Object Detection

[Ren et al., Faster R-CNN]
Object Detection

Object 1: \((x_1, y_1, w_1, h_1)\), dog
Object 2: \((x_2, y_2, w_2, h_2)\), cat
Object Detection

Object 1: \((x_1, y_1, w_1, h_1)\), dog
Object 2: \((x_2, y_2, w_2, h_2)\), cat
Object 3: \((x_3, y_3, w_3, h_3)\), dog
Object Detection

Object 1: \((x_1, y_1, w_1, h_1)\), dog
Object 2: \((x_2, y_2, w_2, h_2)\), cat
Object 3: \((x_3, y_3, w_3, h_3)\), dog
Object 4: \((x_4, y_4, w_4, h_4)\), cat
Object 5: \((x_5, y_5, w_5, h_5)\), dog

Need to handle outputs of variable lengths
Object Detection: Sliding Windows

Given new image:
1. Slide window
2. Score by classifier
Object Detection: Sliding Windows

HoG + SVM

Orientation Voting

Overlapping Blocks

Local Normalization

Input Image

Gradient Image

Dalal and Triggs, CVPR 2005

DPM

Score is sum of filter scores minus deformation costs

Multiscale model captures features at two-resolutions
Parts are represented at twice the resolution of the root filter.

Sliding Windows

- Need to consider windows at several different positions and scales
- Either use a simple feature extractor, or evaluate only few candidates
Region Proposals

- Find blob-like regions of image that might be objects
- Do not consider object type and tolerate high rate of false positives
Step 1: Train (or download) a classification model for ImageNet (AlexNet)
Step 2: Fine-tune model for detection
- Instead of 1000 ImageNet classes, want 20 object classes + background
- Throw away final fully-connected layer, reinitialize from scratch
- Keep training model using positive and negative regions from detection images
R-CNN Training

Step 3: Extract features
- Extract region proposals for all images
- For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
- Have a big hard drive: features are ~200GB for PASCAL dataset!

![Diagram showing the process of extracting features](Slide from: Tamara Berg)

[Girshick et al., Rich feature hierarchies]
Step 4: Train one binary SVM per class to classify region features

- Training image regions
- Cached region features
- Positive samples for cat SVM
- Negative samples for cat SVM

[Slide from: Tamara Berg]

[Girshick et al., Rich feature hierarchies]
R-CNN Training

Step 4: Train one binary SVM per class to classify region features

Training image regions

Cached region features

Negative samples for dog SVM

Positive samples for dog SVM

[Slide from: Tamara Berg] [Girshick et al., Rich feature hierarchies]
Step 5 (bbox regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for “slightly wrong” proposals.

Training image regions

Cached region features

Regression targets
(dx, dy, dw, dh)

Normalized coordinates

- (0, 0, 0, 0) Proposal is good
- (.25, 0, 0, 0) Proposal too far to left
- (0, 0, -0.125, 0) Proposal too wide

[Slide from: Tamara Berg]

[Girshick et al., Rich feature hierarchies]
R-CNN Improvements

- Significant gain over pre-CNN methods
- Bounding box regression helps
- Deeper feature extractor leads to large gain
Issues with R-CNN

- Very expensive for inference
 - Full forward pass of CNN for each region proposal

- Classification and regression are disjoint from feature extraction
 - CNN features not updated together with detection

- Complex training pipeline

- Need mechanism to “connect” CNN features to classifier and regressor
Fast R-CNN

• Extract convolutional features just once for whole image

• Need method to share computation of convolutional layers between proposals for an image

• Allows several advantages
 • Faster inference
 • Connects CNN to classifier
 • Easier training

• Proposals still from selective search

[Girshick, Fast R-CNN]
Hi - res input image: 3 x 800 x 600 with region proposal

Convolution and Pooling

Hi-res conv features: C x H x W with region proposal

Fast R-CNN: RoI Pooling

Problem: Fully-connected layers expect fixed size low-res features: C x h x w
Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal

Project region proposal onto conv feature map

Problem: Fully-connected layers expect low-res conv features: C x h x w

Fast R-CNN: RoI Pooling
Fast R-CNN: RoI Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Convolution and Pooling

Hi-res conv features: C x H x W with region proposal

Divide projected region into h x w grid

Problem: Fully-connected layers expect low-res conv features: C x h x w

Fully-connected layers
Fast R-CNN: RoI Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Convolution and Pooling

Hi-res conv features: C x H x W with region proposal

Max-pool within each grid cell

RoI conv features: C x h x w for region proposal

Fully-connected layers expect low-res conv features: C x h x w

RoI Pooling

\[y_{rj} = x_{i^*(r,j)} \] (RoI r in minibatch, output j)

\[i^*(r, j) = \text{argmax}_{i' \in R(r,j)} x_{i'} \]

Pooling region
Fast R-CNN: RoI Pooling

Hi-res input image: 3 x 800 x 600 with region proposal

Convolution and Pooling

Hi-res conv features: C x H x W with region proposal

Can back propagate similar to max pooling

RoI conv features: C x h x w for region proposal

Fully-connected layers expect low-res conv features: C x h x w

RoI Pooling

\[y_{rj} = x_{i^*(r,j)} \]
(RoI r in minibatch, output j)

\[i^*(r,j) = \arg\max_{i' \in \mathcal{R}(r,j)} x_{i'} \]

Pooling region

Backpropagation

\[\frac{\partial L}{\partial x_i} = \sum_r \sum_j [i = i^*(r,j)] \frac{\partial L}{\partial y_{rj}} \]

Gradient accumulated if i is the index chosen for max pooling
Fast R-CNN: Improvements over R-CNN

