
Using Behavior Templates To Design Remotely
Executing Agents for Wireless Clients

Eugene Hung
Department of Computer Science and Engineering

University of California, San Diego
San Diego, California 92093–0114

E-mail: eyhung@cs.ucsd.edu

Joseph Pasquale
Department of Computer Science and Engineering

University of California, San Diego
San Diego, California 92093–0114

E-mail: pasquale@cs.ucsd.edu

Abstract— ReAgents are remotely executing agents derived
from behavior templates that support wireless clients in Internet
applications. A reAgent is essentially a “one-shot” mobile agent
that acts as an extension of a client, dynamically launched by
the client to run on its behalf at a remote, more advanta-
geous, location. Behavior templates simplify the programming of
reAgents by transparently handling data migration for remote
execution, supporting custom communication protocols between
the client and agent, and providing a general interface for
programmers to implement their application-specific customizing
logic. This simplification is made possible by the identification
of characteristic behaviors, i.e., common patterns of actions
that exploit the ability to process and communicate remotely.
Examples of such behaviors are filtering, encoding/decoding,
monitoring, caching, and distribution/collation. In this paper,
we identify and analyze a set of core characteristic behaviors,
describe how to program reAgents using behavior templates, and
show that the overhead of using reAgents is low and outweighed
by its benefits.

I. INTRODUCTION

The trend towards smaller, wireless Internet-access devices
has brought about a wide disparity in the resources and
connections of client devices (Fig. 1). This leads to greater
complexity in the design of Internet applications, as servers
must now handle a broad range of computing power and/or
connectivity quality. And currently, there is little that can
be done for the worst-case scenario of mobile client devices
(mobile clients) popping into the network unexpectedly, de-
manding services, and finding the services unsatisfactory due
to the server’s inability to flexibly deal with the shortcomings
of the mobile device.

Consider the typical client/server-based electronic-
commerce application that enables a user to purchase
merchandise over the Internet. A typical mobile client adds
many challenges that must be met. For example, a palmtop
with a small display area might end up downloading images
of the merchandise too big for it to display. A notebook
with an unreliable wireless connection to the Internet may
be unable to verify that a purchase was completed, possibly
sending a duplicate purchase order due to an intervening
disconnection and buying the same product twice. A wireless
laptop with a strong but insecure connection (common to
many wireless networks) may require levels of security
beyond the server’s ability to supply. These problems degrade

Client Environment

- Handhelds
- Laptops
- Desktops

The Internet

Fig. 1. A heterogeneous client environment

quality of service, and will increase in frequency as mobile
clients grow more diverse in their needs and resources.

To address these types of problems, applications can be
designed to compensate for a mobile client’s shortcomings
by customizing their performance for each individual client
through the use of remotely-operating customizing logic. For
example, an application running on a mobile client with a tiny
display would benefit from customizing logic operating at or
near the server that shrinks images to a size that can fit on
the display. On a mobile client with an unreliable connection,
the same application would use customizing logic operating at
the boundaries of the connection to stabilize the connection,
thus operating as a custom protocol. Finally, over a connection
susceptible to malicious eavesdroppers, the application could
encrypt the data according to its customizing logic before
sending it to the mobile client to be decrypted.

A. Previous Solutions

The idea of providing customizing logic to client applica-
tions is not new, but previous efforts have been divided on how
and where to provide this functionality. The active networks
approach [1] is to place the logic “inside the network.” Another
approach is to have servers adapt to the specifics of each
individual client, possibly through a standardized protocol
such as WAP [2]. These approaches can have deployability or
scalability problems. Placing customizing logic in the network
(i.e., routers) is difficult and can negatively impact other
network applications, while relying on servers to customize for
mobile clients does not scale well, as the constant introduction
of new mobile devices creates a correspondingly large number
of demands that must be met.



Another approach is to have the customizing logic operate
as a user-level intermediary on a machine between the client
and server. Such an intermediary would act as a standard client
as viewed by the server by communicating with it using the
pre-established client/server protocol. The intermediary would
also act as a specialized server for the client, with the ability to,
for example, filter data received from the server into a reduced
form for a client connected via a low-bandwidth, wireless
network.

A popular type of intermediary, for which there is much
research and experience, is the proxy. A proxy is typically
a static service, usually pre-installed by an administrator, to
which a client sends its requests for processing before it gets
passed on to the server. Proxies are excellent for customizing
large groups of clients with similar demands. For example,
all clients connecting via low-bandwidth links to a higher-
speed network might use a filtering proxy that operates beyond
these links. However, proxies are limited in scope and typically
inflexible in where they can be located. If a client needs special
customizing logic that operates optimally at a specific location
(such as at or near the basestation for a wireless client), it may
be difficult to install such a special proxy at that location.
Furthermore, proxies installed by parties other than the client
suffer from similar scalability problems that arise from server-
based customization.

At the other extreme of types of intermediaries is the mobile
agent [3]. By a mobile agent, we simply mean code that is
capable of migrating from the client to a remote site, acting
on behalf of the client. The most general forms of mobile
agents, which allow suspension during execution and conse-
quent migration, are extremely flexible and powerful in their
support for customization. And unlike server-based solutions,
they scale well with increasing client heterogeneity as each
different client can use its own type of agent to alleviate its
problems. However, mobile agents typically require complex
underlying middleware systems to handle the semantics and
security problems that are a byproduct of code migration. They
are also not easy to program, as programmers are generally
not familiar with the mobile code programming paradigm.

