CSE 152: Computer Vision
Manmohan Chandraker

Lecture 5: 3D Reconstruction
Recap
Homogeneous coordinates

- Converting to homogeneous coordinates

\[(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]
Homogeneous 2D point

\[(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}\]
Homogeneous 3D point

- Converting from homogeneous coordinates

\[\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)\]
\[\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)\]

- \((x, y, w)\) and \((kx, ky, kw)\) are the same point.
Modeling projection

\[(x, y, z) \rightarrow \left(-d \frac{x}{z}, -d \frac{y}{z}\right) \]

- A matrix multiplication using homogeneous coordinates

\[
\begin{bmatrix}
-d & 0 & 0 & 0 \\
0 & -d & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
= \begin{bmatrix}
-dx \\
-dy \\
-z \\
1
\end{bmatrix}
\rightarrow \left(-d \frac{x}{z}, -d \frac{y}{z}\right)
From image plane to pixel coordinates

\[
\begin{bmatrix}
-\alpha d & 0 & 0 \\
0 & -\alpha d & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad \text{K (intrinsics)}
\quad \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\quad \text{Projection (converts from 3D rays in camera coordinate system to pixel coordinates)}
\]

In general, \(\mathbf{K} = \begin{bmatrix}
-\alpha d & s & c_x \\
0 & -\alpha d & c_y \\
0 & 0 & 1
\end{bmatrix} \) (upper triangular matrix)

\(\alpha \) : aspect ratio (1 unless pixels are not square)

\(S \) : skew (0 unless pixels are shaped like rhombi/parallelograms)

\((c_x, c_y)\) : principal point ((0,0) unless optical axis doesn’t intersect projection plane at origin)
A Tale of Two Coordinate Systems

Two important coordinate systems:

1. *World* coordinate system
2. *Camera* coordinate system
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)
Extrinsics

- How do we get the camera to “canonical form”?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-\mathbf{c}\)

\[
T = \begin{bmatrix}
I_{3 \times 3} & -\mathbf{c} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

How do we represent translation as a matrix multiplication?
Extrinsics

• How do we get the camera to “canonical form”?
 – (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Step 1: Translate by \(-c\)
Step 2: Rotate by \(R\)

\[
R = \begin{bmatrix} u^T \\ v^T \\ w^T \end{bmatrix}
\]
Projection matrix

$$\Pi = K \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_{3 \times 3} & -c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Denote this by t.
Structure from Motion (SFM)
Visual SLAM
Feature detection

Several images observe a scene from different viewpoints
Feature detection

Detect features using, for example, SIFT [Lowe, IJCV 2004]
Feature matching

Match features between each pair of images
Feature matching
Counting inliers
Counting inliers

Inliers: 3
Counting inliers

Inliers: 20
How do we find the best line?

• Unlike least-squares, no simple closed-form solution

• Hypothesize-and-test
 – Try out many lines, keep the best one
 – RANSAC: Random Sample Consensus

• Number of samples depends on
 – Outlier ratio
 – Probability of correct answer
 – Model size
RANSAC

• General version:
 1. Randomly choose s samples
 • Typically $s = \text{minimum sample size to fit a model}$
 2. Fit a model (say, line) to those samples
 3. Count the number of inliers that approximately fit the model
 4. Repeat N times
 5. Choose the model with the largest set of inliers
RANSAC

\[N = \frac{\log(1 - p)}{\log(1 - (1 - \epsilon)^s)} \]

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Proportion of outliers ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>s</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Fundamental Matrix
Fundamental Matrix

\[x_1 \leftrightarrow x_2 \]

\[x_1^T F x_2 = 0 \]
RANSAC to Estimate Fundamental Matrix

• For N times
 – Pick 8 points
 – Compute a solution for F using these 8 points
 – Count number of inliers with $x_1^TFx_2$ close to 0
• Pick the one with the largest number of inliers
Estimating F

• Given just the two images, can we estimate F?

• Yes, with enough correspondences.
Estimating F: 8-point algorithm

• The fundamental matrix F is defined by

\[x'^T F x = 0 \]

for any pair of matches \(x \) and \(x' \) in two images.

• Let \(x = (u,v,1)^T \) and \(x' = (u',v',1)^T \),

\[F = \begin{pmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{pmatrix} \]

• Each match gives a linear equation:

\[uu' f_{11} + vu' f_{12} + u' f_{13} + uv' f_{21} + vv' f_{22} + v' f_{23} + uf_{31} + vf_{32} + f_{33} = 0 \]
8-point algorithm

Given n point correspondences, set up a system of equations:

\[
\begin{pmatrix}
 u_1 u'_1 & v_1 u'_1 & u'_1 & u_1 v'_1 & v_1 v'_1 & v'_1 & u_1 & v_1 & 1 \\
 u_2 u'_2 & v_2 u'_2 & u'_2 & u_2 v'_2 & v_2 v'_2 & v'_2 & u_2 & v_2 & 1 \\
 \vdots & \vdots \\
 u_n u'_n & v_n u'_n & u'_n & u_n v'_n & v_n v'_n & v'_n & u_n & v_n & 1
\end{pmatrix}
\begin{pmatrix}
 f_{11} \\
 f_{12} \\
 f_{13} \\
 f_{21} \\
 f_{22} \\
 f_{23} \\
 f_{31} \\
 f_{32} \\
 f_{33}
\end{pmatrix} = 0
\]

- In reality, instead of solving $Af = 0$, we seek f to minimize $\|Af\|$.
Solving homogeneous systems

• In reality, instead of solving $\mathbf{A}\mathbf{f} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{A}\mathbf{f}\|$.

