
1

A Resource Allocation Problem in Replicated P2P
Storage Systems

Sriram Ramabhadran and Joseph Pasquale
Department of Computer Science & Engineering

University of California, San Diego
{sriram,pasquale}@cs.ucsd.edu

Abstract— This paper focuses on peer-to-peer storage
systems that achieve availability through replication. We
study the problem of resource allocation when the system
must replicate multiple files using a fixed amount of
resource. We characterize the optimal allocation that
maximizes the average availability of the files in the
system, and also study two simple, decentralized allocation
schemes: Uniform and Proportional. We show that while
Uniform is fair in terms of allocating resources, it may be
arbitrarily sub-optimal. On the other hand, Proportional,
though unfair in resource allocation, is competitive with
the optimal allocation.

I. INTRODUCTION

Replication is fundamental to building highly
available distributed systems. To guard against un-
avoidable failures of system components, applica-
tions use redundancy, replicating functionality and
state at multiple locations in the system. This is
especially significant when the underlying system
components are unreliable; good examples of this
are peer-to-peer storage systems like PAST [9],
CFS [5] and TRFS [2]. These systems use large-
scale replication to build available storage on top
of nodes that are highly unreliable. While these
systems have addressed the question of how much
redundancy is required to guarantee a certain level
of availability, one important open question con-
cerns resource allocation: How do constraints on
available resources such as storage and bandwidth
affect replication in such systems?

In this paper, we study a resource allocation prob-
lem that arises in the context of such P2P storage
systems. where individual files are replicated at mul-
tiple peers for availability. When different files are
competing for a limited amount of resources, how
should the available resources be divided among the
files? For example, in a co-operative P2P storage

system, each peer contributes some amount of stor-
age, which limits the total amount of storage in the
system. Another example of a resource constraint
is when there is a limit on the bandwidth available
for long-term repair [3], which is required to guard
against data loss due to the permanent departure of
peers from the system. In both cases, the amount
of resource consumed by a file is proportional to
both its size, and the number of replicas. Given a
constraint on the total amount of resource available,
the problem is to determine how many replicas of
each file to create.

We believe resource allocation is important for
the following reasons. First, resources may be
scarce; a peer-to-peer environment consists of au-
tonomous peers voluntarily donating resources to
the system. Second, there may be different demands
on the system; for example, some peers may wish
to replicate large files where as others may have
smaller files. Finally, peers are competing for the
available resources; in general, a peer is interested
in maximizing the availability of its own files, while
the system may try to optimize some overall notion
of availability. In this paper, we assume that the
system attempts to maximize the average availabil-
ity (and not not minimum, as in prior work [1]) of
the files. In a cooperative environment, where the
files belong to the same user, minimum availability
perhaps is a better metric. However, in the context
of a system shared by multiple users, it is desirable
that a single user does not impose an undue burden
on the system by, for example, storing much larger
files. Optimizing average availability, as opposed to
minimum, allows the system the flexibility to give
differentiated levels of service to users who make
different demands on it. This naturally leads to an
inherent tradeoff between efficiency and fairness. A

2

fair division of resources among multiple files or
users may not be optimal in terms of maximizing
the availability of the system, i.e., it is inefficient;
conversely, an optimal allocation of resources may
be quite unfair. Finally, allocation schemes should
be decentralized and assume minimal global knowl-
edge.

II. THE REPLICA ALLOCATION PROBLEM

A. Problem Description

There are k files that need to be replicated for
availability; file i has a size of bi bytes. The system
consists of some number of nodes on which files
can be replicated. Nodes have an unavailability of
p , i.e., on average, a node is likely to be offline
a fraction p of the time. The replica allocation
problem is to determine how many replicas of
each file to create subject to a resource constraint.
Formally, let xi denote the number of replicas
of file i. The unavailability of file i, qi = pxi ,
therefore, the average unavailability of the k files
is q = 1

k

∑k
i=1 qi = 1

k

∑k
i=1 pxi 1. We now model

the resource constraint by assuming that the amount
of resource consumed by file i is proportional to
bi xi. This models the case where the system is
constrained by storage or by long-term maintainance
bandwidth 2. Let the total amount of resource in
the system be c (henceforth referred to as the
capacity of the system), which is to be allocated
among the k files. Therefore we have the constraint
∑k

i=1 bi xi ≤ c. The goal is to minimize the average
unavailability subject to the above constraint. We
define the optimal allocation (x∗

i . . . x∗
k) as the one

that minimizes q Replica allocation boils down to
how to divide the available capacity among files of
different sizes.

