1. Overview/Introduction

Motivation

On several occasions, proteins from different species have originated useful drugs in combating human conditions such as:

- Severe chronic pain associated with cancer/AIDS (Prolix by Genentech)
- Hypertension (Capoten by Bristol-Myers Squibb)
- Type-2 diabetes (Avandia by Aventis)
- Blood clotting (Integrilin by Millennium)

Many of these proteins came from organisms whose DNA sequence is unknown like scorpions and different snake species.

Problem

Current methods for de novo sequencing of whole proteins are labor intensive and very restrictive (Edman microsequencing).

Contribution

We propose a fully automated high-throughput Shotgun Protein Sequencing approach to sequence mixtures of modified proteins.

2. Methods: Standard input data

Protein mixture

Set of overlapping peptides

Protein sequence

Set of MS/MS spectra

2.1 Motivation

Set of overlapping peptides

Protein mixture

3. Methods: High-throughput protein sequencing

Stage 1: Separation of b/y ions by spectral alignment

Spectra are preprocessed to be fully symmetric (peak masses and intensities)

The diagonal diagonal is the alignment of b/y ions in both aligned spectra, respectively.

Stage 2: Merge matched b-ions

Note that input spectra now contain almost only b ions.

Every spectrum is converted to a spectrum graph.

- Each peak corresponds to a vertex.
- Vertices are connected by an edge if the corresponding peaks differ by an amino acid mass.

Stage 3: De-novo sequencing

The set of aligned spectra is converted to a single spectrum graph.

- The simplest objective function would simply select the path that explains the largest number of edges in the graph. A maximum likelihood solution can be derived from each vertex’s support to each aligned spectrum.

4. Experimental results

<table>
<thead>
<tr>
<th>Protein</th>
<th>Extensive sequence coverage</th>
<th>Accurate de novo sequencing</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA_ATROX</td>
<td>92%</td>
<td>90%</td>
</tr>
<tr>
<td>VT_A</td>
<td>91%</td>
<td>85%</td>
</tr>
<tr>
<td>MM</td>
<td>94%</td>
<td>90%</td>
</tr>
<tr>
<td>MM</td>
<td>92%</td>
<td>91%</td>
</tr>
</tbody>
</table>

5. Conclusions

Accurate: amino acid prediction accuracy of 92% on the test sample (10Kb protein, several contaminants)

Robust: amino acid prediction accuracy remains very high (90%) on a mixture of snake venom proteins

Extensive: recovers almost all the amino acid content identified by database search

Reproducible: similar protein reconstruction results achieved for different mixtures of modified proteins