Lecture 3: LIFT, SuperPoint
LIFT: Learned Invariant Feature Transform
Keypoint detection, orientation estimation and feature descriptor are all learned.
Descriptor learning

Use locations and orientations of SIFT keypoints for training descriptor:

\[d = h_\rho(p_\theta) \]

Rotated patch

Use metric learning for training:

\[
L_{\text{desc}}(p^k_\theta, p^l_\theta) = \begin{cases}
\| h_\rho(p^k_\theta) - h_\rho(p^l_\theta) \|_2 & \text{for positive pairs,} \\
\max(0, C - \| h_\rho(p^k_\theta) - h_\rho(p^l_\theta) \|_2) & \text{for negative pairs}
\end{cases}
\]

Hard negative mining:

- Forward pass a few pairs and evaluate losses
- Only use a fraction of highest losses for backpropagation
Orientation estimator learning

Orientation estimator produces an angle to rotate a patch:

$$\theta = g_\phi(p)$$

Let $G(P, x)$ be patch centered at x after orientation normalization of patch P.

Loss for training orientation estimator:

$$L_{orientation}(P^1, x^1, P^2, x^2) = \| h_\rho(G(P^1, x^1)) - h_\rho(G(P^2, x^2)) \|_2$$

Want the descriptors to align after orientation correction.
Detector is not trained yet, so still use SFM points for x.
Detector training

Obtain score map for input match (piecewise linear activations on convolutional output):

\[S = f_\mu(P) = \sum_n^{N} \delta_n \max_m \left(W_{mn} * P + b_{mn}\right) \]

Use softmax for differentiable variant of non-maximal suppression:

\[x = \text{softargmax} \left(S\right) = \frac{\sum_y \exp(\beta S(y)) y}{\sum_y \exp(\beta S(y))} \]

\(P^1, P^2 \): from same 3D keypoint in two views, \(P^3 \): from another keypoint, \(P^4 \): non-feature point. Detector trained on a joint loss:

\[\mathcal{L}_{\text{detector}}(P^1, P^2, P^3, P^4) = \gamma \mathcal{L}_{\text{class}}(P^1, P^2, P^3, P^4) + \mathcal{L}_{\text{pair}}(P^1, P^2) \]

Pair loss: projections of same 3D point should have similar descriptors

\[\mathcal{L}_{\text{pair}}(P^1, P^2) = \| h_\rho(G(P^1, \text{softargmax}(f_\mu(P^1)))) - h_\rho(G(P^2, \text{softargmax}(f_\mu(P^2)))) \|_2 \]

Classification loss: push score map to high values for positive classes

\[\mathcal{L}_{\text{class}}(P^1, P^2, P^3, P^4) = \sum_{i=1}^{4} \alpha_i \max \left(0, \left(1 - \text{softmax} \left(f_\mu \left(P^i\right) \right) y_i\right)\right)^2 \]

\(y_i = +1 \) for \(i = 1, 2, 3 \) and \(y_i = -1 \) for \(i = 4 \)
Test-time pipeline

- Run detector independently
- Apply traditional non-maximum suppression to obtain patches
- Estimate orientations and descriptors on detected patches
Metrics

- **Repeatability**: fraction of keypoints common between images 1 and 2
- **Mean AP**: vary threshold, plot precision and recall, compute area under curve
- **Matching score**: ratio of correspondences and keypoints
SIFT performs very competitively for detection, also close for descriptor computation.
Qualitative results
Differences for LIFT, compared to UCN

- Learns interest point detector too, along with descriptor
- Patch-based matching approach
- Sparse keypoints instead of dense
- Trained on SIFT keypoints matched by SFM
- Shallower architecture compared to UCN
- Uses more complex activation functions
- At test-time, detector run separately
SuperPoint
Motivation

- UCN uses ground truth LIDAR points for training
- LIFT computes interest points, but effectively uses SIFT as ground truth
- **SuperPoint**: use synthetic data to generate pseudo ground truth

