
An abridged version of this paper appears in Proceedings of the 37th Symposium on Foundations

of Computer Science, IEEE, 1996.

Pseudorandom Functions Revisited:

The Cascade Construction and its Concrete Security

Mihir Bellare∗ Ran Canetti† Hugo Krawczyk‡

October 31, 2005

Abstract

Pseudorandom function families are a powerful cryptographic primitive, yielding, in partic-
ular, simple solutions for the main problems in private key cryptography. Their existence based
on general assumptions (namely, the existence of one-way functions) has been established.

In this work we investigate new ways of designing pseudorandom function families. The
goal is to find constructions that are both efficient and secure, and thus eventually to bring the
benefits of pseudorandom functions to practice.

The basic building blocks in our design are certain limited versions of pseudorandom func-
tion families, called finite-length input pseudorandom function families, for which very efficient
realizations exist in practical cryptography. Thus rather than starting from one-way functions,
we propose constructions of “full-fledged” pseudorandom function families from these limited
ones. In particular we propose the cascade construction, and provide a concrete security analysis
which relates the strength of the cascade to that of the underlying finite pseudorandom function
family in a precise and quantitative way.

∗Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500
Gilman Drive, La Jolla, CA 92093. Email: mihir@cs.ucsd.edu.

† IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, New York 10598. Email: canetti@

watson.ibm.com. Work done while author was at MIT.
‡ IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, New York 10598. Email: hugo@

watson.ibm.com.

1

Contents

1 Introduction 3
1.1 From FI-PRFs to VI-PRFs . 3
1.2 The cascade construction . 4
1.3 Security . 5
1.4 The randomized cascade construction . 6
1.5 Related work . 7

2 Definitions 7

3 The basic cascade construction 9

4 Getting rid of prefix-freeness 10

5 The random-prepend construction 11

6 Optimality of the analysis 12

A Proof of Lemma 3.2 15

B Proof of Lemma 3.3 17

C Proof of Theorem 4.1 18

2

1 Introduction

The notion of a pseudorandom function family was proposed by Goldreich, Goldwasser and Micali
[10]. In such a family, each function is specified by a short, random key, and can be easily computed
given the key. Yet the function behaves like a random one, in the sense that if you are not given
the key, and are computationally bounded, then the input-output behavior of the function looks
like that of a random function.

Pseudorandom functions (PRFs) enable the following very general paradigm of cryptographic
protocol design, most importantly in the setting of private key cryptography (in this setting, a
number of parties share a short, random key a which the adversary does not know): First design
and prove secure a protocol assuming the parties share a truly random function. Then substitute
the random function with a pseudorandom function indexed by the shared key a. The properties
of pseudorandom function families guarantee that security is preserved.

In particular, pseudorandom functions provide, via this paradigm, simple and convenient solu-
tions to the two most basic problems of private key cryptography, namely message authentication
and encryption. Data D can be authenticated by appending the tag f(D), where f = Fa is the
function indexed by key a in familiy F . Similarly, data D can be encrypted by picking r at random
and transmitting (r, f(r)⊕D), where ⊕ is bitwise exclusive-or. It is not hard to see that these
methods are secure if f is truly random, and hence also if f is chosen from F .

Therefore, the study of practical candidates for pseudorandom functions is essential in providing
solutions to the increasing use of cryptography in real world applications. This search forms the
basic motivation for our work.

It is important to note that the above applications impose requirements on the sizes of inputs

and outputs of the pseudorandom functions in the family. The data to be authenticated or encrypted
can be mega-bytes or more in length (e.g., a movie). Thus, to be useful for authentication, the
function Fa must be able to take long inputs. (This means inputs of any pre-specified length, or, even
better, inputs of variable length.) Encryption done in the above way poses similar requirements
on the output length. Since this will be a crucial point, let’s introduce a piece of terminology
straight away. We call a pseudorandom function a VI-PRF (the “VI” standing for “Variable-length
Input”) if it can take inputs of any pre-specified length, or of variable length. These are the kinds
of pseudorandom functions we want.

So how can one construct (variable-length input) pseudorandom function families? A traditional
approach constructs pseudorandom function families from pseudorandom generators [10]. Pseudo-
random generators are in turn constructed from any one-way function [12]. (Recently a different
construction of pseudorandom function families from trapdoor functions was proposed [16].) In
these works pseudorandom function families are regarded as a compound primitive, whereas one-
way functions (or trapdoor functions) are the building blocks. In all cases, the suggested candidates
for the building blocks come from number-theoretic problems or combinatorial problems.