The above formulation makes several assump-
tions that simplify a more general allocation prob-
lem. First, we assume nodes are homogeneous in
that they all have the same availability p. Relaxing
this assumption implies that our notion of capacity
must somehow incorporate availability as well; for
example, one unit of storage at a highly available
node is not the same as one unit of storage at a node

1To avoid notational clutter, we consider the equivalent problem
of minimizing average unavailability

2The long-term maintainance bandwidth, i.e., the bandwidth used
in creating new replicas to replace replicas lost due to permanent
departure of nodes from the system, is proportional to both the size
of the file and the number of its replicas.

that is less available. Second, we impose a constraint
on the aggregate capacity; in general, replication
may be constrained by capacity constraints at each
individual node. Finally, we consider only a sim-
plistic user model, which essentially assumes that
there is a 1-1 correspondence between a user and
a file, and that all files are equally important 3.
Realistically, there may be many users, each of
which owns multiple files. In this case, average
availability of the files may no longer be a desirable
metric, and secondly, notions of fairness must be on
a per-user basis (as opposed to a per-file basis). In
this paper, we study only the simplified problem as
a first step towards understanding the more general
problem.

When all files have the same size, the optimal
solution is simply to create an equal number of
replicas for all files, as determined by the capacity.
When files have different sizes, it may be possible to
optimize by creating more replicas of smaller files at
the expense of having fewer replicas of larger files.
However, each additional replica of an file yields
diminishing returns; therefore it is not always useful
to allot capacity to a smaller file, which implies a
non-trivial optimal allocation exists. What can we
say about an optimal allocation? First, a smaller file
will have a larger number of replicas. Second, sim-
ilar sized files will have roughly the same number
of replicas. In particular, if two files have the same
size, the corresponding number of replicas cannot
differ by more than 1. Finally, when two files differ
in size, the difference in the corresponding number
of replicas is bounded by a quantity independent of
the system capacity. Although we omit proofs for
the sake of brevity, it is relatively straightforward
to verify that these properties are true.

B. An example

To illustrate the problem, consider the simple
example of a system of capacity 12. Suppose there
are 3 files to be replicated with sizes 1, 1 and 4
respectively. Figure 1 shows the behavior of q as a
function of p for three different allocations (2,2,2),
(4,4,1) and (6,6,0) 4. We note that q(2,2,2) = p2,
q(4,4,1) = 1

3
(2p4 + p) and q(6,6,0) = 1

3
(2p6 + 1).

3It may be desirable to associate each file with a weight that
models, for example, the popularity of each file. In this case, the
metric to optimize would be the weighted availability.

4Although other allocations are possible, we omit those that are
clearly sub-optimal.

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

q

p

(2,2,2)
(4,4,1)
(6,6,0)

Fig. 1. Unavailability of different allocations with respect to p

For each allocation, q monotonically increases
with p. At p = 0, i.e., when nodes are completely
reliable, q = 0 for all allocations except (6, 6, 0); in
this case there are no replicas of one file, whose
unavailability is therefore 1 irrespective of p. At
p = 1, i.e., when nodes are completely unreliable,
q = 1 for all allocations. As p varies from 0 to
1, the optimal allocation changes. For p ≤ 0.3660,
(2, 2, 2) is the optimal allocation. For 0.3660 ≤ p ≤
0.7329, (4, 4, 1) is the optimal allocation. Finally,
for p ≥ 0.7329, (6, 6, 0) is the optimal allocation.
We observe that, as p becomes larger, the optimal
allocation becomes biased in favor of smaller files,
i.e., smaller files have more replicas at the expense
of larger ones.

