell mapping. This variant uses the same triplanes
approach as EG3D but has to resort to multiple instances of mesoscale material resulting in 9.78× longer rendering and overall less natural
variation in appearance.

N
eR

F-
Te

x

Length, saturation + roughness, hue + lean, lean angle + braid, RNG seed

FID: 221.28

O
ur

s

Length, saturation + roughness, hue + lean, lean angle + braid

FID: 11.96

Figure 13: From left to right, we show results of training the
parametric NeRF-Tex [BGP∗21] and our generative method on
datasets with 2, 4, 6, and 8 parameters conditioning the look. The
visual quality of NeRF-Tex reduces quickly as more parameters are
added. In the extreme of conditioning on the RNG seed (last column),
the model collapses producing average appearance. We can treat
this iteration of NeRF-Tex as a generative model and compare
it against our method quantitatively using FID. Our generative
approach is agnostic to the number of parameters leading to much
more detailed appearance and improved FID.

leading to increasingly blurry results. We also tested training NeRF-
Tex on a dataset with random instances of the mesostructure, con-
ditioning the MLP on the unique seeds used by the procedural
modeling tool (right-most column). As expected, the method fails to
learn such a complex mapping collapsing to an “average” mesostruc-
ture. What we observe qualitatively is confirmed quantitatively if we
treat this iteration of NeRF-Tex as a generative model and compute
the FID. NeRF-Tex achieves a score of 221.28 while our method
achieves 11.96.

The other disadvantage of NeRF-Tex is the limited extent to
which it can produce anisotropic assemblies (e.g., combed hair).
The method models a slab of the mesostructure by repeatedly in-
stantiating the same patch over the surface while randomly rotating
the instances to prevent repetitive appearance. The randomization of
rotation, however, precludes creating anisotropic assemblies; these
would require orienting all instances in a similar way. In contrast,
our approach is readily capable of handling anisotropic structures as
illustrated in Figure 10.

6.4. Ablations

We perform three ablations on the main components of our approach:
we first disable Fourier Features and also disable mipmapping. The
numerical results are shown in Tab. 3 for the FID metric [HRU∗17].
We see that in both cases mipmapping has a significant effect, while
Fourier features are also beneficial to a lesser degree.

submitted to COMPUTER GRAPHICS Forum (5/2023).

Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN 11

CARPET 8D
Full 11.96
No-Fourier Features 26.8
No-MipMapping 58.21

Table 3: FID results on ablations of our method.

Ours No Phase Randomization

Figure 14: We disable the randomization of phases (right) and
compare with our full pipeline (left). When we apply this variant
on a shell map the generator is able to reproduce the mesoscale
material only in the known patch region.

We also disable the phase randomization during training and
demonstrate how the generator generalizes when it has only seen
the frequencies at specific phases. Similar to what we observe in
Figure 3, in Figure 14 we see that the generator operates well within
the ranges of the patch but outside of that it produces only low
frequency patterns.

7. Conclusion and Future Directions

We have introduced MesoGAN, a generative mesoscale material
primitive, that enables synthesizing neural mesoscale materials of
variable extent without loss of detail, seams, or aliasing artifacts.
This is due to the injection of randomized Fourier features, filtering,
and multi-scale training. Relighting and artistic control are retained
by conditioning the model on parameters during training. We pro-
pose to use the shell-mapping approach for placing the mesostruc-
ture on triangle meshes, which sidesteps the limitations of prior
works. The visual quality is encouraging, yet still far from produc-
tion requirements.

Future research should focus on increasing the resolution of the
feature texture during training without increasing memory require-
ments. Promising alternatives in this direction are patch based meth-
ods such as EpiGRAF [STWW22]. We also believe that adapting
the training procedure of our method to photographic datasets cap-
tured in the wild is crucial for the success of neural materials in the
future. In this scenario, new challenges arise as we need to estimate
camera poses, lighting conditions and material parameters, all of
which are given in our synthetic datasets. Our work serves as the
first step towards utilizing generative neural models for creating
faithful reproductions of real mesostructures and integrating these
into physically based renderers.

