
GreenDroid: An Architecture for the Dark Silicon Age

Nathan Goulding-Hotta, Jack Sampson, Qiaoshi Zheng, Vikram Bhatt, Joe Auricchio,
Steven Swanson and Michael Bedford Taylor

http://greendroid.org

Department of Computer Science and Engineering
University of California, San Diego

Abstract— The Dark Silicon Age kicked off with
the transition to multicore and will be characterized
by a wild chase for seemingly ever-more insane archi-
tectural designs. At the heart of this transformation
is the Utilization Wall, which states that, with each
new process generation, the percentage of transistors
that a chip can switch at full frequency is dropping
exponentially due to power constraints. This has led
to increasingly larger and larger fractions of a chip’s
silicon area that must remain passive, or dark.

Since Dark Silicon is an exponentially-worsening
phenomenon, getting worse at the same rate that
Moore’s Law is ostensibly making process technol-
ogy better, we need to seek out fundamentally new
approaches to designing processors for the Dark Sil-
icon Age. Simply tweaking existing designs is not
enough. Our research attacks the Dark Silicon prob-
lem directly through a set of energy-saving acceler-
ators, called Conservation Cores, or c-cores. C-cores
are a post-multicore approach that constructively uses
dark silicon to reduce the energy consumption of an
application by 10× or more. To examine the utility
of c-cores, we are developing GreenDroid, a multicore
chip that targets the Android mobile software stack.
Our mobile application processor prototype targets a
32-nm process and is comprised of hundreds of au-
tomatically generated, specialized, patchable c-cores.
These cores target specific Android hotspots, includ-
ing the kernel. Our preliminary results suggest that
we can attain up to 11× improvement in energy effi-
ciency using a modest amount of silicon.

I. Introduction

Over the last five years, the phenomenon known as Dark
Silicon has emerged as the most fundamental factor that
constrains our ability to exploit the exponentially increas-
ing resources that Moore’s Law provides. Dark Silicon
refers to the exponentially increasing fraction of a chip’s
transistors that must remain passive, or “dark” in order
to stay within a chip’s power budget. Although Dark Sil-
icon has shaped processor design since the cancellation of
the Pentium 4, it was not well understood why Dark Sili-
con was happening, nor how bad the Dark Silicon problem
would get.

In this paper, we begin by identifying the source of the
Dark Silicon problem, and we characterize how bad the
problem will get. (In short, it will be very bad; exponen-
tially bad, in fact.) We continue the paper by describing

our approach, called Conservation Cores, or c-cores [3, 5],
which is a way to take Dark Silicon and use it to make
computation much more energy efficient, effectively us-
ing Dark Silicon to combat the Utilization Wall. Our
approach is to use Dark Silicon to build a large collec-
tion of specialized cores, each of which can save 11× more
energy for targeted code, compared to an energy-efficient
general-purpose processor. We demonstrate the Conser-
vation Cores concept by applying the technique to the An-
droid mobile software stack in order to build a mobile ap-
plication processor that runs applications with a fraction
of the energy consumption. We also examine the key scal-
ability properties that allow Conservation Cores to target
much broader bodies of code than today’s custom-built
accelerators.

II. Origins of Dark Silicon

To understand the Dark Silicon phenomenon better, we
introduce the concept of the Utilization Wall:

Utilization Wall: With each successive pro-
cess generation, the percentage of a chip that
can switch at full frequency drops exponentially
due to power constraints.

In this section, we will show three sources of evidence
that we’ve hit the Utilization Wall [3], drawing from 1)
CMOS scaling theory, 2) experiments performed in our
lab, and 3) observations in the wild.

A. Scaling Theory

Moore Scaling The most elementary CMOS scaling
theory is derived directly from Moore’s Law. If we ex-
amine two process generations, with feature widths of say
65 nm and 32 nm, it is useful for us to employ a value S,
the scaling factor, which is the ratio of the feature widths
of two process generations; in this case, S = 65/32 = 2.
For typical process shrinks, S = 1.4×. From elementary
scaling theory, we know that available transistors scales
as S2, or 2× per process generation. Prior to 2005, the
number of cores in early multicore processors more or less
matched the availability of transistors, growing by 2× per
process generation. For instance, the MIT Raw Processor
had 16 cores in 180-nm, while the Tilera TILE64 version
of the chip had 64 cores in 90-nm, resulting in 4× as many



cores for a scaling factor of 2×. More recently, however,
the rate has slowed to just S, or 1.4×, for reasons that we
shall see shortly.