We follow a different approach to constructing variable-length input pseudorandom function
families which has the potential of yielding more efficient constructions. The idea is to move to
different building blocks.

1.1 From FI-PRFs to VI-PRFs

We assume the existence of fixed-length input pseudorandom function (FI-PRF) families. This
is a primitive first introduced by Bellare, Kilian and Rogaway [6] in order to model the popular
Data Encryption Algorithm. A FI-PRF family is a family of functions which already have the
pseudorandom function property. But they have the following serious drawback: unlike VI-PRF

3

functions, the members of this family only take fixed-length inputs. For example the members of
the family might map 512 bits to 128 bits. 1

So, for us the basic “building blocks” are FI-PRF families rather than one-way functions or
pseudorandom generators. We then show how to construct VI-PRF families from FI-PRF families
in an effective way. Let us now explain the background and motivation for this assumption and
approach.

The basis for FI-PRFs. There is a body of cryptographic primitives, extensively used in prac-
tice, which are more efficient than number theoretic primitives yet seem to possess appreciable
cryptographic strengths. Examples of such primitives include DES [2], and the compression func-
tions of SHA [19] and of MD5 [17]. In particular, it might be reasonable to assume that such
primitives, or simple enhancements or extensions of them, behave like pseudorandom functions in
the first place. Such a suggestion was first made in the context of DES [14, 6] and has also been
suggested for the compression function of MD5 [5], the last two both in the context of constructing
message authentication codes. However, these primitives have finite-length inputs and outputs.
(For example the compression function of MD5 provides a family each member of which is specified
by a 128 bit key and maps a 512 bit input to a 128 bit output.) So we are talking about FI-PRF
families; whereas applications need VI-PRFs. This motivates our study of constructing VI-PRFs
from FI-PRFs.

The merits of a general construction. It is important to find general constructions that
work assuming the existence of any FI-PRF family. The reason is the same as that driving the
search for constructions based on any one-way function. Namely, some particular candidate might
fail or new (possibly better) candidates may emerge. In particular, we caution that at this time,
the assumption that DES, or some other specific function, behaves like a FI-PRF has not been
extensively investigated or validated, and for some of these functions, the assumption may turn to
be false.

General techniques for extending FI-PRFs to VI-PRFs also provide for modular design of pseu-
dorandom function families: First engage in the easier task of designing a FI-PRF. Next construct
a VI-PRF using the general technique.

1.2 The cascade construction

Background. Our construction stems from a popular construction of collision-resistant hash
functions. A collision-resistant cryptographic hash function (CRH) H is a function that hashes
arbitrarily long inputs to outputs of fixed length k (say, k = 128 bits), while guaranteeing that it is
computationally infeasible to find x 6= y such that H(x) = H(y). The construction of CRHs, due
to Merkle [15] and Damg̊ard [9], is as follows. First design a “compression function” h that takes
two inputs of fixed length – one of k bits and the other of b bits — and outputs a k-bit string.
Make sure that h is collision-resistant (i.e., it should be infeasible to find (a, x) 6= (a′, x′) such that
h(a, x) = h(a′, x′)). Next, define H as follows. First fix some arbitrary k-bit initial value iv. Next,
partition each input x into b-bit blocks x = x1, . . . , xn and compute:

y0 = iv

yi = h(yi−1, xi) for i = 1, . . . , n.

The output is H(x) = yn. It is easy to see that if h is collision-resistant then so is H.

1 The notion of security is appropriately quantified to discuss finite objects [6]. We discuss this later.

4

Known CRHs (e.g., Rivest’s MDi series, SHA) follow this paradigm. These CRH are in wide
use. Their strength lies in their efficiency and versatility: in particular, they can be run, in software,
faster than most other cryptographic transforms.

The basic cascade construction. We assume we are given a FI-PRF family F . Each k bit
key a specifies a function Fa : {0, 1}b → {0, 1}k. We write Fa(z) = F (a, z). Now, we propose

to construct a family F (∗) which we call the basic cascade construction. Each function F
(∗)
a is

still indexed by a k-bit key and returns a k-bit output, but takes input of arbitrary length. The
construction will be the same as above, with F playing the role of h, and one other (important)

difference: the key a to F
(∗)
a plays the role of iv. Namely we compute:

y0 = a

yi = F (yi−1, xi) for i = 1, . . . , n,

where n is the number of input blocks. The output is F (a, x) = yn. (In short, F
(∗)
a (x1, . . . , xn) =

F
F

(∗)
a (x1,...,xn−1)

(xn).) Our claim is that, given the above assumption on the basic family F , the

resultant family F (∗) is a pseudorandom function family on any set of inputs that is prefix-free
(that is, as long as no input is a prefix of another input). In particular, this holds when all inputs
are of the same length.