B. Our Solution

Given these extremes, we seek a middle-ground solution,
with the following goals:

� provide a mobile client a better way to deal with its
limitations

� not affect the server
� be easy to program
To meet these goals, we propose a customization mecha-

nism that is, simply put, more flexible than proxies but less
complicated than fully-general mobile agents. We achieve this
compromise by, first, adopting a form of “one-shot” mobile
agents, which we call a reAgent (for “remotely executing
agent”). Unlike a mobile agent, which can move to multiple
machines during its computation and retain its state and
identity, a reAgent moves once, and does so before it begins
execution. This is similar to the remote evaluation model [4].

Client
Protocol Protocol

Server

Client Server

Cache

reAgent Hostlaunch

Client Logic reAgent Logic

Fig. 2. reAgent Architecture

A reAgent can be viewed as an extension of the client, which
launches it to operate at a remote location that is superior in,
for example, available computing or network resources. Upon
execution, the reAgent acts as a typical client to the server,
while presenting a server interface to the client. The reAgent
operates between client and server on a machine designated
as the reAgent host. (Fig. 2)

One-shot migration simplifies the infrastructural support by
avoiding security issues introduced by code that can roam from
site to site, and avoiding the technical problems associated
with maintaining and updating program state during migration,
without losing much functionality, a view supported by [5].
With the bar thus lowered for hosts to support reAgents, we
assume that the infrastructure in support of reAgent deploy-
ment will not be problematic. ReAgent hosts can be third-
party servers charging reAgents for compute time, or personal
machines that are more powerful than the client device (i.e. a
user’s home/office desktop can be set up to support reAgents
launched from the user’s roaming handheld device.)

The simplification advantages of one-shot migration also
extend to development. ReAgent code can be derived from
a library of templates which capture common useful forms
of client/agent/server interactions; and via code parameters,
can be specialized for particular application needs. By having
restricted and simplified the form of movement of reAgents,
we have been able to identify useful patterns of processing
and communication. As this is the central contribution of our
work, we now elaborate on the use of templates that codify
general patterns of behavior.

Our thesis is that there are certain characteristic “behaviors”
which intrinsically exhibit benefits that are derived from a
reAgent’s ability to operate remotely. These benefits come
from some combination of, but not limited to, the following:

� use of remote computational resources;
� acting on behalf of a client beyond a problematic portion

of the network;
� communicating with a server from a more advantageous

location (e.g. shorter latency, high bandwidth, greater
stability, etc.)

Some examples include:
� filtering, by removing unusable or unwanted data before

it is communicated over low-bandwidth wireless links to
reduce bandwidth and latency, or before it is received to
reduce client storage and processing;

� encoding/decoding, to derive some benefit by trans-
forming data to be communicated over a problem-
atic link, such as improving security via encryp-



tion/decryption, reducing latency and bandwidth via com-
pression/decompression, or improving reliability via re-
dundancy coding);

� monitoring, to improve application reaction times to
critical changes in state at the server, by observing and
triggering actions closer to the server;

� caching, by saving commonly-accessed data closer to
the client to improve responsiveness when there is high
network latency between the client and the server, and
the client does not have sufficient system resources to
efficiently operate a local cache;

� distributing/collating, by moving the distribution point
of a request, copies of which are to be forwarded to
numerous servers, to a more efficient operating point,
where results can then be collated or fused before passing
them back.

These example behaviors are general patterns of action that
we have encapsulated in behavior templates, which are used
to dynamically create and launch reAgents with minimal effort
by the programmer. The parameters to the templates specialize
the behaviors of the reAgents they generate. By identifying
the characteristic behaviors of reAgents and using them as the
building blocks for development, we provide a simple way (via
templates) of building and deploying agents that efficiently
customize server data in a client-specific, scalable fashion.

The rest of this paper is organized as follows.

In Section II, we illustrate the behavior template concept
by providing some simple examples of how a programmer
would use them. In Section III, we describe the set of core
characteristic behaviors we have identified. In Section IV,
we present experiments that show that the implementation
overhead of this approach is tolerable and outweighed by its
benefits. In Section V, we review related work in the area of
Internet application customization in more detail. Finally, in
Section VI, we present conclusions.

II. PROGRAMMING EXAMPLES

To provide some intuition as to how behavior templates
work and simplify programming, we present some examples
in this section. The first example shows how a programmer
would incorporate application-specific customizing logic that
does compression/decompression with an encoder/decoder be-
havior template implementation written in Java. While the
concepts behind behavior templates are language-independent,
the choice of language for actual implementation does affect
deployability. Java was chosen because of its portability —
its run-time environment, the Java Virtual Machine (JVM),
provides a standard, homogeneous environment for execution
that allows code to be compatible across platforms. Also,
Java’s support for dynamic code loading and serialization of
objects (to implement mobile code) across the network [6]
makes it popular for mobile code systems, and allows us to
leverage existing mobile code system technology.

A. Example 1: Basic Data Compression reAgent

Consider the problem of Web browsing on a laptop over a
low-bandwidth connection to the Internet. Given that images
can take a long time to download because of the limited
bandwidth, it would be beneficial to use a reAgent at an
intermediate site to compress image data before it is sent over
the low-bandwidth connection. When the data is received at the
laptop, it should be automatically decompressed and presented
to the browser.

1) Using the Templates Package: To support this common
scenario, the programmer selects the Encoder behavior tem-
plate from the library containing the core set. This is because
compression and decompression share the same defining char-
acteristic of all encoders/decoders — they transform the server
data to a different format (e.g., for performance or security
reasons), send it, and then restore to the original format. The
application-specific customizing logic, or CL, must also be
designed. For this particular example, the programmer decides
to base the CL on the popular ZLIB compression method [7],
for which there are publicly available Java implementations,
and which can easily be placed in the form required by our
system.