Dennardian Scaling However, the computing capabil-
ities of silicon are not summarized simply by the number
of transistors that we can integrate into a chip. To more
fully understand the picture, we need to also know how the
properties of transistors change as they are scaled down.
To understand this better, we need to turn to Robert Den-
nard, who besides being the inventor of DRAM, wrote a
seminal 1974 paper which set down transistor scaling [1].
Dennard’s paper says that while transistor count scales
by S2, the native frequency of those transistors improves
by S, resulting in a net S3 improvement in computational
potential of a fixed-area silicon die. Thus, for typical scal-
ing factors of 1.4×, we can expect to have a factor of 2.8×
improvement in compute capabilities per process genera-
tion.

However, within this rosy picture lies a potential prob-
lem – if transistor energy efficiency does not also scale as
S3, we will end up having chips that have exponentially
rising energy consumption, because we are switching S3

more transistors per unit time. Fortunately, Dennard out-
lined a solution to this exponential problem. First, the
switching capacitance of transistors drops by a factor of
S with scaling, and if we scale the supply voltage, Vdd,
by S, then we reduce the energy consumption by an ad-
ditional S2. As a result, the energy consumption of a
transistor transition drops by S3, exactly matching the
improvements in transistor transitions per unit time. In
short, with standard Vdd scaling, we were able to have our
transistors, AND switch them at full speed.

Post-Dennardian Scaling Starting in 2005, Dennar-
dian scaling started to break down. The root of the prob-
lem was that scaling Vdd requires a commensurate reduc-
tion in Vt, the threshold voltage of the transistor, in or-
der to maintain transistor performance1. Unfortunately
Vt reduction causes leakage to increase exponentially at
a rate determined by the processes’ sub-threshold slope,
typically 90 mV per decade; e.g., 10× increase in leakage
for every 90 mV reduction in threshold voltage.2 At this
point in time, this leakage energy became so large that it
could not be reasonably increased. As a result, Vt values
could not be scaled, and therefore neither could Vdd.

The end result is that we have lost Vdd scaling as an
effective way to offset the increase in the computing po-
tential of the underlying silicon. As a result, with each
process generation, we gain only S = 1.4× improve-

1This is because Vdd overdrive (= Vdd/Vt) values less than 2.5×
cause massive drops in transistor performance.

2Small sub-threshold slope values are better, because they result
in lower required threshold voltages to reduce leakage to a given
level. Sub-threshold slope of MOSFETs cannot be lower than 60 mV
per decade at room temperature, as it is set by thermionic emission
of electrons across a potential well. Gradually, as we shrink tran-
sistors down, they become less ideal, and the sub-threshold slope
worsens. Innovations such as Intel’s Tri-Gate serve to reduce this
non-ideal behavior with a one-time improvement. If we are to find
devices without leakage limitations to combat Dark Silicon, we must
look for non-MOSFET devices!

ment in energy efficiency, which means that, under fixed
power budgets, our utilization of the silicon will drop by
S3/S = S2 = 2× per process generation. This is what
we mean by the Utilization Wall. Exponentially growing
numbers of transistors must be left underclocked to stay
within the power budget, resulting in Dim or Dark Silicon.

B. Experiments in Our Lab

To confirm the Utilization Wall, we performed a series
of experiments in our lab using a TSMC process and a
standard Synopsys IC Compiler flow. Using 90-nm and
45-nm technology files, we synthesized two 40 mm2 chips
filled with ALUs – 32-bit adders sandwiched between two
flip-flops. Running the 90-nm chip at the native operating
frequency of these ALUs, we found that only 5% of the
chip could be run at full frequency in a 3-W power budget
typical of mobile devices. In 45-nm, this fraction dropped
to 1.8%, a factor of 2.8×. Using ITRS projections, a 32-
nm chip would drop to 0.9%. We obtained similar results
for desktop-like platforms with 200 mm2 of area and an
80-W power budget.