C. Algorithms

Since file sizes are integral, dynamic program-
ming 5 can be used to compute the optimal solution
exactly. However, this is computationally intractable
for large system sizes, and hence we develop a
greedy approximation algorithm instead. Suppose
file i currently has xi replicas. The incremental
benefit, i.e., increase in availability, of creating one
more replica of file i is pxi − pxi+1 = pxi (1 − p)
while the cost of doing so, i.e., capacity used, is bi.
The greedy algorithm (Greedy) picks the file with
the maximum incremental benefit per unit cost, and
creates another replica for that file. The algorithm

5A solution to the replica allocation problem satisfies optimal sub-
structure. Let Qi(c) be the optimal solution using only the first i files
and a capacity c. Qi(c) consists of assigning some capacity c′ to the
ith file and c−c′ to the remaining i−1 files (given by Qi−1(c−c′));
we take the minimum over c′.

terminates when the file that was picked cannot
be replicated further due to insufficient capacity.
Pseudocode for Greedy is shown below.

Algorithm 1: Greedy Algorithm
for i = 1 . . . k do

xi,G = 0
end
c′ = 0
while true do

j = arg max1≤i≤k

{

pxi (1−p)
bi

}

if (c′ + bj ≤ c) then
xj,G = xj,G + 1
c′ = c′ + bj

else
break

end
end

Let qG denote the average unavailability of
Greedy, and q∗ that of the optimal allocation.

Theorem 1 (Greedy): qG < 1
p
q∗

Proof Greedy terminates when c′+bj > c, i.e., when
an additional replica for file j cannot be created
without violating the capacity constraint. Consider
the allocation

xi =

{

xi,G if i 6= j

xi,G + c−c′

bj
if i = j

}

(1)

This allocation is identical to the greedy allocation
with the exception of file j which is given an
additional fractional allocation of c−c′

bj
. Note that

for all i, xi < xi,G + 1. The allocation (x1, . . . , xk)
is optimal when the integrality constraints on the
solution are relaxed. This is similar to the optimality
of the greedy algorithm for the fractional knapsack
problem [4] 6. Now

q∗ ≥
1

k

k
∑

i=1

pxi >
1

k

k
∑

i=1

pxi,G+1 =
p

k

k
∑

i=1

pxi,G = p qG

Therefore qG < 1
p
q∗.

The above theorem shows that for large p, Greedy
is close to optimal. When p is small, Greedy may
be sub-optimal by an arbitrary amount 7. However,

6We note that the replica allocation problem is somewhat similar to
the unbounded knapsack problem [4], with the important difference
that each additional replica of a file gives diminishing returns in terms
of availability.

7In fact, there are pathological problem instances when qG ≥
q∗

2p
,

which implies that the above bound is tight within a factor of 2.

4

in practice, for all file distributions we considered,
Greedy may be considered as a close approximation
of optimal.

III. ALLOCATION STRATEGIES

Let b =
∑k

i=1 bi be the sum of all file sizes. In
the Uniform allocation policy, each file is allocated
equal shares of the resource, i.e., each file is given
an allocation of c

k
. In this case, the number of

replicas of file i is xi,U =
⌊

c
k bi

⌋

. We note Uniform
is fair in terms of equitably allocating the total
capacity among the files.

In the Proportional allocation policy, each file is
allocated a share of the resource proportional to
its size, i.e., file i is given an allocation of bi c

b
.

In this case, the number of replicas of file i is
xi,P = xP =

⌊

c
b

⌋

. We note that Proportional results
in each file having the same number of replicas.
This means that Proportional also minimizes the
maximum unavailability as opposed to the average
unavailability that we are considering.

We consider Uniform and Proportional for a cou-
ple of reasons. First, they are simple and intuitive
from a resource allocation perspective. Second, they
are amenable to a distributed implementation in
which each file can compute its number of replicas
with minimal global knowledge, and without know-
ing the distribution of file sizes. Estimates of c, the
system capacity, and k, the number of files in the
system, are sufficient to implement Uniform. Imple-
menting Proportional requires an estimate of b, the
total size of the files. It is relatively straightforward
to propagate this information through the system,
using gossip [7] for example.

A. Analytical Results

Theorem 2 shows that Uniform may be arbitrarily
worse than the optimal allocation for any value of
p. Let qU denote the average unavailability of the
Uniform allocation.

Theorem 2 (uniform): qU

q∗
→ ∞ as c → ∞.