2) Using the Encoder Logic Interface: The programmer
must port the CL to the behavior-specific interface (in this
case, the EncoderLogic interface in our Java implementa-
tion shown below) so that the Encoder template knows how
to invoke the CL.

The EncoderLogic interface requires the CL to support
the following methods:

public interface EncoderLogic
{

public byte[] encode (byte [] content, String [] args) throws IOException;
public byte[] decode (byte [] content, String [] args) throws IOException;

}

� encode() converts the data received from the server to
a special format prior to its being sent to the client.

� decode() reverses the operation performed by the
encode() function.

3) Using the Template API: Once the CL is ported to
this interface, an encoding reAgent can be created with the
following code:

EncoderTemplate reagent;

String encoder = "Compress.class";
String[] encoderArgs = null;

reagent = new EncoderTemplate(encoder, encoderArgs,
"middleman.ucsd.edu");

The constructor method of EncoderTemplate creates
a reAgent that will instantiate an object of the CL class
with encoderArgs as arguments. In this example, the
CL does not take any arguments, so encoderArgs is
null. It will also then launch the reAgent to the location
“middleman.ucsd.edu”, provided as a parameter. The
reAgent is now at the remote host (the “reAgent host”) and is
ready to communicate with the client.

For the client to send the reAgent (and through it, the server)
a request, the process method is called :



byte[] response = (byte []) reagent.process (request);

The process method is responsible for actually commu-
nicating with the reAgent. It takes a request to pass to the
server as an argument and returns the output of the reAgent in
a byte array. All the encoding and decoding is hidden from the
user; the reAgent, through the pre-defined encoder classes, is
responsible for calling the client-specific encoder function (to
compress the server data) and decoder function (to decompress
the server data) when appropriate.

At this point, we have a working reAgent that compresses
the server data before sending it to the client. The client-side
logic of the template (pre-defined as part of the EncoderTem-
plate code) then decompresses the data and returns it to the
browser. Neither browser nor server know that any compres-
sion occurred — the browser knows of the reAgent, but not
its internal function, while the server believes the reAgent is
the actual browser. In this way, the reAgent homogenizes the
client environment for servers while requiring no effort and
knowledge on the server’s part.

B. Example 2: Customizing Communications

The templates, with interfaces that allow insertion of a CL
to produce a specialized reAgent, abstract away movement
and communications from the programmer. However, while
movement is designed to be fixed to a one-shot style, similar
restrictions are not placed on communications. Just as they are
parameterized to accommodate specialized customizing logic
functions, templates can accommodate special communica-
tions requirements by allowing specification of communication
protocols that the reAgent uses to communicate with the
client and server (defined as the client protocol and the
server protocol respectively). Such custom protocols are useful
whenever specialized communications are needed, such as in
the case of an unreliable wireless network whose default error
recovery mechanism is unsatisfactory. (If custom protocols are
not necessary, nothing special needs to be done, as default
protocols are automatically provided when the constructor is
called without a custom protocol as an argument.)

For the reAgent to use a custom protocol, the Templates
package defines a Protocol interface that all custom proto-
cols must implement:
public interface Protocol
{

public boolean connect (InetAddress address, int port);
public Protocol waitForConnect (int port);
public void send (Object obj);
public Object receive ();
public void disconnect ();
public void cleanup();

}

The interface defines only highly general functions that pro-
tocols must support (send, receive, connect, and disconnect).
In this manner, flexibility of protocol choice is retained while
giving the reAgent an interface that it can use to communicate
with client and server in a customized fashion. Furthermore,
by separating the single client/server protocol into client-
reAgent and reAgent-server components, the reAgent is able

to communicate with the client using a client-specific protocol
that specifically addresses client problems unsupported by the
server protocol.

After writing an implementation of the custom protocol with
this interface, the protocol class file is passed to the Template
constructor, as follows:

String cProtocol = "myClientProtocol.class";
String sProtocol = "myServerProtocol.class";

reagent = new EncoderTemplate(encoder, encoderArgs,
"middleman.ucsd.edu",
cProtocol, sProtocol);

The reAgent created will then communicate with the client
with the client protocol and with the server using the server
protocol.

C. Example 3: Integration into Traditional Applications

This section shows how a traditional browser application
would integrate the previous two examples to use a com-
pression/decompression reAgent. First, here is the top-level
pseudo-code view of a traditional implementation of a HTTP
Web browser:

public void main () {
Protocol HTTP; // implementation of HTTP

while (true) {
request = getInputFromClient(); // gets input from keyboard
HTTP.send (request); // server specified in request
byte[] response = HTTP.receive();
displayResponse (response);

}
}

In order to transform the browser application into one using
a reAgent that communicates with the client and server using
HTTP, the following changes are made (changed lines marked
with an asterisk) :

public void main () {

EncoderTemplate reagent;

String encoder = "Compress.class"; *
String[] encoderArgs = null; *

String cProtocol = "HTTP.class"; *
String sProtocol = "HTTP.class"; *

reagent = new EncoderTemplate(encoder, encoderArgs, *
"middleman.ucsd.edu", *
cProtocol, sProtocol); *

while (true) {
request = getInputFromClient();
byte[] response = (byte []) reagent.process (request); *
displayResponse (response);

}
}

All communications, encoding, and decoding are now com-
pletely hidden from the browser — the template abstracts them
away with the process() method.