These numbers often seem suspiciously low – after all,
90-nm designs were only just beginning to experience
power issues. The explanation is that RAMs typically
have 1/10 the utilization per unit area compared to dat-
apath logic. However, the point is not so much what the
exact percentage is for any process node, but rather, that
once the Utilization Wall starts to become a problem, it
will become exponentially worse from then on. This ex-
ponential worsening means that the onset of the problem
is very quick, and is in part responsible for why industry
was taken by surprise by the power problem in 2005.

C. Industrial Designs as Evidence of the Utilization Wall

The Utilization Wall is also written all over the commer-
cial endeavors of many microprocessor companies. One
salient example of a trend that reflects the Utilization
Wall is the flat frequency curve of processors from 2005
onward. The underlying transistors have in fact gotten
much faster, but frequencies have been held flat. Another
example is the emergence of Intel and AMD’s turbo boost
feature, which allows a single core to run faster if the other
cores are not in use. We are also observing an increased
fraction of chips dedicated to lower frequency and lower
activity-factor logic such as L3 cache and so-called uncore
logic – i.e., memory controllers and other support logic.

The industrial switch to multicore is also a consequence
of the Utilization Wall. Ironically, multicore itself is not a
direct solution to the Utilization Wall problem. Originally,
when multicore was proposed as a new direction, it was
postulated that the number of cores would double with
each process generation, increasing with transistor count.
However, this is in violation of the Utilization Wall, which
says that computing capabilities can only increase at the
same rate as energy efficiency improves, i.e., at a rate of S.
Looking at Intel 65-W desktop processors, with two cores
in 65-nm, and four cores in 32-nm, we can compute S (=
2×); and also increase in core count (= 2×), and increase



in frequency (roughly constant at ∼3 GHz), and see that
scaling has occurred consistent with the Utilization Wall,
and not with earlier predictions.

One interesting observation is that the Utilization Wall
says that there is a spectrum of other design points that
could have been done trading off processor frequency and
core count, with the extreme end being to, with each pro-
cess generation, increase frequency instead of core count.
This would result in, for the previous example, two-core
32-nm processors running at ∼6 GHz. Conventional wis-
dom says that this higher frequency design would have
better uni-processor performance and be more preferable
because it applies to all computations, not just parallel
computations. The jury is still out on this. However, for
throughput-oriented computations, the higher frequency
design is still worse. The reason is that the cost of a cache
miss to DRAM, as measured in ALU ops lost, is lower
for lower-clocked multicore chips, so in the face of cache
misses and given sufficient throughput, higher core count
is more performant than higher frequency.

III. Conservation Cores

Now that we know that Dark Silicon is an inevitable
and exponentially worsening problem, what do we do with
Dark Silicon? Our group has developed a set of techniques
that allow us to leverage Dark Silicon to fight the Utiliza-
tion Wall. For our research, we draw from two insights.
First, power is now more expensive than area. Thus, if we
can find architectural ways to trade area for power, this is
a good architectural trade-off. In fact, area is a resource
that is becoming exponentially cheaper with each process
generation, while power efficiency is something that re-
quires massive engineering effort and offers diminishing
returns with conventional optimization approaches. The
second insight is that specialized logic has been shown as a
promising way to improve energy efficiency by 10–1000×.

As a result of these insights, we have developed an
approach that fills Dark Silicon with specialized energy-
saving coprocessors that save energy on commonly exe-
cuted applications. The idea is that you only turn on the
coprocessors as you need them, and execution jumps from
core to core according to the needs of the computation.
The rest of the cores are power-gated. As a result of the
specialized coprocessors, we execute the hotspots of the
computation with vastly more energy efficiency. In effect,
we are recouping the S2 energy efficiency lost by the lack
of Vdd scaling by using Dark Silicon to exploit specializa-
tion.