Proof Since q∗ ≤ qP ,

qU

q∗
≥

qU

qP

=
1

pxP

(

1

k

k
∑

i=1

pxi,U

)

=
1

k

k
∑

i=1

pxi,U−xP

Clearly,

c

(

1

k bi

−
1

b

)

− 1 < xi,U − xP < c

(

1

k bi

−
1

b

)

+ 1

Therefore

lim
c→∞

xi,U − xP =

+∞ if bi < b
k

0 if bi = b
k

−∞ if bi > b
k

Since 0 < p < 1,

lim
c→∞

pxi,U−xP =

0 if bi < b
k

1 if bi = b
k

∞ if bi > b
k

As the capacity of the system increases, the avail-
ability of an individual file depends on how small
or large it is relative to the average file size b

k
. If

a file is small, i.e., less than average, its availabilty
can be arbitrarily larger under Uniform than Pro-
portional. Conversely, if an file is large, i.e., more
than average, its availability can be arbitrarily larger
under Proportional than Uniform. What happens to
the average availability? There is at least one file j

such that bj < b
k

8. Now

qU

q∗
≥

1

k

k
∑

i=1

pxi,U−xP >
1

k
pxj,U−xP

The right-hand side goes to infinity with increasing
capacity, therefore so does the left-hand side, i.e.,
limc→∞

qU

qP
= ∞.

The above theorem implies that, as the amount
of resource available in the system increases,
Uniform does arbitrarily worse than optimal.
This is true for any value of p. Since Uniform
is also fair, this implies that there is a conflict
between fairness and efficiency: the fair policy
can be arbitrarily inefficient. We now consider the
Proportional allocation policy. Theorem 3 bounds
the deviation of Proportional from the optimal
allocation. Let qP denote the average unavailability
of the Proportional allocation.

Theorem 3 (proportional): qP < k q∗

Proof There is at least one file j such that x∗
j ≤ xP .

Otherwise
∑k

i=1 bi xi > c
b

∑k
i=1 bi = c, which would

violate the capacity constraint. Now

q∗ =
1

k

k
∑

i=1

px∗

i >
1

k
px∗

j ≥
1

k
p

c
b =

qP

k

Therefore qP < k q∗.

8This is true unless all files are of equal size, in which case both
Uniform and Proportional are vacuously optimal.

5

The above theorem implies that for a given file
distribution, i.e., constant k, Proportional is always
within a constant factor of optimal, regardless of p

or the distribution of file sizes. Thus as the amount
of resource increases, Proportional is always within
a factor of k of optimal, whereas Uniform may be
arbitrarily worse. In addition, Theorem 3 implies
that Proportional is competitive, with a competi-
tive ratio of at most k 9. Thus, irrespective of p,
Proportional is always within a factor of k of the
optimal. Moreover, when c is an exact multiple
of b, Proportional is in fact the only competitive
allocation. To see this, observe that, as in the proof
of Theorem 3, there is at least one file j such that
xi < xP . Now

q

qP

>
1

k
pxj−xP >

1

kp

As p −→ 0, the competitive ratio of any allocation
becomes unbounded. This implies that in a system
where p is not known and may be small, Propor-
tional is guaranteed to be competitive. When c is
not an exact multiple of b, there are other allocations
that may be better. This is because rounding wastes
capacity, which we address later in this section.

B. Simulation Results

In this section, we simulate the Uniform and Pro-
portional allocation strategies and compare it with
Greedy. Greedy is used as an approximation of the
optimal allocation as the optimal is computationally
intractable to calculate for large system sizes. We
use two input file distributions: uniform and zipf.
In both cases, there are k = 100 files with mean
file size 100. In each experiment, we average over
100 iterations to eliminate the effect of a specific
set of file sizes.

Figure 2(a) shows q as a function of system
capacity c when file sizes are uniformly distributed.
Figure 2(b) shows the same when the file sizes are
zipf. The value of p is 0.5 . First, as expected, q

decreases with increasing c; greater capacity implies
more replication, which results in increased avail-
ability. Second, Greedy results in better availability
than both Uniform and Proportional; the difference

9The competitive ratio of an allocation is a bound on how much
worse an allocation can do with respect to the optimal allocation, for
any value of p. Note that the optimal allocation itself will depend on
the value of p. In the example of Section II-B, the competitive ratio
of (2, 2, 2) can be computed to be 1.25 using simple calculus.