Appendix A: Marching through shells

We bound the mesostructure using a geometric shell [PBFJ05],
which consists of triangular prisms extruded from triangles of the
base mesh along vertex normals. For each ray hitting the shell, we
perform the following steps. We find the first intersection with the
boundary then we step through the prisms by intersecting the ray
against bilinear patches [Res19] that form the sides of the prisms.
Given a budget of N steps we first compute all the intersections
for each ray within the shell. Then we sort and batch based on the
number of intersections I. We add N/I new steps by computing the
UV coordinates (u,v)x and height hx for each point in the steps x,
by linearly interpolating these coordinates.

In our implementation, we use ray marching that generates K
sampled locations along the ray segment overlapping the shell. For
each location xk, we repeat the procedure of finding the bounding
prism, computing the (u,v,h,r)xk , fetching the generated features
F(u,v) and F(h) and appearance parameters αxk . We collect these
queries from all rays inputting them into the MLP in a single batch.

Appendix B: Other differences to NeRF-Tex

Boundary Effect

NeRF-Tex Ours

Figure 15: Comparison of training images used for NeRF-
Tex [BGP∗21] and our method (with added illustrations). In NeRF-
Tex the images depict unclipped geometric assemblies that are sur-
rounded by a ring of primitives visible to secondary rays only. In
our case, we use a slab of the mesostructure rendering directly any
part of the mesostructure inside a box (the rest of the slab is visible
to secondary rays only).

Here we describe technical differences to NeRF-Tex [BGP∗21].
NeRF-Tex constructs the mesostructure by instantiating a single
patch of the mesostructure at random locations with randomized ori-
entation. We utilize shell mapping. Each approach requires slightly
different training data. The training images for NeRF-Tex depict
a patch of complete geometric primitives. The primitives typically
start on a tile and “grow” arbitrarily far from it. For shell mapping,
the training images need to depict primitives that are clipped against
a cubical boundary. This clipping is present only in the training im-
ages. At inference time, there is no notion of instancing of a patch;
we generate a single feature texture for the entire base mesh. The
difference in training images is illustrated in Fig. 15.

NeRF-Tex uses a parametric model that is optimized by penaliz-
ing deviations in radiance (SMAPE loss) and transmittance (MSE

submitted to COMPUTER GRAPHICS Forum (5/2023).

12 Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN

loss) from values in reference images in linear space. Our model
is generative, relying on a convolutional loss that discriminates at
the level of full images. We follow the standard practice when deal-
ing with high dynamic range images and tonemap all images using

x
x+1 [RSSF02].

Appendix C: Comparison to StyleNeRF and EG3D

Even though both StyleNeRF and EG3D achieve higher resolution
results as shown in Figure 11 and Figure 12 (top), they score worse
than our method in FID. When we train StyleNeRF and EG3D we
observe that they struggle to recreate the pure black background due
to their screen space operations. For StyleNeRF this also leads to
artifacts, such as the one shown in Figure 16, that overall increases
the FID score when its outputs are compared to the real pure black
images.

Figure 16: Artifacts observed when training StyleNeRF on the
carpet mesostructure.

References

[BGP∗21] BAATZ H., GRANSKOG J., PAPAS M., ROUSSELLE F.,
NOVÁK J.: Nerf-tex: Neural reflectance field textures. In Eurographics
Symposium on Rendering (June 2021), The Eurographics Association. 2,
5, 7, 9, 10, 11

[BMT∗21] BARRON J. T., MILDENHALL B., TANCIK M., HEDMAN
P., MARTIN-BRUALLA R., SRINIVASAN P. P.: Mip-nerf: A multiscale
representation for anti-aliasing neural radiance fields. ICCV (2021). 2, 6

[CLC∗22] CHAN E. R., LIN C. Z., CHAN M. A., NAGANO K., PAN B.,
MELLO S. D., GALLO O., GUIBAS L. J., TREMBLAY J., KHAMIS S.,
KARRAS T., WETZSTEIN G.: Efficient geometry-aware 3d generative
adversarial networks. vol. abs/2112.07945. URL: https://arxiv.
org/abs/2112.07945, arXiv:2112.07945. 2, 3, 5, 6, 8

[CMK∗14] CIMPOI M., MAJI S., KOKKINOS I., MOHAMED S., ,
VEDALDI A.: Describing textures in the wild. In Proceedings of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2014).
3