D. Example 4: Simple Data Encryption

Little work was needed to create the compressing reAgent
beyond obtaining a suitable CL and interfacing it with the
appropriate behavior template. However, one could argue that
one could simply build a data-compression agent and use it
for any client in a similar situation. But not all users face the
same scenario as the user in Example 1. Take another laptop
user, this time one who is unconcerned about low bandwidth,



but is concerned about the privacy of transactions carried out
over the wireless link, particularly with a server that does not
support a protocol secure enough to guarantee privacy. Here,
the user would find a reAgent useful, but for a different reason.
The reAgent can intercept the server data before it reaches the
insecure wireless link, encrypt the data for privacy, send the
encrypted data to the client, and have the client decrypt the
transmission once the link is passed.

Note that this is the same type of behavior as in the first
example, except that instead of compressing/decompressing, it
is encrypting/decrypting. In each case, a reAgent receives data
from the server, changes it to compensate for a deficiency in
the client connection to the network, sends it to the client, and
then undoes the change. With behavior templates, the shared
parts of the behavior are already written. The programmer
only needs to provide a suitable CL to customize the reAgent’s
behavior towards the needs of the client (in this case, privacy).
For example, here the CL is chosen to be RSA [8]. An
implementation of RSA is written in RSA.class, ported to
the EncoderLogic interface, and sent to the template as a
parameter to create a reAgent that behaves in a predictable,
useful fashion:

EncoderTemplate reagent;

String encoder = "RSA.class";
String[] encoderArgs = { new String(publicKey) };

reagent = new EncoderTemplate(encoder, encoderArgs, "middleman.ucsd.edu");

Note that the only changes are in the class file for the
encoder and its arguments (the public key used by the al-
gorithm).

III. CHARACTERISTIC BEHAVIORS

We now present the core set of characteristic behaviors,
with their defining characteristics. Each behavior is codified
by a behavior template, which defines an interface for im-
plementing a reAgent specialized by customizing logic. As
described in Section II, a programmer that wishes to build a
reAgent must first identify the general type of remote behavior
it is to exhibit, select the corresponding behavior template, and
incorporate the CL (application-specific Customizing Logic).
The result is a reAgent that exhibits the general behavior in
an application-specific fashion. By using behavior templates,
programmers gain a structured, easy-to-use approach to build-
ing reAgents that lends itself to reuse over a wide variety of
clients. The programmer is only responsible for obtaining the
CL and incorporating the code into a reAgent via the template
interface.

A. Filter

The Filter behavior (Fig. 3) is used whenever there is a need
to reduce data sent from the server to the client by extracting
and discarding some portion. The CL is the application-
specific algorithm that defines how to reduce the data, i.e.,
what to extract and discard.

The Filter behavior is designed for scenarios where some of
the data is extraneous, unimportant, or unusable. This scenario

is highly relevant for clients that have limited capabilities,
such as small battery-powered wireless devices (e.g., PDAs).
General features include limited network bandwidth as well
as low-fidelity rendering of data, so filtering the data before
sending it to the client would conserve bandwidth without
significantly impacting the perceived quality of the data.

1) Logic Interface:

public interface FilterLogic
{

public byte[] filter (byte[] content, String [] args)
throws IOException;

public boolean isFilterable (Response responseStruct);
}

� filter() filters the server data in a client-specific fashion.
� isFilterable() tests to see if the response is filterable by

this custom logic. (For example, an image filter should not be
used on text.)

2) Logic Outline: The logic outline is the overview of what
happens when the process() method is called. Each logic
outline is split into client-side and remote-side components.
The client-side component runs on the client; the reAgent-side
component runs on the reAgent host. Thus, while this code
is all encapsulated as part of the reAgent, part of it actually
runs at the client while the other part runs at the “remote
location” of the reAgent. These complexities, along with all
the details of low-level communication and synchronization
of processing, are all abstracted away from the programmer.
However, to provide more control over communication, the
programmer is able to install a client-specific protocol that the
client-side component uses to communicate with the reAgent-
side component, and a server-specific protocol used by the
reAgent-side component to communicate with the server.
These protocols, as explained in Section II-B, are defined by
the template constructor function.

In the Filter, the logic outline is simple: the reAgent tests
to see if the Filter algorithm should be applied to the server
data, runs the Filter, and sends the filtered result back to the
client.

client-side logic reAgent-side logic
================= =======================

deploy (reAgent)

cProtocol.send (query) query = cProtocol.receive()

-----------------------------------
sProtocol.send (query)
resp = sProtocol.receive()
if (cLogic.isFilterable (resp))
filteredResp =

cLogic.filter (resp.content, args)
-----------------------------------

response = cProtocol.receive() cProtocol.send (filteredResp)

return response

Client
Protocol Protocol

Server

Client ServerreAgent Hostlaunch

Filter

reAgent LogicClient Logic

Fig. 3. The Filter Behavior



Client
Protocol Protocol

Server

Client ServerreAgent Hostlaunch

Decode Encode

Client Logic reAgent Logic

Fig. 4. The Encoder Behavior

B. Encoder

The Encoder behavior (Fig. 4) is used whenever there is
an advantage derived from transforming server data at some
intermediate point, sending it to the client, and then restoring
it to its original format. Consider, for example, wireless
clients with security concerns over their connecting wireless
link to the Internet. Radio-wave transmissions for wireless
communications are susceptible to eavesdropping, so security-
sensitive applications running on wireless clients would use
this behavior to encrypt their transmissions at an intermediate
site before sending it over the insecure portion of the network.
Another common, useful application that uses this behavior is
compression of server data for transmission over an atypically
low-bandwidth network segment. After passing this segment,
the data is uncompressed to its original format. Thus, for
the Encoder behavior, the amount of client-side processing
is significantly more than what occurs in the Filter behavior.