A. Related Work: Accelerators

Accelerators are another class of specialized core that
has been used to improve energy efficiency and has found
widespread use in smartphones and other systems. Con-
servation Cores overcome some of the key limitations of
accelerators, which include:

• Speedup Fixation Accelerators fixate on speedup
of target code, while energy savings is a secondary

goal. In contrast, Conservation Cores target energy
savings as their primary goal; performance is a sec-
ondary goal. With Dark Silicon, energy efficiency
eclipses performance as a concern. Since, as we shall
see, attaining speedup versus a processor is a funda-
mentally harder problem than attaining energy sav-
ings, it makes sense to re-prioritize on saving energy.

• Regular Computations Accelerators generally rely
upon exploitation of program structure for improve-
ments in performance and energy efficiency. We refer
to the code targeted by accelerators as being regu-
lar, i.e., possessing properties that make it relatively
amenable to parallelization. These properties include
moderate or high levels of parallelism, predictable
memory accesses and branch directions, and small
numbers of lines of code. Even with this structure,
accelerators tend to require human guidance, such as
#pragmas, or manual transformation, in order to at-
tain success.

• Parallelization Required Because the transforma-
tions required to generate accelerators [2] generally
correspond to the same transformations that paral-
lelizing compilers perform (e.g., pointer analysis and
deep code transformations), accelerator generation is
seldom automated or scalable, inheriting the very
same problems that have inhibited widespread indus-
trial use of parallelizing compilers. Instead, accelera-
tor creation tends to be successful only when multi-
man-year efforts are applied, or in cases where the
underlying algorithm in mind has been explicitly de-
signed for hardware.

• Static Code Bases Accelerators tend to target rel-
atively static code bases that do not evolve. In many
cases, the evolution of the target code base is inten-
tionally limited through the use of standards (e.g.,
JPEG), or internal specification documents.

Accelerators are thus limited in their applicability. Am-
dahl’s Law tells us that the achievable benefits attain-
able by an optimization are limited by the fraction of the
workload the optimization targets. Thus, in order to get
widespread energy-savings, we need to broaden the ap-
plicability of coprocessors to all code, including code that
changes frequently, code that is irregular, and code that is
not parallelizable. This is the goal of Conservation Cores.

B. Conservation Core Architecture

Conservation Cores, or c-cores, are a class of specialized
coprocessors that targets the reduction of energy across all
code, including irregular code. C-cores are always paired
with an energy-efficient general-purpose host CPU, and
perform all of their memory operations through the same
L1 data cache as the host core. Frequently-executed hot
code regions are implemented using the c-cores, while the
cold code regions are executed on the host CPU. Because
the data cache is shared, the memory system is coherent
between the c-core and host CPU, and, unlike GPUs, the



D-cache 
6% Datapath 

3% 

Energy 
Saved 
91% 

D-cache 
6% 

Datapath 
38% 

Reg. File 
14% 

Fetch/ 
Decode 
19% 

I-cache 
23% 

Baseline CPU 
91 pJ/instr. 

C-cores 
8 pJ/instr. 

Fig. 1. Energy savings in c-cores Removing hardware
structures responsible for fetching and decoding instructions as
well as generalized datapath components, reduces per-instruction
energy by 91%.

migration of execution between c-core and host CPU can
be performed in approximately the same overhead as a
function call.

In order to address the issue of software change, c-cores
have support for patching in hardware; that is, a bitstream
can be downloaded into the c-core to allow the c-core to
track the changes in the software that was used to generate
the hardware in the first place.

C-cores do not rely upon deep compiler analysis; in fact,
the hardware generated maps nearly one-to-one to the
original control and dataflow graphs of the original source
code. Because of this c-cores can be generated from any
kind of code – whether from the Linux kernel, or from
Java. They do not rely on brittle compiler analyses and
transformations such as pointer analyses and affine loop
transformations.

Because they do not leverage parallelization technology,
Conservation Cores generally have only slight improve-
ments in performance versus general-purpose cores. How-
ever, they can have up to 18× improvements in energy
efficiency.