Since what we have done is replace the fixed iv in the Merkle construction with the key to our
PRF, we view the cascade construction as a “keyed” version of Merkle’s construction.

Now, we might view the compression function h of SHA or MD5 as specifying a FI-PRF family,
via Fa(z) = h(a, z). Then we have an efficient construction of a pseudorandom function family
taking inputs of any desired (but fixed) length nb.

General, variable length inputs. If inputs are allowed to be prefixes of other inputs then the
pseudorandomness property vanishes. 2 Fortunately, the construction can be modified to work.
We show that if some prefix-free encoding is applied before invoking F (∗) then a good VI-PRF is
obtained. An alternative that may be more attractive in practice is to append some “key-material”
to the message before doing the construction. More precisely, let the key consist of k+δ bits, where

the first, k-bit part is called a and the second, δ-bit part is called d. Let F acsc
a.d (x)

def
= F

F
(∗)
a (x)

(d).

We call this the append cascade construction. Below we focus on this one, since in practice variable
length is required.

1.3 Security

We want to say that if F is a FI-PRF family then F acsc is a VI-PRF family. But there is a
small problem. Traditionally, pseudorandom function families, like similar primitives (such as one
way functions and pseudorandom generators), are presented in an asymptotic way: there is an
infinite sequence of instances of a primitive, where each instance corresponds to a specific value
of a security parameter. As the security parameter tends to infinity, the probability of breaking
the corresponding instance becomes negligible. (In the case of pseudorandom function families the
security parameter is related to the key-length.) Here, however, we deal with primitives that consist
of a single instance: there is a single MD5, a single SHA and a single DES. Asymptotic behavior in
the security parameter has no meaning here. We thus resort to explicitly specifying the parameters
determining the security.

2 For F (∗), note that if x1, x2 are each b bits long then F
(∗)
a (x1x2) = F

F
(∗)
a

(x1)
(x2), so F

(∗)
a (x1x2) can be computed

given F
(∗)
a (x1). But for a random function R one has very low probability of computing R(x1x2) given R(x1).

5

Another benefit of explicitly specifying these parameters is that it highlights the quality of
a transformation from one primitive to another. This is part of a general program in which one
investigates not only the existence of polynomial time reductions between primitives, but the actual
efficiency they achieve. The quality of a security reduction is important because it tells us exactly
what strength we can expect from a scheme, for example how much time we can allow the adversary
and still know that the scheme is not breakable except with a specific probability.

The above two ingredients, explicit security parameters and carefully quantified security re-
ductions, form the basis for what we call concrete security analysis. In the case of pseudorandom
functions this study was initiated in [6, 5]. Security preserving reductions are the subject of other
works as well, e.g. [11, 13, 1].

Following [6], we say that a function family G is (t, q, l, ε)-secure if a program that runs in time
t (more precisely, the running time plus size of the description of the program, in some fixed RAM
model of computation, must be bounded by t), given an oracle for a function E and allowed to make
at most q queries to this oracle, each of at most l blocks, has advantage at most ε in distinguishing
whether E is a random member of G or a truly random function with the appropriate domain and
range.

Now we are finally able to state our main result: We show that if F was (t′, q, 1, ε′)-secure then
F acsc is (t, q, l, ε)-secure, for t comparable to t′ and ε = qlε′. Thus we establish a concrete lower
bound on the hardness to break the cascaded family in terms of the strength of the given family.

Tightness. We complement the analysis of the cascade construction by demonstrating its opti-
mality. We present a simple algorithm, based on the Birthday Paradox, for distinguishing between
a function generated via our cascaded construction and a truly random function. The resultant
attack achieves a distinguishing probability equal to the one proven in our lower bound. The attack
is very general, and requires no a-priori information about the underlying FI-PRF. In particular,
it applies even if the underlying function family is chosen at random from all function families
with a given size. (We also show how to translate this distinguisher into an attack on message
authentication schemes based on the cascaded construction. See Section 6). This attack, combined
with an additional simple observation, demonstrates the optimality of the analysis.

