Advanced Computer Graphics

CSE 190 [Spring 2015], Lecture 14
Ravi Ramamoorthi
http://www.cs.ucsd.edu/~ravir

To Do

- Assignment 3 milestone due May 29
 - 1-2 page PDF or website
 - What you have done so far (at least one image)
 - 1-2 para proposal of what you hope to accomplish
 - We may say ok or schedule time to meet, discuss
 - Talk to us if any difficulty finding project
 - Assignment gives some well specified, loose, other options; you can do something else too

Motivation for Lecture

- Image-Based Rendering major new idea in graphics in past 20 years
- Many of the rendering methods, especially precomputed techniques borrow from it
- And many methods use measured data
- Also, images are an important source for rendering
- Sampled data rapidly becoming popular

Traditional Modeling and Rendering

![Diagram](Next few slides courtesy Paul Debevec; SIGGRAPH 99 course notes)

For Photorealism:

- **Modeling** is Hard
- **Rendering** is Slow

Image-Based Modeling and Rendering

Can we model and render this?
What do we want to do with the model?
IBR: Pros and Cons

Advantages
- Easy to capture images: photorealistic by definition
- Simple, universal representation
- Often bypasses geometry estimation?
- Independent of scene complexity?

Disadvantages
- WYSIWYG but also WYSIAYG
- Explosion of data as flexibility increased
- Often discards intrinsic structure of model?

Today, IBR-type methods also often used in synthetic rendering (e.g. real-time rendering PRT)
- General concept of data-driven graphics, appearance
- Also, data-driven geometry, animation, simulation
- Spawned light field cameras for image capture

IBR: A brief history

- Texture maps, bump maps, environment maps [70s]
- Poggio MIT 90s: Faces, image-based analysis/synthesis
- Mid-Late 90s
 - Chen and Williams 93, View Interpolation [Images Depth]
 - Chen 95 Quicktime VR [Images from many viewpoints]
 - McMillan and Bishop 95 Plenoptic Modeling [Images w disparity]
 - Gortler et al, Levoy and Hanrahan 96 Light Fields [4D]
 - Shade et al. 98 Layered Depth Images [2.5D]
 - Debevec et al. 00 Reflectance Field [4D]
 - Inverse rendering (Marschner,Sato,Yu,Boivin,...)

- Today: IBR hasn’t replaced conventional rendering, but has brought sampled and data-driven representations to graphics

Game #1: increase the dimensionality

- 2D rgb: texture
- 2D rgby: range image
- 2.5D rgbytcz: layered depth images
- 4D rgb: light field/Lumigraph
- 4D rgby: array of range images
- 4.5D rgbytcz: layered light fields

Game #2: replace the quantity represented

- 4D rgb: light field/Lumigraph
 \{(u,v,s,t)\}
- 5D rgb: plenoptic function
 \{(x,y,z) \times (\theta, \phi)\}
- 6D \rho: free-space BRDF field
 \{(u,v,s,t) \times (\theta, \phi)\}
- 7D \rho: BRDF volume
 \{(x,y,z) \times (\theta, \phi, \theta, \phi)\}
Outline

- Overview of IBR
- Basic approaches
 - Image Warping
 - [2D + depth. Requires correspondence/disparity]
 - Light Fields [4D]
 - Survey of some early work

Images as a Collection of Rays

An image is a subset of the rays seen from a given point. This “space” of rays occupies two dimensions.

The Plenoptic Function

✓ The set of rays seen from all points...

\[p = P(\theta, \phi, x, y, z, \lambda, \tau) \]

Image-based rendering is about

...reconstructing a plenoptic function from a set of samples taken from it.

✓ Ignoring time, and selecting a discrete set of wavelengths gives a 5-D plenoptic function

Where to Begin?

