Advanced Computer Graphics
CSE 190 [Winter 2016], Lecture 11
Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir

To Do
- Assignment 2 due Feb 19
 - Should already be well on way.
 - Contact us for difficulties etc.
- This lecture on rendering, rendering equation. Pretty advanced theoretical material. Don’t worry if a bit lost; not directly required on the homeworks.

Course Outline
- 3D Graphics Pipeline
- Rendering (Creating, shading images from geometry, lighting, materials)

Course Outline
- 3D Graphics Pipeline
- Rendering (Creating, shading images from geometry, lighting, materials)
 - Modeling (Creating 3D Geometry)

Unit 1: Foundations of Signal and Image Processing
Understanding the way 2D images are formed and displayed, the important concepts and algorithms, and to build an image processing utility like Photoshop
Weeks 1 – 3: Assignment 1

Unit 2: Meshes, Modeling
Weeks 3 – 5: Assignment 2

Unit 3: Advanced Rendering
Weeks 6 – 7, 8-9: (Final Project)

Unit 4: Animation, Imaging
Weeks 7-8, 9-10: (Final Project)

Illumination Models
- Local Illumination
 - Light directly from light sources to surface
 - No shadows (cast shadows are a global effect)

Global Illumination: multiple bounces (indirect light)
- Hard and soft shadows
- Reflections/refractions (already seen in ray tracing)
- Diffuse and glossy interreflections (radiosity, caustics)

Diffuse Interreflection
Diffuse interreflection, color bleeding [Cornell Box]

Some images courtesy Henrik Wann Jensen
Overview of lecture

- **Theory** for all global illumination methods (ray tracing, path tracing, radiosity)
- We derive **Rendering Equation** [Kajiya 86]
 - Major theoretical development in field
 - Unifying framework for all global illumination
 - Discuss existing approaches as special cases

Fairly theoretical lecture (but important). Not well covered in textbooks (though see Eric Veach’s thesis). See reading if you are interested.

Outline

- **Reflectance Equation** (review)
- **Global Illumination**
 - **Rendering Equation**
 - As a general Integral Equation and Operator
 - Approximations (Ray Tracing, Radiosity)
 - Surface Parameterization (Standard Form)

Reflection Equation

\[
L_r(x, \omega_r) = L_e(x, \omega_r) + \sum L_i(x, \omega_i) f(x, \omega_i, \omega_r) c(\omega_i, \omega_r)
\]

Reflected Light (Output Image) Emission Incident Light (from light source) BRDF Cosine of Incident angle

Sum over all light sources

\[
L_r(x, \omega_r) = L_e(x, \omega_r) + \sum L_i(x, \omega_i) f(x, \omega_i, \omega_r) c(\omega_i, \omega_r)
\]

Reflected Light (Output Image) Emission Incident Light (from light source) BRDF Cosine of Incident angle
Reflection Equation

$\omega_i \cdot r \omega_x(x, \omega_i) \cos \theta \cdot d\omega$

Reflected Light (Output Image) Emission Incident Light (from light source) BRDF Cosine of Incidence Angle

Replace sum with integral

$L_r(x, \omega_i) = L_e(x, \omega_i) + \int \omega_i \cdot f(x, \omega_i, \omega_i) \cos \theta \cdot d\omega$

Environment Maps

- Light as a function of direction, from entire environment
- Captured by photographing a chrome steel or mirror sphere
- Accurate only for one point, but distant lighting same at other scene locations (typically use only one env. map)

Environment Maps

- Environment maps widely used as lighting representation
- Many modern methods deal with offline and real-time rendering with environment maps
- Image-based complex lighting + complex BRDFs

The Challenge

$L_r(x, \omega_i) = L_e(x, \omega_i) + \int \omega_i \cdot f(x, \omega_i, \omega_i) \cos \theta \cdot d\omega$

- Computing reflectance equation requires knowing the incoming radiance from surfaces
- But determining incoming radiance requires knowing the reflected radiance from surfaces

Rendering Equation (Kajiya 86)

$L_r(x, \omega_i) = L_e(x, \omega_i) + \int \omega_i \cdot f(x, \omega_i, \omega_i) \cos \theta \cdot d\omega$

Figure 8: A sample image. All objects are rendered gray. Color on the objects is coming from the green glass table and white lighting from the lamp.
Rendering Equation as Integral Equation

\[L(x, \omega_r) = L(x, \omega_i) + \int_{S} L(x', \omega_r) \cdot \frac{\cos \theta_i}{\pi} \, dv \]

Is a Fredholm Integral Equation of second kind [extensively studied numerically] with canonical form

\[I(u) = e(u) + \int K(u, v) \, dv \]

Kernel of equation

Linear Operator Equation

\[I(u) = e(u) + \int K(u, v) \, dv \]

Kernel of equation

Light Transport Operator

\[L = E + KL \]

Can be discretized to a simple matrix equation [or system of simultaneous linear equations]

(L, E are vectors, K is the light transport matrix)

Ray Tracing and extensions

* General class numerical Monte Carlo methods
* Approximate set of all paths of light in scene

\[L = E + KL \]

\[IL - KL = E \]

\[(I - K)L = E \]

Binomial Theorem

\[L = (I - K)^{-1}E \]

\[L = (I + K + K^2 + K^3 + \ldots)E \]

\[L = E + KE + K^2E + K^3E + \ldots \]

Outline

* Reflectance Equation (review)
* Global Illumination
* Rendering Equation
* As a general Integral Equation and Operator
* Approximations (Ray Tracing, Radiosity)
* Surface Parameterization (Standard Form)
Linear Operator Theory

