To Do

- Assignment 2 due May 15
 - Should already be well on way.
 - Contact us for difficulties etc.

This lecture on rendering, rendering equation. Pretty advanced theoretical material. Don’t worry if a bit lost; not directly required on the homeworks.

Course Outline

- 3D Graphics Pipeline
 - Modeling (Creating 3D Geometry)
 - Rendering (Creating, shading images from geometry, lighting, materials)

Unit 1: Foundations of Signal and Image Processing
Understanding the way 2D images are formed and displayed, the important concepts and algorithms, and to build an image processing utility like Photoshop
Weeks 1 – 3. Assignment 1

Unit 2: Meshes, Modeling
Weeks 3 – 5. Assignment 2

Unit 3: Advanced Rendering
Weeks 6 – 8. (Final Project)

Unit 4: Animation, Imaging
Weeks 9, 10. (Final Project)

Illumination Models

Local Illumination
- Light directly from light sources to surface
- No shadows (cast shadows are a global effect)

Global Illumination: multiple bounces (indirect light)
- Hard and soft shadows
- Reflections/refractions (already seen in ray tracing)
- Diffuse and glossy interreflections (radiosity, caustics)

Diffuse Interreflection
Diffuse interreflection, color bleeding [Cornell Box]
Radiosity

Caustics: Focusing through specular surface

Major research effort in 80s, 90s till today

Overview of lecture

- **Theory** for all global illumination methods (ray tracing, path tracing, radiosity)
- We derive **Rendering Equation** [Kajiya 86]
 - Major theoretical development in field
 - Unifying framework for all global illumination
 - Discuss existing approaches as special cases

Fairly theoretical lecture (but important). Not well covered in textbooks (though see Eric Veach’s thesis). See reading if you are interested.

Outline

- **Reflectance Equation** (review)
- **Global Illumination**
- **Rendering Equation**
 - As a general Integral Equation and Operator
 - Approximations (Ray Tracing, Radiosity)
 - Surface Parameterization (Standard Form)

Outline

Reflection Equation

\[
L'_r(x, \omega_r) = L'_e(x, \omega_r) + \sum L_i(x, \omega_i) f(x, \omega_i, \omega_r)(\omega_i \cdot n)
\]

Reflected Light (Output Image)

Emission

Incident Light (from light source)

BRDF

Cosine of Incident angle

Reflection Equation

\[
L'_r(x, \omega_r) = L'_e(x, \omega_r) + \sum L_i(x, \omega_i) f(x, \omega_i, \omega_r)(\omega_i \cdot n)
\]

Reflected Light (Output Image)

Emission

Incident Light (from light source)

BRDF

Cosine of Incident angle
Reflection Equation

\[L_r(x, \omega_r) = L_e(x, \omega_i) + \int \omega_r L_i(x, \omega_i) f(x, \omega_i, \omega_r) \cos \theta \, d\omega_i \]

Environment Maps

- Light as a function of direction, from entire environment
- Captured by photographing a chrome steel or mirror sphere
- Accurate only for one point, but distant lighting same at other scene locations (typically use only one env. map)

Environment Maps

- Environment maps widely used as lighting representation
- Many modern methods deal with offline and real-time rendering with environment maps
- Image-based complex lighting + complex BRDFs

The Challenge

\[L_i(x, \omega_i) = L_e(x, \omega_i) + \int \Omega \int L_i(x', \omega_i) f(x, \omega_i, \omega_r) \cos \theta \, d\omega_i \]

- Computing reflectance equation requires knowing the incoming radiance from surfaces
- But determining incoming radiance requires knowing the reflected radiance from surfaces

Rendering Equation

\[L_r(x, \omega_r) = L_e(x, \omega_i) + \int \omega_r L_i(x, \omega_i) f(x, \omega_i, \omega_r) \cos \theta \, d\omega_i \]

- Referred Light (Output Image)
- Emission
- Incident Light from light source
- BRDF
- Cosine of Incident angle

Rendering Equation (Kajiya 86)

- Surfaces (interreflection)
- Emission
- Reflected Light
- BRDF
- Cosine of Incident angle

UNKNOWN UNKNOWN KNOWN KNOWN KNOWN

Figure 8: A sample image. All objects are casting gray, green, and black shadows due to lighting in the scene.
Rendering Equation as Integral Equation

\[L(x, \omega_r) = I(x, \omega_r) + \int L(x', -\omega_r) \cdot \text{BRDF} \cdot \cos(\theta_{\omega_i}) \, dv \]

Is a Fredholm Integral Equation of second kind [extensively studied numerically] with canonical form

\[I(u) = e(u) + \int K(u, v) \, dv \]

Kernel of equation

Linear Operator Equation

\[I(u) = e(u) + \int K(u, v) \, dv \]

Kernel of equation

Light Transport Operator

\[L = E + KL \]

Can be discretized to a simple matrix equation [or system of simultaneous linear equations] (L, E are vectors, K is the light transport matrix)

Ray Tracing and extensions

- General class numerical Monte Carlo methods
- Approximate set of all paths of light in scene

\[L = E + KL \]

\[(I - K) L = E \]

\[L = (I - K)^{-1} E \]

Binomial Theorem

\[L = (I + K + K^2 + ... E) \]

\[L = E + KE + K^2 E + K^3 E + ... \]

Ray Tracing

\[L = E + KE + K^2 E + K^3 E + ... \]

Emission directly From light sources

Direct Illumination on surfaces

Global Illumination (One bounce indirect) [Mirrors, Refraction]

[Two bounce indirect] [Caustics etc]

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
- As a general Integral Equation and Operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

OpenGL Shading

Direct Illumination on surfaces

Global Illumination (One bounce indirect) [Mirrors, Refraction]