[CMK∗20] CHAN E., MONTEIRO M., KELLNHOFER P., WU J., WET-
ZSTEIN G.: pi-GAN: Periodic implicit generative adversarial networks
for 3d-aware image synthesis. In arXiv (2020). 2, 8

[DN09] DECAUDIN P., NEYRET F.: Volumetric billboards. Com-
puter Graphics Forum 28, 8 (2009), 2079–2089. doi:10.1111/j.
1467-8659.2009.01354.x. 2

[DvGNK99] DANA K. J., VAN GINNEKEN B., NAYAR S. K., KOEN-
DERINK J. J.: Reflectance and texture of real-world surfaces. ACM Trans.
Graph. 18, 1 (jan 1999), 1–34. URL: https://doi.org/10.1145/
300776.300778, doi:10.1145/300776.300778. 2

[GLWT21] GU J., LIU L., WANG P., THEOBALT C.: Stylenerf: A style-
based 3d-aware generator for high-resolution image synthesis. CoRR
abs/2110.08985 (2021). URL: https://arxiv.org/abs/2110.
08985, arXiv:2110.08985. 2, 8

[HCZ21] HADADAN S., CHEN S., ZWICKER M.: Neural ra-
diosity. ACM Transactions on Graphics 40, 6 (dec 2021).
URL: https://doi.org/10.1145/3478513.3480569, doi:
10.1145/3478513.3480569. 2

[HMR20a] HENZLER P., MITRA N. J., RITSCHEL T.: Learning a neural
3d texture space from 2d exemplars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (June
2020). 2

[HMR20b] HENZLER P., MITRA N. J., RITSCHEL T.: Learning a neural
3d texture space from 2d exemplars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2020), pp. 8356–
8364. 3

[HRU∗17] HEUSEL M., RAMSAUER H., UNTERTHINER T., NESSLER
B., HOCHREITER S.: Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural information
processing systems 30 (2017). 8, 10

[KAL∗21] KARRAS T., AITTALA M., LAINE S., HÄRKÖNEN E., HELL-
STEN J., LEHTINEN J., AILA T.: Alias-free generative adversarial net-
works. In Proc. NeurIPS (2021). 2, 3, 4, 6, 8

[KK89] KAJIYA J. T., KAY T. L.: Rendering fur with three dimensional
textures. SIGGRAPH Comput. Graph. 23, 3 (July 1989), 271–280. doi:
10.1145/74334.74361. 2

[KLA19] KARRAS T., LAINE S., AILA T.: A style-based generator
architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (2019),
pp. 4401–4410. 3, 8

[KLA∗20] KARRAS T., LAINE S., AITTALA M., HELLSTEN J., LEHTI-
NEN J., AILA T.: Analyzing and improving the image quality of Style-
GAN. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2020). 2, 3

[KMX∗21] KUZNETSOV A., MULLIA K., XU Z., HAŠAN M., RA-
MAMOORTHI R.: NeuMIP: Multi-resolution neural materials. ACM
Transactions on Graphics (Proc. SIGGRAPH 2021) 40, 4 (2021). 2

[KWM∗22] KUZNETSOV A., WANG X., MULLIA K., LUAN F., XU Z.,
HAŠAN M., RAMAMOORTHI R.: Rendering neural materials on curved
surfaces. In SIGGRAPH 22 (2022). 2

[MBRS∗21] MARTIN-BRUALLA R., RADWAN N., SAJJADI M. S. M.,
BARRON J. T., DOSOVITSKIY A., DUCKWORTH D.: NeRF in the Wild:
Neural Radiance Fields for Unconstrained Photo Collections. In CVPR
(2021). 2

[MJC∗03] MARSCHNER S. R., JENSEN H. W., CAMMARANO M., WOR-
LEY S., HANRAHAN P.: Light scattering from human hair fibers. ACM
Trans. Graph. 22, 3 (July 2003), 780–791. doi:10.1145/882262.
882345. 2

submitted to COMPUTER GRAPHICS Forum (5/2023).