Life Cycle of a C-core The life cycle of a c-core begins
with a set of relatively stable versions of applications –
i.e., at least version 1.0 of the targeted software. These
versions are profiled in order to identify a set of energy-
intensive code regions. From these regions, we generate
a set of c-core specifications. The specifications are then
used to generate Verilog, which is then used to generate
the c-core-enabled hardware that links the c-core through
the data cache of the processor to an array of host CPUs.
At the same time, the specifications are used as input to
a patching-aware compiler. The patching-aware compiler
maintains a library of the available c-cores, and then uses
code recognition algorithms to map the original code onto
the c-cores. In cases where the source code is a variant
of the original code, the compiler is able to generate a bit
stream that configures the behavior of the c-core to track
the changes in the software. One notable benefit of this
system is that the existence of the c-cores is hidden from
the programmer. As a result, we do not need to worry

App. C-cores Area Freq. Energy
(mm2) (GHz) Improvement

bzip2 1 0.18 1.24 10.89×
twolf 1 0.12 1.26 10.67×
vpr 1 0.24 1.10 7.72×
mcf 3 0.17 1.41 12.74×
radix 1 0.10 1.36 13.57×
cjpeg 3 0.18 1.45 16.51×
sat 2 0.20 1.28 15.10×
viterbi 1 0.12 1.26 17.61×
djpeg 3 0.21 1.46 18.28×

Average 0.17 1.31 13.7×

TABLE I
C-core Area and Frequencies for

a Selection of Irregular Codes in a 45-nm process.

about maintaining backward compatibility, and can retire
c-cores in future chips as the underlying programs evolve.

Generation of a C-core The generation of c-cores a
relatively straightforward process. It is parallelism- and
regularity-agnostic, and employs a function-call, rather
than trace-based or hyperblock-based interface. The first
step in our compiler pass is what we call code reconstitu-
tion – this is essentially a set of reshaping transformations
that better exposes the hot regions of code, and removes
non-hot regions. Typically, this process involves outlin-
ing non-essential code regions, and inlining the essential
ones. C-core generation supports complex control flow, ar-
bitrary memory access patterns, data structures, etc. No
parallelizing compiler passes are employed. After the code
has been reshaped, we build a control flow graph (CFG)
for the target region, and a data flow graph for each basic
block. Each instruction in the basic block is directly con-
verted into a hardware operator; e.g., an add turns into a
hardware adder, and a move operation turns into a wire.
In a few cases, we multiplex large-area operators, such
as floating point operators and integer multipliers. Loads
and stores generate small adapters that feed into a large
mux at the input to the L1 cache. The live-ins of the data
flow graphs are turned into registers. In addition to the
datapath logic, we also create control logic that sequences
the multiplexed operators, and stalls the sequencing logic
appropriately on a cache miss. This logic is all represented
using Verilog, which is then run through a Synopsys IC
Compiler flow to perform synthesis, placement, clock tree
generation, and routing.

Experimental C-core Data In our earlier research, we
automatically built 21 c-cores for 9 “hard” applications,
drawn from SPECINT and other irregular applications,
using a 45-nm TSMC process. The results are shown in
Table I. Overall, the area requirements are relatively mod-
est, averaging 0.17 mm2, while energy improvements for
operators converted into c-core logic average 13.7×. With
D-cache included, savings average 11×.

Source of Energy Savings The primary source of en-



C
P
U

L1 L1

L1 L1
C
P
U

C
P
U

C
P
U

C
P
U

L1 L1

L1 L1

C
P
U

C
P
U

C
P
U

C
P
U

L1 L1

L1 L1

C
P
U

C
P
U

C
P
U

C
P
U

L1 L1

L1 L1
C
P
U

C
P
U

C
P
U

1 mm

1 mm

OCN

D $

C
P

U

I $

C C 
C 

C 

C 

C 

C 

C

C C 

D-CacheI-Cache

CPU

FPU

Tile

In
te

rn
al

 S
ta

te
 

In
te

rfa
ce

C-core

C-core

C-core

C-core

OCN

(a) (b) (c)

Fig. 2. The GreenDroid architecture The GreenDroid system (a) is made up of 16 non-identical tiles. Each tile (b) holds components
common to every tile—the CPU, on-chip network (OCN), and shared L1 data cache—and provides space for multiple c-cores of various
sizes. (c) shows connections among these components and the c-cores.

