CSE101: Design and Analysis of Algorithms

Ragesh Jaiswal, CSE, UCSD
Spanning Tree: Given a strongly connected graph $G = (V, E)$, a spanning tree of G is a subgraph $G' = (V, E')$ such that G' is a tree.

Minimum Spanning Tree (MST): Given a strongly connected weighted graph $G = (V, E)$, a Minimum Spanning Tree of G is a spanning tree of G of minimum total weight (i.e., sum of weight of edges in the tree).

![Graph Diagram]
Spanning Tree: Given a strongly connected graph $G = (V, E)$, a spanning tree of G is a subgraph $G' = (V, E')$ such that G' is a tree.

Minimum Spanning Tree (MST): Given a strongly connected weighted graph $G = (V, E)$, a Minimum Spanning Tree of G is a spanning tree of G of minimum total weight (i.e., sum of weight of edges in the tree).
Problem

Given a strongly connected weighted graph G where all the edge weights are distinct, give an algorithm for finding the MST of G.
Theorem

Cut property: Given a strongly connected weighted graph $G = (V, E)$ where all the edge weights are distinct. Consider a non-empty proper subset S of V and $S' = V \setminus S$. Let e be the least weighted edge between any pair of vertices (u, v), where u is in S and v is in S'. Then e is necessarily present in all MSTs of G.

![Diagram showing the cut property with sets S and S' and edges e, e', and e''.]
Greedy Algorithms
Minimum Spanning Tree

Theorem
Cut property: Given a strongly connected weighted graph $G = (V, E)$ where all the edge weights are distinct. Consider a non-empty proper subset S of V and $S' = V \setminus S$. Let e be the least weighted edge between any pair of vertices (u, v), where u is in S and v is in S'. Then e is necessarily present in all MSTs of G.

Proof sketch
- For the sake of contradiction, assume that there is a MST T that does not contain edge $e = (u, v)$.
- **Claim 1**: Any path from u to v in tree T will contain a cut-edge.
- Consider any path from u to v in tree T and let e' be the first cut-edge in this path. Consider graph T' obtained by removing e' from T and adding e.
- **Claim 2**: The sum total weight of edges of T' is smaller than that of T.
- **Claim 3**: T' is strongly connected.
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)
- \(S \leftarrow \{u\} \) //\(u \) is an arbitrary vertex in the graph
- \(T \leftarrow \{\} \)
- While \(S \) does not contain all vertices
 - Let \(e = (v, w) \) be the minimum weight edge between \(S \) and \(V \setminus S \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \cup \{w\} \)

Algorithm

Kruskal’s Algorithm(G)
- \(S \leftarrow E; \ T \leftarrow \{\} \)
- While the edge set \(T \) does not connect all the vertices
 - Let \(e \) be the minimum weight edge in the set \(S \)
 - If \(e \) does not create a cycle in \(T \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \setminus \{e\} \)
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)
- \(S \leftarrow \{u\} \) // \(u \) is an arbitrary vertex in the graph
- \(T \leftarrow \{\} \)
- While \(S \) does not contain all vertices
 - Let \(e = (v, w) \) be the minimum weight edge between \(S \) and \(V \setminus S \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \cup \{w\} \)
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm (G)
- \(S \leftarrow \{u\} \) \(/u\ is\ an\ arbitrary\ vertex\ in\ the\ graph/\)
- \(T \leftarrow \{\} \)
- While \(S \) does not contain all vertices
 - Let \(e = (v, w) \) be the minimum weight edge between \(S \) and \(V \setminus S \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \cup \{w\} \)
Algorithm

Prim’s Algorithm \((G)\)
- \(S \leftarrow \{u\}\) // \(u\) is an arbitrary vertex in the graph
- \(T \leftarrow \{\}\)
- While \(S\) does not contain all vertices
 - Let \(e = (v, w)\) be the minimum weight edge between \(S\) and \(V \setminus S\)
 - \(T \leftarrow T \cup \{e\}\)
 - \(S \leftarrow S \cup \{w\}\)
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)
- \(S \leftarrow \{u\} \) // \(u \) is an arbitrary vertex in the graph
- \(T \leftarrow \{\} \)
- While \(S \) does not contain all vertices
 - Let \(e = (v, w) \) be the minimum weight edge between \(S \) and \(V \setminus S \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \cup \{w\} \)
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)