is more pronounced in the case of zipf distributed
file sizes. Finally, for uniform file distributions,
Proportional exhibits a staircase behavior. This is
because Proportional uses rounding to compute the
number of replicas. For k = 100 files of mean
size 100, the expected value of the total size b is
10000. For every additional 10000 of capacity, the
number of replicas of each file xP increases by 1;
recall that Proportional allots the same number of
replicas for all files. Due to rounding, the number
of replicas (and hence q) increases discontinuously
with increasing system capacity. This effect can
also be seen for Uniform, although to a lesser
extent. This is because in the case of Uniform, the
replication level does not increase uniformly for
all files; as capacity increases, smaller files will
increase their replication level before larger files.
However, the rounding effect is still present; thus
the curve for Uniform appears piecewise linear. In
the case of zipf distributed files, this effect is much
less pronounced; the larger variance of b (recall we
average over 100 iterations) mitigates this effect to
some extent.

The above discussion highlights some ineffi-
ciency in both Uniform and Proportional. Because a
fractional number of replicas must be rounded down
to satisfy the capacity constraint, both allocations
do not fully utilize the available capacity. Thus the
sub-optimality of these schemes could be due to
both the incomplete utilization of capacity as well as
some intrinsic inefficiency in the allocation. We can
eliminate the former through a simple randomized
scheme which makes the expected value of the
number of replicas is equal to its allocation. For
example, if a file is to be allotted 6.6 replicas, the
file is allotted 7 replicas with probability 0.6, and 6
with probability 1 - 0.6 = 0.4.

Figure 2(c) shows the behavior of the randomized
versions of Proportional and Uniform for a uniform
file distribution. Figure 2(d) shows the same for a
zipf file distribution. As can be seen, randomization
enables more efficient use of marginal increases in
capacity; the curves are therefore smoother. Also
for a given system capacity, the randomized variants
have lower q. In the case of the uniform file distri-
bution, both Uniform and Proportional are close to
Greedy. In the case of the zipf file distributions, they
are less so, especially for small capacities. In both
cases, Uniform is better than Proportional for small
system capacities; for larger capacities, Proportional

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

q

c

Uniform Allocation
Proportional Allocation

Greedy

(a) Uniform file distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

q

c

Uniform Allocation
Proportional Allocation

Greedy

(b) Zipf file distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

q

c

Uniform Allocation
Proportional Allocation

Greedy

(c) Uniform file distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

q

c

Uniform Allocation
Proportional Allocation

Greedy

(d) Zipf file distribution

Fig. 2. Unavailability of Uniform and Proportional and randomized variants

is better. This is because Uniform results in smaller
files being replicated independant of larger files,
which is important for smaller capacities when
there is insufficient capacity for larger files to be
replicated. Since Uniform divides the capacity of
the system fairly among files, a large file does not
affect the availability of a small one when there is
insufficient capacity.

Figure 3 shows the behavior of Greedy for uni-
form and zipf file distributions, as a function of p.
The value of c is 50000. As expected, q increases
with increasing p. When p is small, the file distribu-
tion does not affect the optimal solution to a great
extent. This is because the optimal allocation tends
to be more uniform when the nodes are relatively
reliable. When p is large, i.e., nodes are more
unreliable, Greedy does better in the case of the zipf

distribution due to the preponderance of small files.
One replica less of a large file allows several smaller
files to be replicated more. Since a zipf distribution
results in a large number of small files and a smaller
number of large files, replicating smaller files more
is more efficient. When file sizes are more uniform,
this is not possible.

Figure 4(a) shows how Uniform and Proportional
perform with respect to Greedy as a function of p.
In the case of uniform file distributions. Specifically,
the y-axis shows the ratio of Uniform (Proportional)
to the Greedy allocation. Figure 4(b) shows the
same for the zipf file distribution. First, we note
that Proportional is a constant factor away from
Greedy for all values of p; the constant is about 1.2
in the case of uniform and 2.5 in the case of zipf.
Theorem 3 shows that Proportional is always within