ergy savings for c-cores can be ascertained from Figure 1.
A baseline energy-efficient in-order MIPS host CPU con-
sumes 91 pJ/instruction, most of which is spent on various
overheads due to aspects of instruction interpretation, in-
cluding I-cache (23%), Fetch/Decode(19%), Register File
(14%), and Datapath (38%). C-cores, on the other hand,
eliminate 91% of the energy used by the host CPU, inher-
iting only the D-cache power (6%) and the portion of the
original datapath energy that is involved in performing
the actual operations (3%). Thus, c-cores reduce instruc-
tion energy from those costs incurred by an instruction
marching down a pipeline to those costs incurred by two
operators such as adders placed nearby by wires. The
end result is an average of 11× reduction in energy per
instruction.

Supporting Software Changes Since large bodies of
source code are likely to change due to bug fixes and fea-
ture enhancements, robust coprocessors must be able to
continue to function even if the underlying source code
changes. Conservation Cores offer three levels of pro-
tection against software change. First, if the changed
software is not contained in the hotspots of the code,
then they do not affect c-core operation. Second, c-cores
support a general-purpose patching exception mechanism
that allows arbitrary insertion of code into the code tar-
geted by the c-core. Each edge in the CFG is annotated
with an exception bit, which allows the c-core state ma-
chine to transition control over to the host CPU. The host
CPU can then access the c-core’s state via a state tree, a
fast mechanism that exposes all of the c-core’s state to
be read and written. The host CPU will read the re-
quired state to execute the changed code, and then write
it back into the c-core and resume execution. The third
level of protection optimizes for common-case changes
that we discovered by examining a 10-year span of ver-
sions of the software we targeted. Here, we add in config-
urable registers that allow constants such as field offsets
and #define’s to change; we found this is very important
because simply adding a field to the middle of a struct

will instantly change the offsets in the code, invalidating
a c-core without this support. We also generalize opera-
tors slightly to allow them to be changed via configuration
state, such as turning less-than compares into less-than-
or-equals, and changing adders into add/subtractors.

IV. The GreenDroid Mobile Application
Processor

In order to validate Conservation Cores, our team at
UC San Diego is building the GreenDroid mobile appli-
cation processor [7, 4] that uses c-cores to drastically re-
duce the energy consumption of the Android-based mobile
software stack. Mobile application processors are an excit-
ing new centroid of microprocessor evolution, taking over
the excitement and center of gravity from desktop proces-
sors, just as those desktop processors took over from mini-
and main-frame processors that preceded them. Now that
these processors support dual and quad-core configura-
tions, there is little left to borrow from their more power-
hungry ancestors. We believe that Conservation Cores are
the next logical development after multicore, brought on
by the emergence of Dark Silicon.

Desirable Characteristics of the Android Mobile
Software Stack Although we believe that Conserva-
tion Cores will apply generally even for desktop compu-
tations, they are an especially good fit for the Android
mobile stack, because user time is concentrated among a
relatively small number of apps. This means that build-
ing a relatively small number of Conservation Cores can
potentially have a very large impact on the energy effi-
ciency of the mobile application processing. According
to a recent 2011 study by Neilsen Smartphone Analytics,
33% of user time is spent in the web browser; and another
40% of user time is spent in the top 50 apps after the web
browser. Fine-grained extrapolation of the data suggests
that as much as 83% of application time is spent in the
top 100 Android applications. This means that the mo-
bile workload is highly concentrated, and that a relatively



OCN

I $

CPU

3

6 7

D $

8

9

1

254

Fig. 3. One tile of the GreenDroid processor This tile
contains the standard tile components (CPU, I- and D-caches, and
on-chip network (OCN)) in addition to nine c-cores (numbered
1–9) that target Android’s 2D graphics library, JPEG
decompression, and FFT functions.

small amount of area (our estimate is 17 mm2 in a 22-nm
process) is sufficient to cover it. (Of course, some games
like Angry Birds may pass too quickly for us to capture
in silicon!)