✓ Pinhole camera model
 - Defines a mapping from image points to rays in space

Mapping from Rays to Points

✓ Simple Derivation

\[\hat{x} = \hat{C} + t \hat{P} \hat{S} \]
Correspondence

\[\hat{C}_1 + t_1 P_1 \hat{x}_1 = \hat{C}_2 + t_2 P_2 \hat{x}_2, \]

\[t_1 P_1 \hat{x}_1 = \hat{C}_1 - \hat{C}_2 + t_2 P_2 \hat{x}_2, \]

\[t_1 P_2 = P_2^{-1} (\hat{C}_1 - \hat{C}_2) + t_2 P_1^{-1} \hat{x}_2, \]

\[\hat{x}_2 = \frac{1}{t_2} P_2^{-1} (\hat{C}_1 - \hat{C}_2) + P_1^{-1} \hat{x}_1. \]

Warping in Action

- A 3D Warp

Demo: Lytro Perspective Shift

- See demos at pictures.lytro.com
- Notice image is everywhere in focus
- Only small motions, interpolate in aperture

Visibility

- The warping equation determines where points go...
- ... but that is not sufficient

Partition Reference Image

- Project the desired center of projection onto the reference image

Enumeration

- Drawing toward a projected point guarantees an occlusion-compatible ordering
- Ordering is consistent with a painter’s algorithm
- Independent of the scene’s contents
- Easily generalized to other viewing surfaces
- No auxiliary information required
Outline

- Overview of IBR
- Basic approaches
 - Image Warping
 - [2D + depth. Requires correspondence/disparity]
 - Light Fields [4D]
 - Survey of some early work

Light Field Rendering

Marc Levoy Pat Hanrahan

Computer Science Department
Stanford University

Generating New Views

Problem: fixed vantage point/center
One Solution: view interpolation
- Interpolating between range images (Chen and Williams, 1993)
- Correspondence and epipolar analysis (McMillan and Bishop, 1995)
 - Requires depths or correspondences
 - must be extracted from acquired imagery
 - relatively expensive and error prone method

Light Fields

Gershun’s and Moon’s idea of a light field:

\[\text{Radiance as a function of a ray or line}: I(\mathbf{x}, y, z, \theta, \phi) \]

- In “free space” (no occluders) 5D reduces to 4D
 - Exterior of the convex hull of an object
 - Interior of an environment
- Images are 2D slices
 - Insert acquired imagery
 - Extract image from a given viewpoint
4D Light Field

Light Field as a 2D Array of Image

\[L(r) = L(u, v, s, t) \]

Dual Interpretation of Light Field

Compression Example

Original
Compressed 120:1
Outline

- Overview of IBR
- Basic approaches
 - Image Warping
 - [2D + depth. Requires correspondence/disparity]
 - Light Fields [4D]
 - Survey of some early work

Layered Depth Images [Shade 98]

- Layered Depth Images [Shade 98]
- Layered Depth Images [Shade 98]

Surface Light Fields

- Miller 98, Nishino 99, Wood 00
- Reflected light field (lumisphere) on surface
- Explicit geometry as against light fields. Easier compress
Acquiring Reflectance Field of Human Face [Debevec et al. SIGGRAPH 00]

Illuminate subject from many incident directions

Outline

- Overview of IBR
- Basic approaches
 - Image Warping
 - [2D + depth: Requires correspondence/disparity]
 - Light Fields (4D)
 - Survey of some recent work
 - Sampled data representations

Example Images

Conclusion (my views)

- IBR initially spurred great excitement: revolutionize pipeline
- But, IBR in pure form not really practical
 - WYSIAYG
 - Explosion as increase dimensions (8D transfer function)
 - Good compression, flexibility needs at least implicit geometry/BRDF
- Real future is sampled representations, data-driven method
 - Acquire (synthetic or real) data
 - Good representations for interpolation, fast rendering
 - Much of visual appearance, graphics moving in this direction
- Understand from Signal-Processing Viewpoint
 - Sampling rates, reconstruction filters
 - Factorized representations, Fourier analysis
- Light Fields fundamental in many ways, including imaging