- $S \leftarrow \{u\}$ // u is an arbitrary vertex in the graph
- $T \leftarrow \{\}$
- While S does not contain all vertices
 - Let $e = (v, w)$ be the minimum weight edge between S and $V \setminus S$
 - $T \leftarrow T \cup \{e\}$
 - $S \leftarrow S \cup \{w\}$
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)
- $S \leftarrow \{u\}$ // u is an arbitrary vertex in the graph
- $T \leftarrow \{\}$
- While S does not contain all vertices
 - Let $e = (v, w)$ be the minimum weight edge between S and $V \setminus S$
 - $T \leftarrow T \cup \{e\}$
 - $S \leftarrow S \cup \{w\}$
Algorithm

Kruskal’s Algorithm(G)
- \(S \leftarrow E; \ T \leftarrow \{\} \)
- While the edge set \(T \) does not connect all the vertices
 - Let \(e \) be the minimum weight edge in the set \(S \)
 - If \(e \) does not create a cycle in \(T \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \setminus \{e\} \)
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)
- \(S \leftarrow E; \ T \leftarrow \{\} \)
- While the edge set \(T \) does not connect all the vertices
 - Let \(e \) be the minimum weight edge in the set \(S \)
 - If \(e \) does not create a cycle in \(T \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \setminus \{e\} \)
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)
- \(S \leftarrow E; \ T \leftarrow \{\} \)
- While the edge set \(T \) does not connect all the vertices
 - Let \(e \) be the minimum weight edge in the set \(S \)
 - If \(e \) does not create a cycle in \(T \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \setminus \{e\} \)
Algorithm

Kruskal’s Algorithm(G)
- \(S \leftarrow E; \ T \leftarrow \{} \)
- While the edge set \(T \) does not connect all the vertices
 - Let \(e \) be the minimum weight edge in the set \(S \)
 - If \(e \) does not create a cycle in \(T \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \setminus \{e\} \)
Kruskal’s Algorithm (G)

- \(S \leftarrow E; \ T \leftarrow \{\} \)
- While the edge set \(T \) does not connect all the vertices
 - Let \(e \) be the minimum weight edge in the set \(S \)
 - If \(e \) does not create a cycle in \(T \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \setminus \{e\} \)
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Kruskal’s Algorithm(G)
- $S \leftarrow E; \ T \leftarrow \{}$
- While the edge set T does not connect all the vertices
 - Let e be the minimum weight edge in the set S
 - If e does not create a cycle in T
 - $T \leftarrow T \cup \{e\}$
 - $S \leftarrow S \setminus \{e\}$

Ragesh Jaiswal, CSE, UCSD

CSE101: Design and Analysis of Algorithms
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)
- \(S \leftarrow \{u\} // u \text{ is an arbitrary vertex in the graph} \)
- \(T \leftarrow \{\} \)
- While \(S \) does not contain all vertices
 - Let \(e = (v, w) \) be the minimum weight edge between \(S \) and \(V \setminus S \)
 - \(T \leftarrow T \cup \{e\} \)
 - \(S \leftarrow S \cup \{w\} \)

What is the running time of Prim’s algorithm?
Greedy Algorithms
Minimum Spanning Tree

Algorithm

Prim’s Algorithm(G)
- $S \leftarrow \{u\}$ //u is an arbitrary vertex in the graph
- $T \leftarrow \{\}$
- While S does not contain all vertices
 - Let $e = (v, w)$ be the minimum weight edge between S and $V \setminus S$
 - $T \leftarrow T \cup \{e\}$
 - $S \leftarrow S \cup \{w\}$

What is the running time of Prim’s algorithm?
$O(|E| \cdot \log |V|)$
- Using a priority queue.
End