[Two bounce indirect] [Caustics etc]
Rendering Equation as Integral Equation

\[
L(x,u) = L_0(x,u) + \int L(x',u') f(x',u') \cos\theta du' \]

Is a Fredholm Integral Equation of second kind [extensively studied numerically] with canonical form

\[
I(u) = e(u) + \int l(v) K(u,v) dv
\]

Linear Operator Theory

• Linear operators act on functions like matrices act on vectors or discrete representations

\[
h(u) = (M \circ f)(u)
\]

• Basic linearity relations hold \(a \) and \(b \) are scalars \(f \) and \(g \) are functions

\[
M(a f + b g) = a(M f) + b(M g)
\]

• Examples include integration and differentiation

\[
(K \circ f)(u) = \int k(u,v) f(v) dv
\]

\[
(D \circ f)(u) = \frac{df}{du}(u)
\]

Solving the Rendering Equation

\[
L = E + KL
\]

\[
I = E
\]

\[
I - KL = E
\]

\[
L = (I - K)^{-1} E
\]

Binomial Theorem

\[
L = (I + K + K^2 + K^3 + ...) E
\]

\[
L = E + KE + K^2 E + K^3 E + ...
\]

Term \(n \) corresponds to \(n \) bounces of light

Solving the Rendering Equation

• Too hard for analytic solution, numerical methods
• Approximations, that compute different terms, accuracies of the rendering equation
• Two basic approaches are ray tracing, radiosity. More formally, Monte Carlo and Finite Element
• Monte Carlo techniques sample light paths, form statistical estimate (example, path tracing)
• Finite Element methods discretize to matrix equation

Ray Tracing

\[
L = E + KE + K^2 E + K^3 E + ...
\]

Emission directly

From light sources

Direct Illumination on surfaces

Global Illumination (One bounce indirect) [Mirrors, Refraction]

(Two bounce indirect [Caustics etc]
Ray Tracing

\[L = E + KE + K^2E + K^3E + \ldots \]

- Emission directly from light sources
- Direct illumination on surfaces
- Global illumination (one bounce indirect, mirrors, refraction)
- (Two bounce indirect, caustics etc)

OpenGL Shading

Outline

- Reflectance Equation (review)
- Global Illumination
- Rendering Equation
- As a general integral equation and operator
- Approximations (Ray Tracing, Radiosity)
- Surface Parameterization (Standard Form)

Change of Variables

\[L_\omega(x) = L_\omega(x) + \int \frac{\cos \theta d\omega}{|x-x'|} \]

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

Rendering Equation

\[L_r(x, \omega) = L_r(x, \omega) + \int L_r(x', \omega') \gamma(x, \omega, \omega') \cos \theta d\omega \]

Reflected Light (Output Image)
UnKnown

Reflective Light
Known

BRDF
UnKnown

Cosine of incident angle
Known

Change of Variables

\[L_r(x, \omega) = L_r(x, \omega) + \int L_r(x', \omega) \gamma(x, \omega, \omega') \cos \theta d\omega \]

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)
Render Equation: Standard Form

\[L(x, \omega_i) = L_e(x, \omega_i) + \int L_s(x', -\omega_i) I(x, \omega_i, \omega_o) \cos \theta_i d\omega_o \]

Integral over angles sometimes insufficient. Write integral in terms of surface radiance only (change of variables)

\[L(x, \omega_i) = L(x, \omega_i) + \int L_s(x', -\omega_i) I(x', \omega_i, \omega_o) \cos \theta_i d\omega_o \]

Domain integral awkward. Introduce binary visibility fn \(V \)

\[\Omega' = \frac{2 \cos \omega_i |x - x'|}{|x - x'|^2} \]

Rendering Equation

\[L(x, \omega_i) = L(x, \omega_i) + \int L_s(x', -\omega_i) I(x, \omega_i, \omega_o) G(x, x') V(x, x') dA' \]

Radiosity Equation

\[L(x, \omega_i) = L(x, \omega_i) + \int L_s(x', -\omega_i) I(x, \omega_i, \omega_o) G(x, x') V(x, x') dA' \]

Discretization and Form Factors

\[B_i = E_i + \rho \sum_j B_j F_{j\rightarrow i} \frac{A_j}{A_i} \]

\(F \) is the form factor. It is dimensionless and is the fraction of energy leaving the entirety of patch \(j \) (multiply by area of \(j \) to get total energy) that arrives anywhere in the entirety of patch \(i \) (divide by area of \(i \) to get energy per unit area or radiosity).

\[B_i = E_i + \rho \sum_j B_j F_{j\rightarrow i} \]

Form Factors

\[A F_{i\rightarrow j} = A_i F_{j\rightarrow i} = \int \frac{G(x, x') V(x, x') dA_i dA_j}{\pi} \]

\[G(x, x') = G(x', x) = \frac{\cos \theta_i \cos \theta_j}{|x - x'|^2} \]

Matrix Equation

\[B_i = E_i + \rho \sum_j B_j F_{j\rightarrow i} \frac{A_j}{A_i} \]

\[A F_{i\rightarrow j} = A_i F_{j\rightarrow i} = \int \frac{G(x, x') V(x, x') dA_i dA_j}{\pi} \]

\[B_i = E_i + \rho \sum_j B_j F_{j\rightarrow i} \]

\[\sum_j M_j B_j = E_i \quad MB = E \quad M_j = I_j - \rho F_{i\rightarrow j} \]

Summary

- **Theory** for all global illumination methods (ray tracing, path tracing, radiosity)
- We derive **Rendering Equation** [Kajiya 86]
 - Major theoretical development in field
 - Unifying framework for all global illumination
 - Discuss existing approaches as special cases
- Next: Practical solution using Monte Carlo methods