- Generalization to real images is challenging
- There is no ground truth for real images
- **SuperPoint**: self-training may be used to improve performance

- Frameworks like UCN do not compute interest points (dense correspondence)
- LIFT has two different steps for interest points and descriptors
- **SuperPoint**: share computation and representations across the two tasks
Architecture: encoder

- VGG-like encoder, 3 max-pooling layers
- Each “pixel” in encoded output maps to 8x8 region of input image
Architecture: interest point decoder

- Compute an $R^{H_c \times W_c \times 65}$ tensor
- Channels correspond existence of interest point in each pixel of 8x8 region
- One more channel corresponds to no interest point
- Channel-wise softmax to determine probability of interest point location
- Reshape to original $R^{H \times W}$ image size
Loss function: interest point decoder

- Let $x_{hw} \in \mathcal{X}$ be a cell of the interest point tensor.
- Ground truth interest point labels given by y_{hw}.
- Channel-wise softmax:

$$l_p(x_{hw}; y) = -\log \left(\frac{\exp(x_{hwy})}{\sum_{k=1}^{65} \exp(x_{hwk})} \right)$$

- Training loss:

$$\mathcal{L}_p(\mathcal{X}, Y) = \frac{1}{H_c W_c} \sum_{h=1}^{H_c} \sum_{w=1}^{W_c} l_p(x_{hw}; y_{hw})$$
Architecture: descriptor decoder

- Compute an $\mathbb{R}^{H_c \times W_c \times D}$ tensor
- Effectively, learn a D-dimensional descriptor for every 8x8 region
- Keep memory and run-time tractable
- Bicubic interpolation to image resolution and L2 normalization
Loss function: descriptor decoder

- Homography induced correspondence label:
 \[s_{hwhw'} = \begin{cases}
 1, & \text{if } ||\mathcal{H}p_h - p_{h'w'}|| \leq 8 \\
 0, & \text{otherwise}
\end{cases} \]

- Descriptor loss:
 \[
 \mathcal{L}_d(D, D', S) = \frac{1}{(H_c W_c)^2} \sum_{h=1}^{H_c} \sum_{w=1}^{W_c} l_d(d_{hw}, d'_{h'w'}, s_{hwhw'})
 \]
 \[
 l_d(d, d'; s) = \lambda_d * s * \max(0, m_p - d^T d') + (1 - s) * \max(0, d^T d' - m_n)
 \]

Centers of cells in left and right images
Descriptor cells in left and right images
Synthetic Pre-Training

- Hard to get a method-independent dataset with ground truth interest points
- Perhaps hard to even define notion of “ground truth” for interest points

- Render images with combinations of simple geometric shapes
- Various junctions, centers of ellipses, ends of line segments are “interest points”
- Apply homographic warps to train base keypoint detector

- Advantage: simple method with good performance
- Limitation: only a few specific types of interest points are covered.
Base Detector Evaluation

- Does well on synthetic dataset

<table>
<thead>
<tr>
<th>Metric</th>
<th>Noise</th>
<th>MagicPointL</th>
<th>MagicPointS</th>
<th>FAST</th>
<th>Harris</th>
<th>Shi</th>
</tr>
</thead>
<tbody>
<tr>
<td>mAP no noise</td>
<td>0.979</td>
<td>0.980</td>
<td>0.405</td>
<td>0.678</td>
<td>0.686</td>
<td></td>
</tr>
<tr>
<td>mAP noise</td>
<td>0.971</td>
<td>0.939</td>
<td>0.061</td>
<td>0.213</td>
<td>0.157</td>
<td></td>
</tr>
<tr>
<td>MLE no noise</td>
<td>0.860</td>
<td>0.922</td>
<td>1.656</td>
<td>1.245</td>
<td>1.188</td>
<td></td>
</tr>
<tr>
<td>MLE noise</td>
<td>1.012</td>
<td>1.078</td>
<td>1.766</td>
<td>1.409</td>
<td>1.383</td>
<td></td>
</tr>
</tbody>
</table>

