Advanced Computer Graphics
CSE 190 [Spring 2015], Lecture 17
Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir

To Do
- Assignment 3 milestone due May 29
- This lecture about animation: Inverse Kinematics
 - Imaging, Texture Synthesis next week

Course Outline
- 3D Graphics Pipeline
 - Rendering (Creating, shading images from geometry, lighting, materials)
 - Modeling (Creating 3D Geometry)

The Story So Far
scene → image

Animation
scene(t) → image(t)

Forward Kinematics
- Root body
 - Position set by global transform
- Root joint: position, rotation
- Other bodies relative to root
 - Inboard toward the root
 - Outboard away from the root
- Tree structure: loop joints break “tree-ness”
Inboard and Outboard Joints

- Inboard body
- Outboard body

Body
- Inboard joint
- Outboard joint (may be several)

Bodies

- Bodies arranged in a tree
- For now, assume no loops
- Body’s parent (except root)
- Body’s child (may have many children)

Joints

- Interior Joints (typically not 6 DOF)
 - Pin – rotate about one axis
 - Ball – arbitrary rotation
 - Prism – translate along one axis

Pin Joints

- Translate inboard joint to local origin
- Apply rotation about axis
- Translate origin to location of joint on outboard body

Ball Joints

- Translate inboard point to local origin
- Apply rotation about arbitrary axis
- Translate origin to location of joint on outboard body
Prism Joint
- Translate inboard joint to local origin
- Translate along axis
- Translate origin to location of joint on outboard

Forward Kinematics
- Composite transformations up the hierarchy

Inverse Kinematics
- Given
 - Root transformation
 - Initial configuration
 - Desired end point location
- Find
 - Interior parameter settings

2 Segment Arm in 2D

\[
\begin{align*}
 p_x &= l_1 \cos(\theta_1) + l_2 \cos(\theta_1 + \theta_2) \\
 p_y &= l_1 \sin(\theta_1) + l_2 \sin(\theta_1 + \theta_2)
\end{align*}
\]

Direct IK
- Analytically solve for parameters (not general)

\[
\begin{align*}
 \theta_2 &= \cos^{-1} \left(\frac{p_x^2 + p_y^2 - l_1^2 - l_2^2}{2l_1 l_2} \right) \\
 \theta_1 &= \frac{-p_x l_2 \sin(\theta_2) + p_y (l_1 + l_2 \cos(\theta_2))}{p_x l_2 \sin(\theta_2) + p_y (l_1 + l_2 \cos(\theta_2))}
\end{align*}
\]
Difficult Issues

- Multiple configurations distinct in config space
- Or connected in config space

Infeasible Regions

Numerical Solution

- Start in some initial config. (previous frame)
- Define error metric (goal pos – current pos)
- Compute Jacobian with respect to inputs
- Use Newton’s or other method to iterate
- General principle of goal optimization

Back to 2 Segment Arm

Jacobians and Configuration Space

The Jacobian (of \(p \) w.r.t. \(\theta \))

\[
J = \begin{bmatrix}
\frac{\partial p_x}{\partial \theta_1} & \frac{\partial p_x}{\partial \theta_2} \\
\frac{\partial p_y}{\partial \theta_1} & \frac{\partial p_y}{\partial \theta_2}
\end{bmatrix}
\]

\[
\frac{\partial p}{\partial \theta} = J \cdot \begin{bmatrix}
\frac{\partial c_1}{\partial \theta_1} \\
\frac{\partial c_1}{\partial \theta_2}
\end{bmatrix}
\]

Solving for Joint Angles

Solving for \(c_1 \) and \(c_2 \)

\[
c = \begin{bmatrix}
c_1 \\
\end{bmatrix}
\]

\[
dp = \begin{bmatrix}
dp_x \\
\end{bmatrix}
\]

\[
dp = J^{-1} \cdot dp
\]

\[
c = J^{-1} \cdot dp
\]
Issues

- Jacobian not always invertible
 - Use an SVD and pseudo-inverse
- Iterative approach, not direct
 - The Jacobian is a linearization, changes
- Practical implementation
 - Analytic forms for prism, ball joints
 - Composing transformations
 - Or quick and dirty: finite differencing
 - Cyclic coordinate descent (each DOF one at a time)

Prism and Ball Joints

More on Ball Joints

- **Ball Joints (moving axis)**
 \[\mathbf{d} = \frac{1}{2} \mathbf{r}^{T} \mathbf{r} \mathbf{x} = [r] \mathbf{p} = [\mathbf{r}] \mathbf{p} \]

- **Ball Joints (fixed axis)**
 \[\mathbf{d} = \mathbf{P} (\mathbf{r}^{T} \mathbf{x} = -\mathbf{p} - \mathbf{p} \mathbf{\Omega}) \]

Multiple Links

- IK requires Jacobian
 - Need generic method for building one
- Can’t just concatenate matrices

Composing Transformations

- **Transformation from body to world**
 \[X_{i-1} = R_{i-1} X_{j-1-1} = X_{i-1} X_{j-1-2} \cdots \]

- **Rotation from body to world**
 \[R_{i-1} = R_{i-1-1} R_{i-1-2} \cdots \]

Inverse Kinematics: Final Form

- **Jacobian for chain of links**
 \[J = R_{0-2b} J_{3}(\theta_{3}, \mathbf{p}_{3}) R_{0-2a} J_{2a}(\theta_{2a}, \mathbf{X}_{2a-3} \cdot \mathbf{p}_{3}) R_{0-1} J_{2a}(\theta_{2a}, \mathbf{X}_{2a-3} \cdot \mathbf{p}_{3}) J_{1}(\theta_{1}, \mathbf{X}_{1-3} \cdot \mathbf{p}_{3}) \]

- **Position vector**
 \[\mathbf{d} = \begin{bmatrix} d_{3} \\ d_{2a} \\ d_{2b} \\ d_{3b} \end{bmatrix} \]

- **Joint positions**
 \[\mathbf{d} = J \cdot \mathbf{d} \]
A Cheap Alternative

- Estimate Jacobian (or parts of it) w. finite diffs.
- Cyclic coordinate descent
 - Solve for each DOF one at a time
 - Iterate till good enough / run out of time

More complex systems

- More complex joints (prism and ball)
- More links
- Other criteria (center of mass or height)
- Hard constraints (e.g., foot plants)
- Unilateral constraints (e.g., joint limits)
- Multiple criteria and multiple chains
- Loops
- Smoothness over time
 - DOF determined by control points of curve (chain rule)

Practical Issues

- How to pick from multiple solutions?
- Robustness when no solutions
- Contradictory solutions
- Smooth interpolation
 - Interpolation aware of constraints

Prior on “good” configurations