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training Time:</td>
<td>84 hours</td>
<td>9.5 hours</td>
</tr>
<tr>
<td>Test time per image</td>
<td>47 seconds</td>
<td>0.32 seconds</td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>66.0</td>
<td>66.9</td>
</tr>
</tbody>
</table>

Using VGG-16 CNN on Pascal VOC 2007 dataset
Faster R-CNN

- Proposals still from separate mechanism in Fast R-CNN
- Insert a **Region Proposal Network (RPN)** after last convolutional layer
- RPN trained to produce region proposals directly, no need for external region proposals!
- After RPN, use RoI Pooling and an upstream classifier and regressor just like Fast R-CNN

[Ren et al., Faster R-CNN]
Faster R-CNN: Region Proposal Network

- Slide a small window on the feature map
- Build a small network for:
 - classifying object or not-object
 - regressing bounding box locations
- Position of sliding window gives location information with respect to the image
- Box regression gives finer localization with respect to this sliding window
Faster R-CNN: Anchors

• Problem with region proposal using a convolutional network
 • Multiple scales of objects possible

• Possible solutions
 • Multiple scaled images
 • Filters of different sizes (usually together with above)

• But such approaches are time-consuming.
Faster R-CNN: Anchors

- Consider single object localization
 - Simply have a classification and regression head

- But now consider multiple objects, possibly overlapping
 - Regression for objects will interfere with each other

- Anchors: a set of reference positions on the feature map
 - Anchor with high ground truth overlap responsible for regressing position
 - Determines reference and spatial extent for predicting object

Typically: 3 scales and 3 aspect ratios
Faster R-CNN: Anchors

- A cost-efficient way to achieve multi-scale outputs
 - Relies on image and feature maps at single scale
 - Feature computation is shared across anchors at different scales

- Translation invariance
 - Use same convolutional RPN, anchors for spatial localization
 - A translated object will lead to accordingly shifted proposals

Typically: 3 scales and 3 aspect ratios
Training RPN

- Place anchors uniformly across image, n at every position (typically n = 9)
 - For 40 x 60 feature map, about 21k anchor positions
- RPN output: 4n regression (x, y, w, h) and 2n classification (object, background)
- Non-maximum suppression to pick about 2k boxes
 - Remove boxes that overlap with others of higher score
- Labels for RPN classification: compute IoU of bounding boxes with ground truth
 - Assign IoU > 0.7 as object and IoU < 0.3 as background
- Bounding box regression
 - Displacement target: distance between centers of ground truth and anchor boxes
 - Size target: log ratio of anchor and ground truth dimensions
- Sample 256 anchors to form mini-batch for training

$$L({\{p_i}\}, {\{t_i}\}) = \frac{1}{N_{cls}} \sum_i L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_i p_i^* L_{reg}(t_i, t_i^*).$$

- Cross-entropy
- Bounding box label
- Smooth L1
- Regression target
Training Overall Detector

- Train CNN + RPN
 - Initialize with ImageNet pretrained weights
 - Train end-to-end for region proposal task

- Train CNN + Detector
 - Initialize with ImageNet pretrained weights
 - Use fixed proposals from above RPN
 - Train Fast R-CNN for detection task

- Fine-tune RPN
 - Use CNN from above step
 - Fine-tune RPN for proposal task

- Fine-tune detector
 - Keep CNN fixed
 - Fine-tune Fast R-CNN layers for detection task

- Subsequently, a joint training is also available with all four losses
 - RPN: classification (object or background), regression (anchor to proposal)
 - Fast R-CNN: classification (object category), regression (proposal to bounding box)
Faster R-CNN Improvements

<table>
<thead>
<tr>
<th></th>
<th>R-CNN</th>
<th>Fast R-CNN</th>
<th>Faster R-CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test time per image (with proposals)</td>
<td>50 seconds</td>
<td>2 seconds</td>
<td>0.2 seconds</td>
</tr>
<tr>
<td>mAP (VOC 2007)</td>
<td>66.0</td>
<td>66.9</td>
<td>66.9</td>
</tr>
</tbody>
</table>
Faster R-CNN Improvements

ImageNet Detection (mAP)

<table>
<thead>
<tr>
<th>Method</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet ensemble (2015)</td>
<td>62.07</td>
</tr>
<tr>
<td>ResNet single (2015)</td>
<td>58.85</td>
</tr>
<tr>
<td>NeoNet ensemble (2015)</td>
<td>53.57</td>
</tr>
<tr>
<td>Faster R-CNN single (2015)</td>
<td>42.94</td>
</tr>
<tr>
<td>GoogleNet ensemble (2015)</td>
<td>43.93</td>
</tr>
<tr>
<td>NUS ensemble (2014)</td>
<td>37.21</td>
</tr>
<tr>
<td>SPP ensemble (2014)</td>
<td>35.11</td>
</tr>
<tr>
<td>UvA-Edvision (2013)</td>
<td>22.58</td>
</tr>
<tr>
<td>Overfeat (2013)</td>
<td>19.4</td>
</tr>
</tbody>
</table>
Object Detection

Huang et al. Speed/Accuracy Tradeoffs for Modern Convolutional Object Detectors. CVPR 2017
Object Detection: Sliding Windows

Dog? YES
Cat? NO
Background? NO

Dog? NO
Cat? NO
Background? YES
Object Detection: R-CNN

Bottom-up segmentation, merging regions at multiple scales

J. R. Uijlings, et al., “Selective search for object recognition”

R. Girshick, et al., “R-CNN”
Object detection: Fast RCNN

- Share computation of convolutional layers between proposals for an image, due to ROI Pooling layers
- Proposals still from selective search
Object detection: Faster RCNN

- Insert a Region Proposal Network (RPN) after last conv layer
- Proposals from RPN are fed to ROI pooling layer followed by classifier and bounding box regressor
Object detection: proposal-free

Different feature maps “responsible” for objects of different sizes.