1) Logic Interface: The logic interface for the Encoder was
described earlier in Section II-A.2.

2) Logic Outline: The reAgent encodes the server response
at the intermediary, sends the encoded data to the client, and
then decodes the encoded data at the client.
client-side logic reAgent-side logic
================= ================

deploy (reAgent)

cProtocol.send (query) query = cProtocol.receive()

---------------------------------
sProtocol.send (query)
response = sProtocol.receive()
encResp = cLogic.encode (response)
---------------------------------

encResp = cProtocol.receive() cProtocol.send (encResp)

------------------------------------
response = cLogic.decode (encodedRes)
------------------------------------

return response

C. Monitor

The Monitor behavior (Fig. 5) is designed for use in
applications that have a need to frequently examine the state of
a remote object (on a far-away server), and trigger an action

Client
Protocol

Protocol
Server

Client Server

Server Object

Trigger

reAgent Hostlaunch

Client Logic reAgent Logic

Fig. 5. The Monitor Behavior

when some special state is observed. This action will often
involve some measure of communication with the server. The
combination of specific trigger action and monitoring algo-
rithm form the CL. The CL is also responsible for triggering
the sending of results to the client.

The Monitor behavior allows the monitoring process to be
located at a site closer to the object that is being monitored,
which will improve the interaction time for communicating the
trigger action to the server. This is important for applications
that require a quick response to sudden changes in the environ-
ment. Examples include stock trading or bidding in real-time
online auctions.

1) Logic Interface:
public interface MonitorLogic
{

public long calcNextQuery (Response responseStruct, long lastQueryTime);
public boolean testResponse (String [] args, Response responseStruct);
public byte[] generateTriggerAction (Response responseStruct);

}

� calcNextQuery() returns the next time the monitor should
make another query.

� testResponse() tests to see if the server response has
produced a trigger state.

� generateTriggerAction() generates a trigger action to
be sent to the server once the trigger state has been reached.

2) Logic Outline: The reAgent repeatedly calculates the
next time to query the server, queries the server at that time,
and then checks to see if a trigger state has been reached. Once
the trigger state is reached, it executes the trigger action, and
returns a result to the client.
client-side logic reAgent-side logic
================= ================

deploy (reAgent)

cProtocol.send (query) query = cProtocol.receive()
cProtocol.send (queryParam) queryParam = cProtocol.receive()

------------------------------------
do

/* pause before checking */
queryTime =

cLogic.calcnextQuery (queryParam)

sleep (queryTime - currentTime)

/* check remote object */
sProtocol.send (query)
response = sProtocol.receive()

while (cLogic.testResponse (response) -> FALSE)

/* perform one-time action */
sProtocol.send (cLogic.generateTriggerAction())

result = sProtocol.receive()
-------------------------------------

result = cProtocol.receive() cProtocol.send (result)

return result

D. Cacher

The Cacher behavior (Fig. 6) is used for storing recently
retrieved server data at a nearby location with the expectation

Client
Protocol Protocol

Server

Client Server

Cache

reAgent Hostlaunch

reAgent LogicClient Logic

Fig. 6. The Cacher Behavior



that it will be accessed again, thus improving future perfor-
mance. When previously retrieved data is requested again, the
nearby stored copy is retrieved instead of the distant original.
This behavior is especially useful for applications that have
frequent but similar requests to remote servers, such as Web
browsing.

1) Logic Interface:
public interface CacherLogic
{

public void create(String [] args);
public String hash (byte[] request);
public Response lookup (String key);
public void replace (String key, Response responseStruct);

}

� hash() takes a request as input and returns a String that is
the key string for that request.

� lookup() returns true if the key string is in the cache.
� get() returns the Response associated with a key string in

the cache.
� replace() puts a key string in the cache and associates it

with a Response. This method also implements the cache
replacement policy.

2) Logic Outline: In operation, the client launches a
reAgent to the reAgent host to intercept requests from the
client to the server and decide whether or not to pass along
the request. If the request has not been made recently, the
reAgent associates the request with a “key” (derived from the
protocol) and passes the request through to the server. When
the server responds to the reAgent, the reAgent associates the
data in the response to the key of the request and stores both
items in a database, i.e., the cache, before sending the response
data back to the client. The data in the cache is kept for a
maximum period of time called the “keep period.” During the
keep period, if the client makes a request that matches a key
in the cache, the reAgent will bypass sending the request to
the server and immediately return the associated cache data to
the client.

The reAgent is in charge of inserting, removing, and re-
trieving data contained within the cache. Insertion of data
happens whenever the server sends the reAgent a response.
Data and its corresponding key are removed whenever the keep
period for that piece of data expires, the amount of storage
allocated to the cache begins to run out, or by special order
of the client. Data is retrieved when the client request key
matches a key within the cache. While the reAgent defines
these general actions, particulars regarding cache policy (such
as which cache entries to replace first when the cache is full)
are supplied as part of the CL.
client-side logic reAgent-side logic
================= ================

deploy (reAgent)

cProtocol.send(request) request = cProtocol.receive ()

(pattern of behavior)
-------------------------------
key = cacherLogic.hash (request)

if (cacherLogic.lookup(key) -> TRUE)
response = cacherLogic.get (key)

else
send(query)
response = receive()
cacherLogic.replace (key, response)

-------------------------------

response = cProtocol.receive() cProtocol.send(response)

return response

E. Collator

Client
Protocol Protocol

Server

Client Server

Filter

reAgent Hostlaunch

Client Logic reAgent Logic

Fig. 7. The Collator Behavior

The Collator behavior (Fig. 7) is used in applications that
need to transmit the same message to multiple servers, and
then operate on the multiple results to return one result
(collation). A typical application that exhibits this behavior is
a comparison shopper that queries different sites with the same
question and returns the “best” result. While most shopping
agents focus on price, different users may have different
ranking criteria, encapsulated in the CL.

