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In this paper, we consider Hopfield’s [1] model of associative memory. This mode]
consists of a system of fully interconnected neurons or threshold elements where each
interconnection is symmetric and has certain weight w;;. Each neuron can be in one of
two states +1. Each neuron updates its state based on the weighted sum of the states
of the other neurons. If this sum exceeds a certain threshold associated with the neuron,
the state is set to +1. Otherwise, it is set to —1. This updating can take place in one of
two modes: synchronous, or asynchronous. The state of the entire system is represented
by an n-dimensional vector, where n is the number of nenrons in the system. A state s
called stable if no transition out of it is possible. We define the energy of the system in
state z as —1p Yijwizizj. In this energy landscape, stable states correspond to local
minima.

The items to be stored in the memory can be represented by certain states of the
system. (iven a set of states to be stored, one can, by an appropriate selection of the
weights of the interconnections, create a sphere of atiraction around each of the states
such that any state in this sphere would eventually come closer to the center. 1t is this
error—correcting behavior that gives the system associative memory gharacter.

The model uses Hebb’s rule to select the weights of the interconnections. According
to this rule, we set the weights w;; = v;u; i # j, to remember a single vector v =
{v1,v2,- -, v,). To store several vectors in the system, we simply add the corresponding
“weights together. We call each such stored vector a fundamental memory.

When we store a number of fundamental memories in the system, we expect each of
them to be stable and to atiract all the vectors within a pn distance for some constant
p > 0. Or more generally, we consider the system to be error—correcting, if every vector
within a distance pn from a fundamental memory eventually ends up within a distance
of en for some £ < p. We call this en residual error. We are also concerned with the time
it takes for the error—correction,

A reasonable minimal storage requirement is that we would like to store almost all sets
of m vectors. Therefore, we will take a set of m random veciors as our set of fundamental
mermories, and expect the system to remember them with probability near 1.

When we have a number of fundamental memories, the retrieval of a memory will be
disturbed by the noise created by the other fundamental memories, Yet, we hope that
this noise is not overwhelming when the number of fundamental memories is not too large.
Hence, the main question is to determine the amount of error-correction and the rate of
convergence as a function of the number of fundamental memories, m.

Results The main mathematical difficulty is to show that the probability that noise is
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high is exponentially small, Exponentially small bounds on the probability are necessary
to account for the exponential number of possibilities that arise when we want to attract
all the vectors in a sphere of radius pn. To this end, we prove the One-step Error-
correction Lemma which gives a quantitative picture of the error—correcting behavior of
the model (see [2]). The following is an informal version of the lemma.

Write & = m/n. There are constants o, and p, such that for & < ¢, the following
holds with probability near 1. If the system is started at any state at a distance pn (p < py)
from a fundamental memory (pn ‘errors’), then it will correct most of the pn errors in one
synchronous step, and be at a much smaller distance p'n from the fundamental memory.
This p’ is about p® if p > «, and about ap? if p < «.

All our results basically follow from this lemma. Here, we give a brief summary of our
results.

gy gy Pss Pas pp are absolute constants. All the statements hold with probability
approaching 1 as n — oo,

# I{m < a,n, and i the system is starfed within s distance of p,n from & fundamental
memory, then, in about log(n/m) synchronous steps, it will end up within a distance
ne~"/4m from the fundamental memory, that is, it will eventually get within a
distance ne="/4m of the fundamental memory and remains within that distance.

When m < n/(4logn), the system will converge to the fundamental memory in
Ofloglog n) synchronous steps.

e In the asynchronous case, i m < a,n, and if the system is started within a distance
of p, Trom a fundamental memory, then it will converge to a stable state within a
distance of ne™™/*" from the fundamental memory.

In particular, when m < n/(4logn), the system will converge to the fundamental
Memory.

e Forany fundamental memory v, the maximum energy of any state within a distance
of pon from v is less than the minimum energy of any state at a distance of pyn from
v, and there are no stable states in the annuli defined by the radii pyn and ne~"/*m
centered at the fundamental memories.
We also prove an exponential(in m) lower bound on the number of stable states in the
system. Details can be found in [2].
For a general treatment of the model where the interconnections can be arbitrary, we
refer the reader to our paper [3].
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