COMS 4771
Introduction to Machine Learning

Nakul Verma
Announcements

• Project presentations next class!

• HW4 due next class.

• Final Exam in one week!
• Dimensionality Reduction
 Linear vs non-linear Dimensionality Reduction

• Principal Component Analysis (PCA)

• Introduction to Graphical Models

• Bayesian Networks

• Doing inference and learning on Bayes Nets
A probabilistic model where a graph represents the conditional dependence structure among the variables. Provides a compact representation of the joint distribution!

Example:
Four variables of interest – cloudiness, raining, sprinkler, grass_wet

Possible Causality Structure:

Inference questions:
• What is the probability it rained given the grass is wet?
• What is the chance that the sprinkler was off given grass is wet and it is not cloudy?

Learning questions:
• What is the most likely GM structure and connection weights that models the data?
Graphical Models: Representation

There are two kinds of Graphical Models

Directed models – Bayesian Networks

Undirected models – Markov Random Fields (MRFs)
Bayesian Networks

What is the joint probability for these variables?

\[P(C, S, R, G) \]

\[= P(C) P(R|C) P(S|R, C) P(G|S, R, C) \]

\[= P(C) P(R|C) P(S|C) P(G|S, R) \]

Chain rule

due to the (in)dependencies asserted by the parent-child relationships

In general:

\[P(X_1, \ldots, X_d) = \prod_{i=1}^{d} P(X_i \mid \text{parent}(X_i)) \]

That is: a variable is independent of its ancestors given the parents.
Bayesian Networks: Inference

\[P(C, S, R, G) = P(C)P(R|C)P(S|C)P(G|S, R) \]

These conditional probability tables (CPT) are enough to completely specify the joint distribution!
Bayesian Networks: Inference

\[P(C, S, R, G) = P(C)P(R|C)P(S|C)P(G|S, R) \]

Q: What is the probability of sprinkler being on given the grass is wet?

\[P(S = 1|G = 1) = \frac{P(S = 1, G = 1)}{P(G = 1)} = \frac{0.2781}{0.6471} = 0.430 \]

\[P(G = 1) = \sum_{c,s,r} P(C = c, S = s, R = r, G = 1) \]

\[= \sum_{c,s,r} P(C = c)P(R = r|C = c)P(S = s|C = c)P(G = 1|S = s, R = r) \]

\[= 0.6471 \]

\[P(S = 1, G = 1) = \sum_{c,r} P(C = c, S = 1, R = r, G = 1) = \cdots = 0.2781 \]
Bayesian Networks: Learning Parameters

\[P(C, S, R, G) = P(C) P(R | C) P(S | C) P(G | S, R) \]

Learning the parameters knowing the structure

\textit{ie, estimate the CPTs from observations}

Simply do the likelihood estimates (ie, counts)

\[\hat{P}_{ML}(G = g | S = s, R = r) = \frac{\#(G = g, S = s, R = r)}{\#(S = s, R = r)} \]

etc ...

\textit{Issue: assigns zero prob. for unseen combinations in data.}
\textit{How to fix that?}
Bayesian Networks: Learning Structure

\[
P(C, S, R, G) = P(C)P(R|C)P(S|R, C)P(G|S, R, C)
\]

Learning the unknown structure between the variables

General

- Test of conditional independencies in data
- Grow-Shrink Markov Blanket algorithm

Assumed structure:

- Tree structure: Chow-Liu algorithm
- Small cliques: variations on Chow-Liu

NP-hard to find the optimal structure
Markov Random Fields (MRFs)

Graphical models with undirected connections

\[P(X_1, \ldots, X_d) = \frac{1}{Z} \prod_{C \in \text{max-cliques}(G)} \phi_C(X_C) \]

normalizer (so things integrate to 1), aka the partition function

Clique potentials, typically the relative frequency of variable co-occurrence in a clique

Example: five variable graph

What are the max-cliques?

\[P(X_1, \ldots, X_5) \propto \phi_1((X_1, X_2, X_3)) \phi_2((X_2, X_3, X_4)) \phi_3((X_3, X_5)) \]
What are the (conditional) independencies asserted by the following graphical models?