- Especially robust performance with respect to noise
Base Detector Evaluation

- But does not do well on real data (repeatability metric)

<table>
<thead>
<tr>
<th></th>
<th>57 Illumination Scenes</th>
<th>59 Viewpoint Scenes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NMS=4</td>
<td>NMS=8</td>
</tr>
<tr>
<td>MagicPoint</td>
<td>.575</td>
<td>.507</td>
</tr>
<tr>
<td>FAST</td>
<td>.575</td>
<td>.472</td>
</tr>
<tr>
<td>Harris</td>
<td>.620</td>
<td>.533</td>
</tr>
<tr>
<td>Shi</td>
<td>.606</td>
<td>.511</td>
</tr>
<tr>
<td>Random</td>
<td>.101</td>
<td>.103</td>
</tr>
</tbody>
</table>

- Correct distance of 3 pixels
- Larger NMS threshold: discourages corners from clustering together
- Useful in applications like visual odometry
Homographic Adaptation

- Want to adapt better to real images (say, from MS-COCO dataset)
- But there is no ground truth
- Self-training strategy that uses detector itself to generate pseudo ground truth
- Warp images by random homography transformations
- Apply current version of detector
- Unwarp the images and aggregate responses

\[
\hat{F}(I; f_\theta) = \frac{1}{N_h} \sum_{i=1}^{N_h} \mathcal{H}_i^{-1} f_\theta(\mathcal{H}_i(I))
\]
Homographic Adaptation: Details

- Iterate multiple times to increase impact of self-training

- Choose warps to mimic camera transformations
SuperPoint Evaluation

- Self-training leads to improvement on real data (repeatability metric)

<table>
<thead>
<tr>
<th></th>
<th>57 Illumination Scenes NMS=4</th>
<th>57 Illumination Scenes NMS=8</th>
<th>59 Viewpoint Scenes NMS=4</th>
<th>59 Viewpoint Scenes NMS=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperPoint</td>
<td>.652</td>
<td>.631</td>
<td>.503</td>
<td>.484</td>
</tr>
<tr>
<td>MagicPoint</td>
<td>.575</td>
<td>.507</td>
<td>.322</td>
<td>.260</td>
</tr>
<tr>
<td>FAST</td>
<td>.575</td>
<td>.472</td>
<td>.503</td>
<td>.404</td>
</tr>
<tr>
<td>Harris</td>
<td>.620</td>
<td>.533</td>
<td>.556</td>
<td>.461</td>
</tr>
<tr>
<td>Shi</td>
<td>.606</td>
<td>.511</td>
<td>.552</td>
<td>.453</td>
</tr>
<tr>
<td>Random</td>
<td>.101</td>
<td>.103</td>
<td>.100</td>
<td>.104</td>
</tr>
</tbody>
</table>

- SIFT better for localization and homography estimation at small thresholds

<table>
<thead>
<tr>
<th></th>
<th>Homography Estimation</th>
<th>Detector Metrics</th>
<th>Descriptor Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\epsilon = 1$</td>
<td>$\epsilon = 3$</td>
<td>$\epsilon = 5$</td>
</tr>
<tr>
<td>SuperPoint</td>
<td>.310</td>
<td>.684</td>
<td>.829</td>
</tr>
<tr>
<td>LIFT</td>
<td>.284</td>
<td>.598</td>
<td>.717</td>
</tr>
<tr>
<td>SIFT</td>
<td>.424</td>
<td>.676</td>
<td>.759</td>
</tr>
<tr>
<td>ORB</td>
<td>.150</td>
<td>.395</td>
<td>.538</td>
</tr>
</tbody>
</table>
SuperPoint Evaluation

- Outperforms LIFT, due to more diverse outdoor training data and self-training
- Denser (more repeatable) than SIFT, but poorer localization
- Does very well on mAP and matching score
- Cannot handle large rotations not seen in training data