• Singular value decomposition:

\[
\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^\top
\]

\mathbf{U}, \mathbf{V} are rotation matrices

\[
\Sigma = \begin{bmatrix}
 s_1 \\
 \vdots \\
 s_n
\end{bmatrix}
\]

• Solution \mathbf{f} given by the last column of \mathbf{V}.
8-point algorithm: Problem?

- \(\mathbf{F} \) should have rank 2
- To enforce that \(\mathbf{F} \) is of rank 2, \(\mathbf{F} \) is replaced by \(\mathbf{F}' \) that minimizes \(\| \mathbf{F}^\top \mathbf{F}' \| \) subject to the rank constraint.

- This is achieved by SVD. Let \(\mathbf{F} = \mathbf{U}\Sigma\mathbf{V} \), where

\[
\Sigma = \begin{pmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{pmatrix}.
\]

Let \(\Sigma' = \begin{pmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \)

then \(\mathbf{F}' = \mathbf{U}\Sigma'\mathbf{V} \) is the solution.
8-point algorithm

% Build the constraint matrix
A = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:) ...
x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:) ...
x1(1,:)' x1(2,:)'
ones(npts,1)];

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)';

% Enforce rank 2 constraint
[U,D,V] = svd(F);
F = U * diag([D(1,1) D(2,2) 0]) * V';
8-point algorithm

• Pros: it is linear, easy to implement and fast
• Cons: susceptible to noise
Projective Geometry
Homogeneous coordinates

- Converting to homogeneous coordinates

\[(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad \text{Homogeneous 2D point} \]

\[(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \quad \text{Homogeneous 3D point} \]

- Converting from homogeneous coordinates

\[\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \quad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w) \]

\[(x, y, w)^\top \quad \text{and} \quad (kx, ky, kw)^\top \quad \text{are the same point.} \]
Homogeneous points and lines

- Consider a line in 2D image:
 \[ax + by + c = 0 \]

- Condition for 2D point \((x, y, 1)^\top\) to lie on the line is:
 \[(a, b, c)^\top \cdot (x, y, 1)^\top = 0 \]

- Equation of the line in homogeneous coordinates:
 \[\mathbf{l} = (a, b, c)^\top \]

- Condition for point \(\mathbf{x}\) to lie on line \(\mathbf{l}\) is:
 \[\mathbf{l}^\top \mathbf{x} = 0 \]

Note: by default, we will denote any vector as a column vector.
Homogeneous points and lines

• Consider two homogeneous 2D points \(\mathbf{x} \) and \(\mathbf{x}' \).
• What is the line passing through these two points?
• Consider two homogeneous 2D points \mathbf{x} and \mathbf{x}'.
• What is the line passing through these two points?
• Consider the vector $\mathbf{l} = \mathbf{x} \times \mathbf{x}'$
Homogeneous points and lines

- Consider two homogeneous 2D points x and x'.
- What is the line passing through these two points?
- Consider the vector $l = x \times x'$
- We have:
 $$l^T x = 0 \quad l^T x' = 0$$
- Both x and x' lie on the line l and there is a unique line between two points!
Consider two homogeneous 2D points \(x \) and \(x' \).

What is the line passing through these two points?

Consider the vector \(l = x \times x' \)

We have:

\[
 l^\top x = 0 \quad l^\top x' = 0
\]

Both \(x \) and \(x' \) lie on the line \(l \) and there is a unique line between two points!

Consider two lines \(l \) and \(l' \) in the 2D image

What is the point of intersection of these two lines?
Homogeneous points and lines

- Consider two homogeneous 2D points \mathbf{x} and \mathbf{x}'.
- What is the line passing through these two points?
- Consider the vector $\mathbf{l} = \mathbf{x} \times \mathbf{x}'$
- We have:
 \[\mathbf{l}^\top \mathbf{x} = 0 \quad \mathbf{l}^\top \mathbf{x}' = 0 \]
 - Both \mathbf{x} and \mathbf{x}' lie on the line \mathbf{l} and there is a unique line between two points!