(directed)

![Directed Graphs](image)

(undirected)

![Undirected Graphs](image)
Relation Between Directed & Undirected GM

What are the (conditional) independencies asserted by the following directed model?

What is the equivalent undirected model?
A time series model:

A family of distributions over a sequence of random variables X_1, X_2, \ldots that is indexed by a totally ordered indexing set (often referred to as time).

Many applications:

- Financial/Economic data over time
- Climate data
- Speech and natural language
- ...
Markov Model:

A time series model with the property:

The conditional distribution of the next state X_{t+1} given all the previous states X_i ($i \leq t$) only depends on the current state X_t

$$P(X_{t+1} \mid X_t, X_{t-1}, X_{t-2}, \ldots) = P(X_{t+1} \mid X_t)$$

The corresponding graphical model:

... → X_{t-2} → X_{t-1} → X_t → X_{t+1} → X_{t+2} → ...

also known as a Markov chain
To specify a Markov Chain:

Need to specify the distribution of the initial state: \(X_1 \)

Need to specify the conditional distribution: \(X_{t+1} \) given \(X_t \)

\(\text{(We will focus on finite size state space, say, } d \text{ different states) } \)

Initial state distribution:

\[
P(X_1 = i) = \pi_i
\]

Conditional distribution:

\[
P(X_{t+1} = j \mid X_t = i) = A_{i,j}
\]

This is often called the transition matrix

\(A \) is row stochastic
Markov Chain: Example

State space: \{1,2\}

Parameters:

\[\pi = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad A = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} \]

What is the probability of seeing the random sequence: 2,2,2,1,1,2,2,1?

\[\pi_2 \cdot A_{2,2} \cdot A_{2,2} \cdot A_{2,1} \cdot A_{1,1} \cdot A_{1,2} \cdot A_{2,2} \cdot A_{2,1} \approx 0.004355 \]
Markov Chain: Example - PageRank

Web graph: vertices – webpages, edges – links between webpages

Question: how popular is a given webpage i?

Possible answer:

proportional to the probability that a random walk ends on page i.

$$P(X_t = i) \quad (\text{for some large } t)$$
Let’s calculate the following probabilities:

\[P(X_1 = i) = \pi_i \]

\[P(X_2 = i) = \sum_j P(X_1 = j, X_2 = i) \]

\[= \sum_j P(X_1 = j) \cdot P(X_2 = i \mid X_1 = j) \]

\[= \sum_j \pi_j A_{j,i} \]

\[= i^{th} \text{ entry of } \pi^T A = (\pi^T A)_i \]

\[P(X_3 = i) = \ldots = (\pi^T AA)_i \]

\[P(X_t = i) = (\pi^T A^{t-1})_i \]

for the PageRank example, does this converge to a stable value for large \(t \)?
Markov Chain: Limiting Behavior

Question does/can $P(X_t) = i$ have a limiting behavior?

Equivalent to asking:

$$\lim_{t \to \infty} A^t \text{ approach a limiting matrix } \begin{pmatrix} \cdots \ q \ \cdots \\ \cdots \ q \ \cdots \\ \cdots \ q \ \cdots \end{pmatrix} \quad \text{(with identical rows)} \ ?$$

For such an A, it must satisfy:

$$\lim_{t \to \infty} A^t = \left(\lim_{t \to \infty} A^{t-1} \right) A = \begin{pmatrix} \cdots \ q \ \cdots \\ \cdots \ q \ \cdots \\ \cdots \ q \ \cdots \end{pmatrix} A = \begin{pmatrix} \cdots \ q \ \cdots \\ \cdots \ q \ \cdots \\ \cdots \ q \ \cdots \end{pmatrix}$$

Equivalently:

$$q A = q$$

ie, q is the left eigenvector of A with eigenvalue 1!

q unique whenever there is no multiplicity of eigenvalue 1

such a q is called the stationary distribution of A
Web graph doesn’t have a unique stationary distribution, but can add some regularity to the link matrix A. That is $\tilde{A} = A + \epsilon 1$

Popularity of a given webpage i is proportional to the i^{th} component of the (regularized) stationary distribution
Hidden Markov Model (HMM): A Markov chain on $\{(X_t, Y_t)\}_t$

Some properties:
- Y_t is unobserved / hidden variable; only X_t is observed.
- Conditioned on Y_t, X_t is independent of all other variables!