https://arxiv.org/abs/2112.07945
https://arxiv.org/abs/2112.07945
http://arxiv.org/abs/2112.07945
https://doi.org/10.1111/j.1467-8659.2009.01354.x
https://doi.org/10.1111/j.1467-8659.2009.01354.x
https://doi.org/10.1145/300776.300778
https://doi.org/10.1145/300776.300778
https://doi.org/10.1145/300776.300778
https://arxiv.org/abs/2110.08985
https://arxiv.org/abs/2110.08985
http://arxiv.org/abs/2110.08985
https://doi.org/10.1145/3478513.3480569
https://doi.org/10.1145/3478513.3480569
https://doi.org/10.1145/3478513.3480569
https://doi.org/10.1145/74334.74361
https://doi.org/10.1145/74334.74361
https://doi.org/10.1145/882262.882345
https://doi.org/10.1145/882262.882345

Stavros Diolatzis, Jan Novak, Fabrice Rouselle, Jonathan Granskog, Miika Aittala, Ravi Ramamoorthi, George Drettakis / MesoGAN 13

[MPG∗16] MÜLLER T., PAPAS M., GROSS M., JAROSZ W., NOVÁK
J.: Efficient rendering of heterogeneous polydisperse granular media.
ACM Trans. Graph. 35, 6 (Nov. 2016), 168:1–168:14. doi:10.1145/
2980179.2982429. 2

[MRKN20] MÜLLER T., ROUSSELLE F., KELLER A., NOVÁK J.: Neural
control variates. ACM Trans. Graph. 39, 6 (Nov. 2020), 243:1–243:19.
doi:10.1145/3414685.3417804. 2

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: NeRF: Representing scenes as neural
radiance fields for view synthesis. In ECCV (2020). 2, 8

[NDVZJ19] NIMIER-DAVID M., VICINI D., ZELTNER T., JAKOB W.:
Mitsuba 2: A retargetable forward and inverse renderer. ACM Trans.
Graph. 38, 6 (nov 2019). URL: https://doi.org/10.1145/
3355089.3356498, doi:10.1145/3355089.3356498. 8

[Ney98] NEYRET F.: Modeling, animating, and rendering complex scenes
using volumetric textures. IEEE Transactions on Visualization and Com-
puter Graphics 4, 1 (1998), 55–70. doi:10.1109/2945.675652.
2

[NG21] NIEMEYER M., GEIGER A.: GIRAFFE: Representing scenes as
compositional generative neural feature fields. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) (2021). 2

[OMN∗19] OECHSLE M., MESCHEDER L., NIEMEYER M., STRAUSS T.,
GEIGER A.: Texture fields: Learning texture representations in function
space. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) (October 2019). 2

[PBFJ05] PORUMBESCU S. D., BUDGE B., FENG L., JOY K. I.: Shell
maps. In ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005),
SIGGRAPH ’05, Association for Computing Machinery, p. 626–633.
doi:10.1145/1186822.1073239. 3, 5, 11

[PBG20] PORTENIER T., BIGDELI S. A., GOKSEL O.: Gramgan:
Deep 3d texture synthesis from 2d exemplars. CoRR abs/2006.16112
(2020). URL: https://arxiv.org/abs/2006.16112, arXiv:
2006.16112. 3

[Res19] RESHETOV A.: Cool patches: A geometric approach to
ray/bilinear patch intersections. In Ray Tracing Gems. Springer, 2019,
pp. 95–109. 11

[RGJW20] RAINER G., GHOSH A., JAKOB W., WEYRICH T.: Unified
neural encoding of BTFs. Computer Graphics Forum (Proc. Eurograph-
ics) 39, 2 (July 2020), 167–178. doi:10.1111/cgf.13921. 2

[RJGW19] RAINER G., JAKOB W., GHOSH A., WEYRICH T.: Neural
BTF compression and interpolation. Computer Graphics Forum (Proc. Eu-
rographics) 38, 2 (Mar. 2019), 235–244. doi:10.1111/cgf.13633.
2

[RSSF02] REINHARD E., STARK M., SHIRLEY P., FERWERDA J.: Pho-
tographic tone reproduction for digital images. ACM Trans. Graph. 21, 3
(jul 2002), 267–276. URL: https://doi.org/10.1145/566654.
566575, doi:10.1145/566654.566575. 12