1) Logic Interface:
public interface DistLogic
{

public void wait (int replies);
public Object collate (Response[] responses);

}

� wait() defines how long the reAgent waits for server re-
sponses.

� collate() takes all the results received and combines them
into one object to be sent back to the client.

2) Logic Outline: The message is sent once to the reAgent,
which then transmits it multiple times, once for each server.
The reAgent then waits for responses from the servers and
collates the data in an application-specific way to the client.
For example, the reAgent may only wait for the first response
from any server, or some bounded number of responses, or
even responses from all servers within a timeout period.
client-side logic reAgent-side logic
================= ================

deploy (reAgent)

cProtocol.send (query) query = cProtocol.receive()
cProtocol.send (serverList) serverList = cProtocol.receive()
cProtocol.send (minReply) minReply = cProtocol.receive()
cProtocol.send (timeSlice) timeSlice = cProtocol.receive()

-----------------------
n = sizeof (serverList)

for (s = 1 to n)
sProtocol.connect (serverList[s])
sProtocol.send (query)

replies = 0

for (i = 1 to n)
spawn Thread that runs :

resp[n] = sProtocol.receive()
[blocking until timeout]

replies = replies + 1
[replies is a synchronized var]

cLogic.wait (replies);

data = cLogic.collate (resp)
-----------------------

data = cProtocol.receive() cProtocol.send (data)

return data

IV. EXPERIMENT

We have implemented our behavior templates in Java,
making use of a locally-developed mobile code system called
Java Active Extensions (JAE), a bare-bones implementation



of one-shot code mobility using Java. For further informa-
tion on the JAE system, see [9]. To experimentally evaluate
the overhead introduced by reAgents, we implemented the
compression example described in Section II-A, based on the
Encoder behavior template. We show that the overhead is
low, especially when taken relative to the performance gains
derived by a compressing reAgent.

A. Experiment: ZLIB Data Compression

In this experiment, the public-domain ZLIB compression
algorithm was used to compress the server data received before
sending it over a low-bandwidth connection to the client,
where it was then decompressed.

1) Environment: In the following experiment, the following
conditions applied:

� The client was a desktop PC PII–300.
� The reAgent host was tap.ucsd.edu, a machine with

2 800Mhz Pentium III processors and on the same subnet
as the data server.

� The data server was charlotte.ucsd.edu, the de-
partmental web server.

The client was connected to the reAgent host via a low-
bandwidth connection with effective bandwidth measured at
10–15 KB/s (KB = kilobytes). The reAgent host and data
server were on the same subnet, so there was little overhead
from network latency (thus allowing us to isolate observed
overhead to our system). The regular bandwidth between the
reAgent host and the server was measured at approximately
800 KB/s.

A fixed cost that needs to be paid at least once per reAgent
creation is the launch overhead (the time it takes for the
reAgent to be launched from the client to the reAgent host).
The mean launch overhead in JAE for sending the reAgent
and its associated classes over the local subnet was 984 ms
(with a 95% confidence interval of 11 ms). Note that this
is a one-time start-up cost; once the reAgent is launched, it
can be used for multiple transactions, each of which involves
receiving a request from the client, passing it to the server,
getting the server’s response, applying a function (in this case,
compression), and sending to the client (which then does the
decompression).

2) Setup: A primitive Web browser was written in Java.
It takes a series of HTTP requests as input, and returns the
HTML output. The HTTP requests were requests for actual
PDF files (technical papers), ranging from 10 KB to 3.4 MB
in size (with each successive file larger than the previous
by a factor of approximately 2–3). This was to give the test
suite a variety of realistic data files, which exhibited different
compression ratios, rather than canned ones that might be
biased in favor of certain client-specific algorithms.

3) Results: The results, compared to a non-compressing
Web browser, are summarized in Fig. 8.

For most of the files, the encoder exhibited good com-
pression ratios, reducing end-to-end times by 30–75%. (The
variable performance gain was dependent on how effective
the file compression was.) The exception was the 10KB file,

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 500 1000 1500 2000 2500 3000 3500

PDF File size (kilobytes)

ms

Standard Browser reAgent

Fig. 8. End-to-end comparison times

1

10

100

1000

10000

100000

1e+06

10 100 1000 10000

PDF file size (kilobytes)

Control Server CL Send Process E2E

Fig. 9. Overhead from encoding a range of files (log-based)

where the gain from compressing the data sent over the
limited bandwidth link did not compensate for the reAgent
processing overhead. However, the encoder provided superior
performance to the non-compressing client/server approach for
files greater than 10KB. An obvious optimization would be for
the reAgent to not compress small files, as the benefit does
not outweigh the cost.

We timed different parts of the reAgent while encoding in
order to determine which factors are contributing the most to
the end-to-end processing time and how they scale. The results
are shown in Fig. 9, which provides more detail for the smaller
contributers to overhead by using logarithmic scales. The
majority of the time was spent sending the data over the low-
bandwidth link. The cost of encoding/decoding, processing, or
moving the data from the server to the reAgent host were all
minor and scaled well.

In this figure,
� Control represents the end-to-end processing time for a

standard (i.e., non-reAgent) client/server implementation.
� Server represents the time it took for the reAgent host

to download the file from the server (over a typical high-
bandwidth connection).