- Consider two lines \mathbf{l} and \mathbf{l}' in the 2D image
- What is the point of intersection of these two lines?
 \[\mathbf{x} = \mathbf{l} \times \mathbf{l}' \]
- Do you notice a duality?
Ideal points
Ideal points

Jesus before Caiaphas,
Giotto di Bondone, 1305

The School of Athens,
Raphael Sanzio, 1510
Ideal points and the line at infinity

• Consider two parallel lines in the 2D image:
 \[ax + by + c = 0 \]
 \[ax + by + c' = 0 \]

• In homogeneous coordinates, the lines are:
 \[l = (a, b, c)^\top \text{ and } l' = (a, b, c')^\top \]
Ideal points and the line at infinity

- Consider two parallel lines in the 2D image:
 \[ax + by + c = 0 \]
 \[ax + by + c' = 0 \]

- In homogeneous coordinates, the lines are:
 \[l = (a, b, c)^\top \text{ and } l' = (a, b, c')^\top \]

- Their point of intersection is given by:
 \[x_{\infty} = l \times l' = (c - c')(b, a, 0)^\top \sim (-b, a, 0)^\top \]
Ideal points and the line at infinity

• Consider two parallel lines in the 2D image:
 \[ax + by + c = 0 \]
 \[ax + by + c' = 0 \]

• In homogeneous coordinates, the lines are:
 \[l = (a, b, c)^\top \text{ and } l' = (a, b, c')^\top \]

• Their point of intersection is given by:
 \[x_\infty = l \times l' = (c - c')(-b, a, 0)^\top \sim (-b, a, 0)^\top \]

• To de-homogeneize involves a division by 0
 • This is a point at “infinity”, called an ideal point
Ideal points and the line at infinity

- Consider two parallel lines in the 2D image:
 \[ax + by + c = 0 \]
 \[ax + by + c' = 0 \]

- In homogeneous coordinates, the lines are:
 \[l = (a, b, c)^\top \text{ and } l' = (a, b, c')^\top \]

- Their point of intersection is given by:
 \[x_\infty = l \times l' = (c - c')(b, a, 0)^\top \sim (-b, a, 0)^\top \]

- To de-homogeneity involves a division by 0
 - This is a point at “infinity”, called an ideal point

- Which line contains all ideal points \[x_\infty = (x, y, 0)^\top \]?
 Line at infinity: \[l_\infty = (0, 0, 1)^\top \].
Two-View Reconstruction
Cross-product as linear operator

Useful fact: Cross product with a vector \(\mathbf{t} \) can be represented as multiplication with a \((\text{skew-symmetric})\) 3x3 matrix

\[
[t]_\times = \begin{bmatrix}
0 & -t_z & t_y \\
t_z & 0 & -t_x \\
-t_y & t_x & 0
\end{bmatrix}
\]

\[
\mathbf{t} \times \mathbf{p} = [\mathbf{t}]_\times \mathbf{p}
\]

What is the rank of \([\mathbf{t}]_\times\)?
Two-view geometry

Corresponding point in other image is constrained to lie on a line, called the *epipolar line*.

![Diagram showing epipolar lines and planes in two views.](image)
Epipoles

Two special points: e_1 and e_2 (the *epipoles*): projection of one camera into the other.
Epipolar lines

Two special points: e_1 and e_2 (the epipoles): projection of one camera into the other.

All of the epipolar lines in an image pass through the epipole.
Essential matrix

• Assume calibrated cameras with $K_1 = K_2 = I_{3x3}$.
• Let camera 1 be $[I, 0]$ and camera 2 be $[R, t]$.
• In camera 1 coordinates, 3D point X is given by $X_1 = \lambda_1 p$.
• In camera 2 coordinates, 3D point X is given by $X_2 = \lambda_2 q$.
• Since camera 2 is related to camera 1 by rigid-body motion $[R, t]$
 \[
 X_2 = RX_1 + t \\
 \lambda_2 q = \lambda_1 Rp + t
 \]
Essential matrix

- We have: $\lambda_2 q = \lambda_1 R p + t$
- Take cross-product with respect to t:
 $$\lambda_2 [t] \times q = \lambda_1 [t] \times Rp$$
- Take dot-product with respect to q:
 $$0 = \lambda_1 q^\top [t] \times Rp$$
Essential matrix

- We have: \(q^\top [t] \times R p = 0 \)
- Define: \(E = [t] \times R \)
- Then, we have: \(q^\top E p = 0 \)

How many degrees of freedom does \(E \) have?
Relax the assumption of calibrated cameras.

Then, p and q are in metric coordinates and pixel counterparts are:

$$p' = K_1 p \quad q' = K_2 q$$

Recall essential matrix constraint:

$$q^\top E p = 0$$

Substituting, we have:

$$\left(K_2^{-1} q'\right)^\top E \left(K_1^{-1} p'\right) = 0$$
- Essential matrix constraint in pixel space: \((K^{-1}_2 q')^\top E (K^{-1}_1 p') = 0\).
- Rearranging:
 \[q'^\top (K^{-\top}_2 E K^{-1}_1) p' = 0 \]
- Define: \(F = K^{-\top}_2 E K^{-1}_1\)
- Then, we have: \(q'^\top F p' = 0\)

How many degrees of freedom does \(F\) have?
Properties of the Fundamental Matrix

- F_p' is the epipolar line associated with p'
- $F^\top q'$ is the epipolar line associated with q'
- $F e'_1 = 0$ and $F^\top e'_2 = 0$
- F is rank 2.
Results (ground truth)

Ground truth with standard stereo calibration