[RWG∗13] REN P., WANG J., GONG M., LIN S., TONG X., GUO B.:
Global illumination with radiance regression functions. ACM Trans.
Graph. 32, 4 (July 2013). doi:10.1145/2461912.2462009. 2

[SCT∗20] SITZMANN V., CHAN E., TUCKER R., SNAVELY N.,
WETZSTEIN G.: MetaSDF: Meta-learning signed distance func-
tions. In Advances in Neural Information Processing Systems
(2020), Larochelle H., Ranzato M., Hadsell R., Balcan M. F., Lin
H., (Eds.), vol. 33, Curran Associates, Inc., pp. 10136–10147. URL:
https://proceedings.neurips.cc/paper/2020/file/
731c83db8d2ff01bdc000083fd3c3740-Paper.pdf. 2

[SLNG20] SCHWARZ K., LIAO Y., NIEMEYER M., GEIGER A.: GRAF:
Generative radiance fields for 3d-aware image synthesis. In Advances in
Neural Information Processing Systems (NeurIPS) (2020). 2

[STWW22] SKOROKHODOV I., TULYAKOV S., WANG Y., WONKA P.:
Epigraf: Rethinking training of 3d gans. arXiv preprint arXiv:2206.10535
(2022). 11

[TSM∗20] TANCIK M., SRINIVASAN P. P., MILDENHALL B.,
FRIDOVICH-KEIL S., RAGHAVAN N., SINGHAL U., RAMAMOORTHI
R., BARRON J. T., NG R.: Fourier features let networks learn high
frequency functions in low dimensional domains. NeurIPS (2020). 2, 4

[TTM∗21] TEWARI A., THIES J., MILDENHALL B., SRINIVASAN P.,
TRETSCHK E., WANG Y., LASSNER C., SITZMANN V., MARTIN-
BRUALLA R., LOMBARDI S., ET AL.: Advances in neural rendering.
arXiv preprint arXiv:2111.05849 (2021). 2

[WM19] WYMAN C., MCGUIRE M.: Improved alpha testing using
hashed sampling. IEEE Transactions on Visualization and Computer
Graphics 25, 2 (2019), 1309–1320. doi:10.1109/TVCG.2017.
2739149. 2

[XTS∗22] XIE Y., TAKIKAWA T., SAITO S., LITANY O., YAN S., KHAN
N., TOMBARI F., TOMPKIN J., SITZMANN V., SRIDHAR S.: Neural
fields in visual computing and beyond. Computer Graphics Forum (2022).
doi:10.1111/cgf.14505. 2

[XWC∗21] XU R., WANG X., CHEN K., ZHOU B., LOY C. C.: Po-
sitional encoding as spatial inductive bias in gans. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), pp. 13569–13578. 4

[ZXNT21] ZHOU P., XIE L., NI B., TIAN Q.: CIPS-3D: A 3D-Aware
Generator of GANs Based on Conditionally-Independent Pixel Synthesis,
2021. arXiv:2110.09788. 6

submitted to COMPUTER GRAPHICS Forum (5/2023).

https://doi.org/10.1145/2980179.2982429
https://doi.org/10.1145/2980179.2982429
https://doi.org/10.1145/3414685.3417804
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1109/2945.675652
https://doi.org/10.1145/1186822.1073239
https://arxiv.org/abs/2006.16112
http://arxiv.org/abs/2006.16112
http://arxiv.org/abs/2006.16112
https://doi.org/10.1111/cgf.13921
https://doi.org/10.1111/cgf.13633
https://doi.org/10.1145/566654.566575
https://doi.org/10.1145/566654.566575
https://doi.org/10.1145/566654.566575
https://doi.org/10.1145/2461912.2462009
https://proceedings.neurips.cc/paper/2020/file/731c83db8d2ff01bdc000083fd3c3740-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/731c83db8d2ff01bdc000083fd3c3740-Paper.pdf
https://doi.org/10.1109/TVCG.2017.2739149
https://doi.org/10.1109/TVCG.2017.2739149
https://doi.org/10.1111/cgf.14505
http://arxiv.org/abs/2110.09788