� CL represents the time for the CL to compress.



� Send represents the time it took for the client to download
the file from the reAgent host.

� Process represents the processing time of the reAgent.
� E2E represents the end-to-end processing time of the

reAgent.

This experiment shows that the main bottleneck is clearly
the network, and not the reAgent. In such cases, a reAgent
based on the Encoder behavior template not only imposes
little overhead, but can provide significant improvements in
performance over a traditional client/server application.

V. RELATED WORK

The customization of applications for improved perfor-
mance has seen a variety of past research solutions. Active
networks, dynamic proxies, mobile agents are but a few of the
approaches advanced to solve this problem. In this section, we
describe the related research in this area and explain how our
approach differs.

A. Active Networks

The active network area of research, as described in [1],
argues for putting customizing logic at the network level
with the use of programmable packets, or “capsules”, that
can change the behavior of the network. Active networks are
able to effectively support a wide variety of client devices,
but, because they are based in the network, operate at the
expense of other applications that do not need them. In this
paper, we chose a client-based approach because it does
not impact the rest of the network as severely. Some active
networks have been implemented by researchers, the most
prominent being ANTS [11], NetScript [12], and SwitchWare
[13]. The ALAN project [14], which moves the active network
functionality into the application-level, addresses the issue of
network deployment, but does not provide a general, structured
method for building applications, the subject of this paper.

B. Dynamic Proxies

Another customization solution lies in the use of proxies,
which act as intermediaries between client and server. Proxies
are different from our approach in that they are not necessarily
mobile (movable from site to site), and thus tend to be part
of the existing infrastructure rather than originating from the
client in response to a certain problem. While traditional
proxy applications concentrate on caching Web results for
improved performance and for controlling Internet access
through firewalls [15], there has been some work done on
proxies that actively customize application behavior (dynamic
proxies). In [16], the idea of an Active Cache, or a dynamic
proxy that acts to help improve caching for dynamic Web
objects, was first proposed. In Active Cache, content providers
provide specialized code in the form of a cache applet that
intermediate caching servers execute to produce a new version
of the cached object. More recently, [17] describes a large-
scale, server-based framework for caching dynamic Web con-
tent and facilitating personalized services, called WebGraph.
WebGraph is designed to be deployed without client-side

support, so it is primarily targeted at groups of clients instead
of individual clients.

Server-based customization techniques such as dynamic
proxies are highly deployable because they do not require
changing the underlying network infrastructure and represent
the most popular approach of solving the problem of client het-
erogeneity. However, such techniques, while effective, do not
fit our goal for a scalable, server-independent customization
solution. The reason for this goal is that new clients with cor-
respondingly different demands are continually being created,
and it is a difficult, if not impossible, task to anticipate every
potential variation in client capabilities. Even if such variations
were able to be anticipated completely, not every server has the
resources to handle every potential variation. And if the server
providing a unique service does not accommodate the client,
the client has no recourse in a server-based customization
scenario; it is completely dependent on the server for a solution
to its particular problems.

C. Client-based Customizers

In order to be less dependent on the server, customizers
with more client-side support have been developed. Refer-
ence [18] describes the implementation of a client-proxy-
server framework that supports the on-demand downloading
of custom filters (the customizing logic) to a proxy. The
proxy then executes the filter on communications from the
server before passing it onto the client. Unlike our work,
this framework focuses on filtering applications instead of all
types of applications that could benefit from mobile code. A
more flexible Web-oriented customization scheme is detailed
in [19], which describes the implementation of a middleware
architecture that supports adaptive Web-based proxies called
Customizers. Customizers tend to be deployed on behalf of a
client, and are split into two points of control, so as to separate
the individual extension of a Web browser from its remote,
location-dependent computation. However, it is optimized for
use over an HTTP client/server connection and not a more
generic client/server connection. Finally, the Active Names
project [20] describes the use of a dynamic proxy, introduced
by either server or client, that customizes how resources on
a wide-area network are located and transported to a client.
Our work focuses on avoiding server participation, and thus
differs in that the client must introduce the customizing logic,
with the ability to apply it to any type of network.

D. Mobile Agents

A significant area of past research in client-based customiza-
tion has been based upon mobile agents. Mobile agents are
pieces of customizing logic that have a persistent identity,
moving around the network to multiple sites. The IBM Aglets
Workbench [21] and the D’Agents project [22], from industry
and academia respectively, are prominent examples of systems
that support the execution of mobile agents. A fuller descrip-
tion of these and other important agent systems, as well as the
current state of mobile agent research can be found in [23].



Mobile agents provide a robust solution for addressing the
problems of client heterogeneity: they are both deployable and
scalable. However, despite having several years for the idea
to incubate, mobile agent-based applications are rare. This
is not due to lack of theoretical value: [24], [25], and [26]
describe applications which take advantage of mobile agents.
But, value notwithstanding, few applications based on mobile
agents are in widespread use. Most application programmers
are either unaware of the paradigm of mobile agents, or
uninterested in handling the details necessary to support client-
specific desires. Thus, our work differs from previous mobile
agent literature by concentrating on a method that reduces the
complexity of building agent-based applications.

VI. CONCLUSION

In this paper, we described a means for developing remotely
executing agents (reAgents) that allow Internet applications
to be customized to derive performance (or other) benefits
for heterogeneous clients that are resource-limited, such as
wireless clients. The approach is to use behavior templates,
which abstract away many of the complexities of mobile
code systems. When a developer uses behavior templates to
build reAgents, Internet applications are easier to build due
to pre-coded support for the movement, communications, and
general processing functions used by that application’s general
behavior.