The corresponding graphical model:
Hidden Markov Models (HMMs) Applications

Natural Language Processing
- Observed: words in a sentence
- Unobserved: words’ part-of-speech or other word semantics

Bioinformatics
- Observed: Amino acids in a protein
- Unobserved: indicators of evolutionary conservation

Speech Recognition
- Observed: Recorded speech
- Unobserved: The phonemes the speaker intended to vocalize
HHMs Parameters

We will focus on discrete state space:

X_t takes values $\{1, \ldots, D\}$ (observed)

Y_t takes values $\{1, \ldots, K\}$ (hidden)

We need the initial state distribution on Y_1

$$P(Y_1 = i) = \pi_i$$

Need to specify a $K \times K$ transition matrix A from Y_t to Y_{t+1}

$$P(Y_{t+1} = j \mid Y_t = i) = A_{i,j}$$

Need to specify a $K \times D$ emission matrix B from Y_t to X_t

$$P(X_t = j \mid Y_t = i) = B_{i,j}$$

Both A and B are row stochastic
HHM: Example – Dishonest Casino

Casino die-rolling game:
Randomly switch between two possible dice: one is fair and one is loaded.

HMM Parameters

\[A = \begin{pmatrix} 0.95 & 0.05 \\ 0.10 & 0.90 \end{pmatrix}, \quad B = \begin{pmatrix} \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{2} \end{pmatrix}, \]

\[\pi = (1,0) \] [the casino starts off with the fair die]

Problem: based on the sequence of rolls, guess which die was used at each time
Conditional Probabilities (filtering/smoothing)
• Given: parameters $\theta = (\pi, A, B)$, and the observation $X_{1:T}$
• Goal: What is the conditional probability of $Y_{1:T}$?

$$P(Y_{1:T} \mid X_{1:T}, \theta)$$

Most probable sequence (decoding)

$$\arg\max_{Y_{1:T}} P(Y_{1:T} \mid X_{1:T}, \theta)$$

Parameter Estimation
• Given: The observations $X_{1:T}$
• Goal: Find the best parameter estimate of θ
HHM: Example – Dishonest Casino

- Conditional probability
- Decoding
Filtering Problem

Can directly compute $P(Y_{1:T} \mid X_{1:T}, \theta)$ using the standard way, but that is slow and doesn’t exploit the conditional independency structure of HMMs.

A popular fast algorithm:

Forward-Backward algorithm, can be done in two passes (one forward pass, one backward pass) over the states.

Decoding Problem

Most likely posterior setting of the hidden states can be computed efficiently using a dynamic programming algorithm, called **Viterbi decoding algorithm**.

See supplementary material for detail on these algorithms
HHM: Learning the Parameters

We can use the **Expectation Maximization (EM) Algorithm**!

Input: n observations sequences $x^{(1)}_{1:T}, x^{(2)}_{1:T}, \ldots, x^{(n)}_{1:T}$

Initialize:
Start with an initial setting / guess of parameters $(\hat{\pi}, \hat{A}, \hat{B})$

E-step:
Compute conditional expectation Y given X and current parameter guess

(this can be done using the Forward-Backward algorithm)

M-step:
Given the estimate of Y and the observations X, we have the complete likelihood, so simply maximize the likelihood by taking the derivative and examine the stationary points.

See supplementary material for details
What We Learned...

• Graphical Models
 Bayesian Networks and Markov Random Fields

• Doing inference and learning on graphical models

• Markov Models

• Hidden Markov Models

• Bayesian Networks
Questions?
Next time...

Project Presentations!
Announcements

• Project presentations next class!

• HW4 due next class.

• Final Exam in one week!