7

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0 0.2 0.4 0.6 0.8 1

p

Uniform Allocation
Proportional Allocation

(a) Uniform file distribution

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 0 0.2 0.4 0.6 0.8 1

p

Uniform Allocation
Proportional Allocation

(b) Zipf file distribution

Fig. 4. Unavailability of Uniform and Proportional allocations compared to Greedy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1

q

p

Uniform File Distribution
Zipf File Distribution

Fig. 3. Unavailability of Greedy allocation

a factor of k of optimal; the simulations indicate that
the actual number is much smaller. Second, Uniform
is significantly sub-optimal for small values of p, but
improves with increasing p. For large values of p, it
is actually better than Proportional. This reflects the
fact that when p is small, i.e. nodes are relatively
reliable, the marginal increase in availability due to
an additional replica is small. Therefore, favoring
smaller files at the expense of larger files is sub-
optimal. As p becomes larger, the converse is true: it
is better to sacrifice large files to ensure that smaller
ones are available. We note that Theorem 2 implies
that for any value of p, Uniform will eventually
be worse than Proportional as system capacity in-
creases.

IV. DISCUSSION

We have examined a resource allocation problem
that arises in the context of replicated P2P storage
systems. We have considered some simple algo-
rithms that allocate resource among files in a dis-
tributed storage system, and the efficiency/fairness
properties of the resulting allocations. Our model is
simplistic; further work is necessary to refine it and
study the problem in a more realistic setting. We
briefly discuss possible directions.

When nodes are heterogeneous, a more sophis-
ticated resource model is necesary to quantify the
capacity contributed by each node. Rather than
using raw capacity, a better is use to define some
notion of available capacity, which incorporates the
availability of a node as well. Our initial intuition
suggests that the product of the raw capacity and
the negative log of a node’s unavailability may
be a good candidate for this. Secondly, a more
sophisticated user model will allow many users,
each of which have multiple files to store. In this
case, computing average availability on a per-user
basis, and then taking an average over all users, may
be a reasonable metric to optimize on a system-wide
basis.

With more complex resource and usage models,
the questions are: 1. How does the system balance
efficiency with fairness, and 2. How does the system
achieve desired allocations? In the latter case, the
seminal work on replica placement in FARSITE [6]
suggests that a disributed hill-climbing approach
may be viable. Finally, when nodes in the system are

8

controlled by users, as is likely in a P2P scenario,
there is the question of how the system deals with
strategic behavior on the part of users. Thus, an
open question would be is it possible to design
mechanisms that incentivize achieving the desired
allocation.

V. CONCLUSION

In this paper, we have formulated and studied
the replica allocation problem, which deals with
optimizing the availability of files in a distributed
storage system subject to a resource constraint. Our
work is related to recent work in building highly
available storage systems based on the peer-to-peer
paradigm. CFS [5] and PAST [9] use conventional
replication while Oceanstore [8] and TRFS [2] use
erasure coding. To the best of our knowledge, these
systems do not consider optimizing the number of
file replicas based on a resource constraint.

Our conclusions may be summarized as follows.
When peers in the system are relatively reliable,
the optimal allocation does not favor smaller files
over larger files. When peers are unreliable, the
converse is true , i.e., smaller files tend to have
more replicas. Uniform, though fair in terms of
dividing the available resource, is sub-optimal, and
in fact, may be arbitrarily worse than optimal. On
the other hand, Proportional, though unfair in terms
of resource allocation, is always within a constant
factor of the optimal allocation, which in practice
tends to be quite small.

REFERENCES

[1] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Watten-
hofer. Farsite: Federated, available, and reliable storage for an
incompletely trusted environment. In Proceedings of USENIX
OSDI, 2002.

[2] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total
recall: System support for automated availability management. In
Proceedings of USENIX NSDI, 2004.

[3] C. Blake and R. Rodrigues. High availability, scalable storage,
dynamic peer networks: Pick two. In Proceedings of HotOS IX,
2003.

[4] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-
rithms. MIT Press, 1990.

[5] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with cfs. In Proceedings of ACM SOSP,
2001.

[6] J. Douceur and R. Wattenhofer. Competitive hill-climbing
strategies for replica placement in a distributed file system.
Proceedings of DISC 2001.

[7] M. Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-
based aggregation in large dynamic networks. ACM Trans.
Comput. Syst., 23(3):219–252, 2005.

[8] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinsk, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An architecture for global-
scale persistent storage. In Proceedings of ACM ASPLOS, 2000.

[9] A. Rowstron and P. Druschel. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In
Proceedings of ACM SOSP, 2001.