Our main conclusions from this work are as follows:
� Restricting movement of reAgents to one hop does

not significantly impact the ability to construct useful,
desirable applications. Meanwhile, it greatly simplifies
security concerns and operation semantics, improving
deployability.

� ReAgents can be categorized as behaving in a certain
manner. We have identified a small core set of behaviors
that capture common and useful patterns of action by
remotely executing agents. These behaviors include the
following: Filter, Encoder, Monitor, Cacher, and Distrib-
utor.

� We can more easily build agent-based applications
through behavior templates. Behavior templates allow the
programmer to plug in application-specific customizing
logic to create a reAgent that customizes performance in a
manner that fits their needs. This is a simple, scalable, and
practical solution to the problem of client heterogeneity
that adds little overhead.

Future avenues of research include identifying and imple-
menting more core behaviors, obtaining performance numbers
for other basic template implementations, and exploring the
possibility of dynamically combining behavior templates to
easily create applications with more complicated behaviors.

REFERENCES

[1] D. Tennenhouse and D. Wetherall, Towards an active network architec-
ture, Computer Communications Review, 26(2): 5–18, Apr. 1996.

[2] WAP Forum, Wireless application protocol 2.0 specification,
http://www.wapforum.org/what/technical.htm

[3] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik,
Itinerant Agents for Mobile Computing IEEE Personal Communications,
2(5): 34–39, 1995.

[4] J. W. Stamos and D. K. Gifford, Remote Evaluation. ACM Transactions
on Programming Languages and Systems, 12(4):537–565, March 1990.

[5] D. Kotz, R. Gray, and D. Rus, Future Directions for Mobile-Agent
Research, IEEE Distributed Systems Online, 3(8), Aug. 2002.

[6] K. Arnold and J. Gosling, The Java programming language, Addison-
Wesley, Reading, MA, 2nd ed., 1998.

[7] P. Deutsch and J-L. Gailly, ZLIB Compressed Data Format Specification
version 3”, RFC 1950, Aladdin Enterprises, May 1996.

[8] R. Rivest, A. Shamir, and L. M. Adelman, Cryptographic Communica-
tions System and Method, US Patent 4,405,829, 1983.

[9] T. Newhouse, Java Active Extensions: A mobile-code mechanism for
extending client resources, Master’s Thesis, UCSD, 2001.

[10] J. H. Saltzer, D. P. Reed, and D. D. Clark, End-to-end arguments
in system design, ACM Trans. Computer Systems 2 (4): 277–288,
Nov. 1984.

[11] D. Wetherall, J. Guttag, and D. Tennenhouse, ANTS: A toolkit for build-
ing and dynamically deploying network protocols, IEEE OPENARCH
’98, April 1998.

[12] S. da Silva, D. Florissi, and Y. Yemini, Composing active services in
NetScript, DARPA Active Networks Workshop, March 1998.

[13] D. S. Alexander, W. A. Arbaugh, et al., The SwitchWare Active Network
Architecture, IEEE Network, May/June 1998.

[14] M. Fry and A. Ghosh, Application Level Active Networking, Computer
Networks, 31(7): 655–667, 1999.

[15] A. Luotonen and K. Altis, World-Wide Web proxies, Computer Networks
and ISDN Systems, 27(2): 147–154, 1994.

[16] P. Cao, J. Zhang, and K. Beach, Active Cache: Caching Dynamic
Contents (Objects) on the Web, Middleware ’98, Sep. 1998.

[17] P. Mohapatra and H. Chen, WebGraph: A Framework for Managing
and Improving Performance of Dynamic Web Content, IEEE Journal
On Selected Areas in Communications, 20(7), Sep. 2002.

[18] B. Zenel, A proxy based filtering mechanism for the mobile environment,
PhD Thesis, Columbia University, 1998.

[19] J. Steinberg and J. Pasquale, A Web Middleware Architecture for
Dynamic Customization of Content for Wireless Clients, Proc. of the
11th Int’l World Wide Web Conference, Honolulu, Hawaii, USA, May
2002.

[20] A. Vahdat, M. Dahlin, T. Anderson, and A. Agarwal, Active Names:
Flexible Location and Transport of Wide-Area Resources, Proc. of the
USENIX Symposium on Internet Technologies and Systems (USITS),
October 1999.

[21] D. Lange, M. Oshima, G. Karjoth, and K. Kosaka, Aglets: programming
mobile agents in Java, Proc. of Worldwide Computing and its Appli-
cations (WWCA’97), Lecture Notes in Computer Science, Vol. 1274,
1997.

[22] R. Gray, G. Cybenko, et al., D’Agents: Applications and Performance of
a Mobile-Agent System, Software - Practice and Experience, 32(6):543–
573, May 2002.

[23] R. Gray, G. Cybenko, D. Kotz, and D. Rus, Mobile agents: Motivations
and State of the Art, Handbook of Agent Technology, AAAI/MIT Press,
2002.

[24] C. Harrison, D. Chess, and A. Kershenbaum, Mobile Agents: Are They
a Good Idea?, IBM Research Report, Mar. 1995.

[25] R. Gray, D. Kotz, et al., Mobile agents for mobile computing, Proc. of
the 2nd Aizu Int’l Symp. Parallel Algorithms/Architectures Synthesis,
Fukushima, Japan, Mar. 1997.

[26] Y. Villate, A. Illaramendi, and E. Pitoura, Mobile and External
Storage Space Using Agents for Users of Mobile Devices, Workshop
on Ubiquitous Agents on Embedded, Wearable, and Mobile Devices,
Bologna, Italy, 2002.