Addressing Scalability in GreenDroid We antici-
pate that GreenDroid systems will have hundreds or even
thousands of Conservation Cores in order to support large
numbers of applications. Since c-cores connect to the data
cache, there are scalability limits that occur as a result of
lengthening wires as we attach more and more c-cores:
Both energy and delay worsen. To address this problem,
we envision a tiled system that has multiple tiles attached
by a low-power interconnect. Each tile consists of 10-15
c-cores, a single host CPU, their shared L1 data cache,
and a network router that connects to L2 cache and main
memory. Figure 2 shows the GreenDroid architecture.

32-nm GreenDroid Prototype A prototyping ef-
fort is well underway. We are targeting a 32-nm Global
Foundries process; our first prototype is a 2-mm2 four-tile
chip with approximately 60 c-cores. Each tile has a 32-
KB data cache, a host CPU including 16-KB instruction
cache, four routers, and a selection of different c-cores.
Figure 3 shows one of the four tiles of the first Green-
Droid prototype chip.

Bringup and Emulation System In order to perform
system bringup, we have a Xilinx ML-605 board which
hosts an FMC daughtercard that will have a GreenDroid
chip and an FPGA attached. All I/O and DRAM ac-
cess will be performed over the FMC connector to an
FPGA-based chipset that processes off-chip messages into
requests to the ML-605’s DDR-3 DRAM and I/O devices.

For verification purposes, the system is already running
in emulation on the ML-605 board; instead of having a
daughterboard with FPGA, we merely map the Green-
Droid RTL to the ML-605’s FPGA, and validated c-cores
with much larger input sizes than will run on our C and

RTL simulation infrastructure.
Our design is undergoing iterative tuning, validation,

and improved calibration with our Android infrastructure.
After we are satisfied with the design in emulation, we will
move the RTL and verification suite over from our internal
TSMC flow to the finalized Global Foundries flow for final
tapeout. Our RTL is designed to be highly portable and
process-independent; we have already ported it between
IBM, Xilinx, and TSMC flows with little trouble.

In our subsequent prototypes, we plan to increase the
number of tiles, improve our support for extreme power-
gating, and iterate on a more mature memory system and
interconnect design.

V. Conclusions

The Utilization Wall leads to an exponential worsening
of the Dark Silicon problem, and will transform how we
implement computation. The severity of the problem ar-
gues for developing new architectural tradeoffs that trade
Dark Silicon, an exponentially cheapening resource, for
energy, which is the true limiter of performance today.
Our work on Conservation Cores and GreenDroid offers
one potential way to attack the Dark Silicon problem; we
believe that Dark Silicon is an exciting new area which
will open up new opportunities to rethink the computa-
tion stack.

Acknowledgments

This research was funded by the US National Science
Foundation under NSF CAREER Awards 06483880 and
0846152, and under NSF CCF Award 0811794.

References

[1] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A.
LeBlanc, “Design of Ion-Implanted MOSFET’s with Very Small
Physical Dimensions”, IEEE Journal of Solid-State Circuits, Oc-
tober 1974.

[2] P. Coussy, and A. Morawiec, “High-Level Synthesis: From Algo-
rithm to Digital Circuit”, Springer Publishing Company, 2008.

[3] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation
Cores: Reducing the Energy of Mature Computations”, ASP-
LOS, 2010.

[4] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J.
Auricchio, P. Huang, M. Arora, S. Nath, V. Bhatt, J. Babb,
S. Swanson, and M. B. Taylor, “The GreenDroid Mobile Appli-
cation Processor: An Architecture for Silicon’s Dark Future”,
IEEE Micro, March 2011, pp. 86-95.

[5] J. Sampson, G. Venkatesh, N. Goulding-Hotta, S. Garcia, S.
Swanson, and M. B. Taylor, “Efficient Complex Operators for
Irregular Codes”, HPCA, 2011.

[6] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. Kota Venkata,
M. B. Taylor, and S. Swanson. “QsCores: Trading Dark Silicon
for Scalable Energy Efficiency with Quasi-Specific Cores”, MI-
CRO 2011.

[7] N. Goulding-Hotta, J. Sampson, G. Venkatesh, S. Garcia, J. Au-
ricchio, J. Babb, M. B. Taylor, and S. Swanson, “GreenDroid: A
Mobile Application Processor: A Mobile Application Processor
for a Future of Dark Future”, HOTCHIPS 2010.


