CSE 152: Computer Vision
Manmohan Chandraker

Quiz 2
1(a) For image I, are I_x and I_y small or large at points A, B, C and D?
Corners

2(a) Is this second moment matrix likely to represent a corner? Why?

\[C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

2(b) Is this second moment matrix likely to represent a corner? Why?

\[C = \begin{bmatrix} 100 & 10 \\ 10 & 1 \end{bmatrix} \]

2(c) Is this second moment matrix likely to represent a corner? Why?

\[C = \begin{bmatrix} 10 & 0.1 \\ 0.1 & 10 \end{bmatrix} \]
SIFT

3(a) What are invariances encoded by the SIFT feature?

3(b) You obtained 10 true positives, 5 false positives and 5 false negatives at a particular SIFT matching threshold. How would you change the threshold to:
 (i) Increase true positives?
 (ii) Decrease false positives?
 (iii) Decrease false negatives?
Answers

1(a) A: Large I_x, Large I_y
 B: Small I_x, Small I_y
 C: Small I_x, Large I_y
 D: Large I_x, Small I_y

2(a) Corner: Eigenvalues are the diagonal entries, both 1 (large and comparable)
 2(b) Not corner: Rank 1 matrix, one eigenvalue is 0 (it is an edge)
 2(c) Corner: Nearly diagonal, eigenvalues close to 10 (large and comparable)

3(a) Geometric: Scale, translation, rotation
 Photometric: Illumination, camera response

3(b) SIFT uses Euclidean distance between descriptors for matching.
 Descriptors with distance below a threshold are deemed matches.
 (i) Higher threshold allows more matches, increasing true positives.
 (ii) Lower threshold allows fewer matches, decreasing false positives.
 (iii) Higher threshold is less stringent, decreasing false negatives.