- Linear operators act on functions like matrices act on vectors or discrete representations
 \[h(u) = (M \circ f)(u) \]
 where \(M \) is a linear operator, \(f \) and \(h \) are functions of \(u \)
- Basic linearity relations hold
 \[M(af + bg) = a(Mf) + b(Mg) \]
- Examples include integration and differentiation
 \[(K \circ f)(u) = \int k(u,v)f(v)dv \]
 \[(D \circ f)(u) = \frac{df}{du} \]

Kernel of equation

Light Transport Operator

\[L = E + KL \]

Linear Operator Equation

\[L(u) = \theta(u) + \int (K(u,v)dv \]

Can also be discretized to simple matrix equation

[Solving the Rendering Equation]

- Too hard for analytic solution, numerical methods
- Approximations, that compute different terms, accuracies of the rendering equation
- Two basic approaches are ray tracing, radiosity. More formally, Monte Carlo and Finite Element
- Monte Carlo techniques sample light paths, form statistical estimate (example, path tracing)
- Finite Element methods discretize to matrix equation

Solving the Rendering Equation

\[L = E + KE + K^2E + K^3E + \ldots \]

Ray Tracing

- Emission directly from light sources
- Direct Illumination on surfaces
- Global Illumination (One bounce indirect) [Mirrors, Refraction]
- (Two bounce indirect) [Caustics etc]
Ray Tracing

\[L = E + KE + K^2E + K^3E + \ldots \]

- Emission directly from light sources
- Direct Illumination on surfaces
- Global Illumination (One bounce indirect) [Mirrors, Refraction]
- (Two bounce indirect) [Caustics etc]

OpenGL Shading

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
- As a general Integral Equation and Operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

Change of Variables

\[L_i(x, \omega_i) = L_i(x, \omega_i) + \int \frac{dA}{|x-x'|} \cos \theta \, d\omega \]

Change of Variables

\[L_i(x, \omega_i) = L_i(x, \omega_i) + \int \frac{dA}{|x-x'|} \cos \theta \, d\omega \]

Successive Approximation

Rendering Equation

<table>
<thead>
<tr>
<th>Output Image</th>
<th>Emission Reflected Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNKNOWN</td>
<td>KNOWN</td>
</tr>
<tr>
<td>KNOWN</td>
<td>UNKNOWN</td>
</tr>
<tr>
<td>KNOWN</td>
<td>KNOWN</td>
</tr>
</tbody>
</table>

Integrand over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

\[L_i(x, \omega_i) = L_i(x, \omega_i) + \int \frac{dA}{|x-x'|} \cos \theta \, d\omega \]

\[G(x, x') = \frac{\cos \theta \, \cos \theta}{|x-x'|^2} \]
Rendering Equation: Standard Form

\[L_i(x, o_i) = L_i(x, o_i) + \int \int \int L_i(x', -\omega) f(x, o_i, o_i) \cos \theta d\omega d\Omega d\omega' \]

Integral over angles sometimes insufficient. Write integral in terms of surface radiances only (change of variables)

\[L_i(x, o_i) = L_i(x, o_i) + \int \int L_i(x', -\omega) f(x, o_i, o_i) \cos \theta d\omega d\Omega d\omega' \]

Domain integral awkward. Introduce binary visibility fn \(V(x, x') \)

\[\int \int \int \int f(x, o_i, o_i) G(x, x') V(x, x') d\Omega d\omega d\Omega' d\omega' \]

Same as equation 2.52 Cohen Wallace. It swaps primed and unprimed, omits angular args of BRDF, - sign.

Radiosity Equation

\[L_i(x, o_i) = L_i(x, o_i) + \int \int L_i(x', -\omega) f(x, o_i, o_i) G(x, x') V(x, x') d\Omega d\omega d\Omega' d\omega' \]

Drop angular dependence (diffuse Lambertian surfaces)

\[L_i(x) = L_i(x) + \int L_i(x') G(x, x') V(x, x') d\Omega d\omega d\Omega' d\omega' \]

Change variables to radiosity \(B(x) \) and albedo \(\rho \)

\[B(x) = E(x) + \rho(x) \int B(x') G(x, x') V(x, x') d\Omega d\omega d\Omega' d\omega' \]

Expects conservation of light energy at all points in space

Discretization and Form Factors

\[B_i = E_i + \rho \sum_j B_j F_{j-i} \frac{A_j}{A_i} \]

F is the form factor. It is dimensionless and is the fraction of energy leaving the entirety of patch \(j \) (multiply by area of \(j \) to get total energy) that arrives anywhere in the entirety of patch \(i \) (divide by area of \(i \) to get energy per unit area or radiosity).

Form Factors

\[A_{F_{i-j}} = A_j F_{j-i} = \frac{1}{\pi} \int G(x, x') V(x, x') d\Omega dA \]

\[G(x, x') = G(x', x) = \frac{\cos \theta \cos \theta'}{|x - x'|} \]

Matrix Equation

\[B_j = E_j + \rho \sum_j B_j F_{j-i} \frac{A_j}{A_i} \]

\[A_{F_{i-j}} = A_j F_{j-i} = \frac{1}{\pi} \int G(x, x') V(x, x') d\Omega dA \]

\[B_i = E_i + \rho \sum_j B_j F_{j-i} \]

\[B_i - \rho \sum_j B_j F_{j-i} = E_i \]

\[\sum_j M_j B_j = E_j \quad MB = E \quad M_j = I_j - \rho_j F_{j-i} \]

Summary

- **Theory** for all global illumination methods (ray tracing, path tracing, radiosity)
- We derive Rendering Equation [Kajiya 86]
 - Major theoretical development in field
 - Unifying framework for all global illumination
- Discuss existing approaches as special cases