1.4 The randomized cascade construction

In the above cascade construction the probability of successful attack against the constructed
family, F acsc, is larger than the probability of successful attack against the underlying function F
by a factor of ql. We modify the cascade construction to obtain more moderate increase in the
probability of successful attack. The idea is to randomize the cascade. It also turns out that this
randomization obviates the need to append key material, so now the key is just a. The output for

input x is computed by picking a random b bit string R and outputting (R, F
(∗)
a (R . x)). Note that

this is now a probabilistic function, since to compute the output on a given input, a probabilistic
choice is made. We call this randomized function F rcsc

a .
Technically F rcsc, being randomized, cannot be a pseudorandom function family. But we can

consider “randomized” families in a natural way. We show that if F was (t′, i, 1, ε′(i))-secure for
all i = 1, . . . , q then F rcsc is (t, q, l, ε)-secure for t comparable to t′ and ε = ε′(q) + lqε′(1) + δ where

δ =
∑

i≥2
qi

2(i−1)l ε
′(i) is negligible. In contrast, F acsc obtains, using this notation, ε = lqε′(q). In the

typical cases where ε′(1) is much smaller than ε′(q), F rcsc does significantly better than F acsc.

6

1.5 Related work

In comparison to constructions based on one-way or trapdoor functions [12, 10, 16], ours are more
efficient in practice. Let us now turn to constructions based on FI-PRFs.

The first construction of VI-PRFs from FI-PRFs is in [6]. They analyze another popular
construction (namely, Cipher Block Chaining, or CBC) and show that it yields a VI-PRF if the
underlying functions are FI-PRFs. That work differs from ours in the practical cryptographic
primitive considered (it builds on block ciphers as opposed to compression functions as in our
case).

FI-PRFs are used to construct message authentication codes in [5]. Underlying their construc-
tions is a construction of a randomized family of VI-PRFs. But they don’t provide a (deterministic)
VI-PRF family.

If F is a FI-PRF family and H is a collision-resistant function then the family G defined by
Ga(x) = Fa(H(x)) is a VI-PRF family. (This simple observation was made in [7].) A variant is
to let H be a collection of almost universal2 hash functions [8, 20], meaning that for any fixed but
distinct x, x′, the probability that h(x) = h(x′) is small, when h is drawn randomly from H. Then
Ga,h(x) = Fa(h(x)) is also a VI-PRF family. (Note that h is part of the key).

We note that, in general, no one of these constructions is superior to the other in all the aspects.
Choosing between one approach or the other in practice may depend on a variety of considerations
like efficiency and availability of software and hardware implementations, security of the underlying
primitive, quality of the reduction proving security, key size, and even non-technical aspects as the
regulation of cryptography by local governments. It is therefore important to back these different
approaches with sound and efficient constructions. Furthermore, it is important to investigate
constructions that exist in practice and figure out their quality, even when alternatives are known,
because in many cases the practical constructions have advantages in the settings in which they
are used.

In a companion work, we build message authentication functions from collision-resistant hash
functions [3]. That work uses a different assumption than the one here. It assumes the underlying
compression function to be a secure message authentication function, and the iterations (à la
Merkle) be collision resistant. Using our work, one can show that if the compression function is a
good pseudorandom function then both of the above assumptions in [3] are fulfilled.

Finally, we remark that the construction, and our proof methodology, are reminiscent of the
[10] construction and proof. They construct VI-PRFs from length doubling pseudorandom bit
generators, whereas we use FI-PRFs. However the basic cascade construction (which, as we have
said, is a keyed version of Merkle’s construction) may be viewed as a generalization of the binary
tree construction of [10]. In our case the tree has arity 2b. (Recall b is the input block-size. The
tree is as follows. The root stores the original key a. The children of a node labeled y are the 2b

strings Fy(x) for x ∈ {0, 1}b.) In particular, the constructions coincide if b = 1. (That is, we have
a FI-PRF family which takes just one bit of input. Such a family can be seen as a length doubling
pseudorandom bit generator defined by G(y) = Fy(0) . Fy(1).) Our proof is influenced by that of
[10], but new features emerge because we are dealing with pseudorandom functions, not generators,
making the reducibility question a different one. Comparing efficiency, given the generator, the [10]
construction takes m applications of it to process an m-bit message, while given the FI-PRF, we
take m/b applications of it.

2 Definitions

We define FI-PRF families and their concrete security, slightly extending the definitions of [6].

7

Notation. Denote by |x| the length of string x. Let [m] = {1, . . . , m} for any integer m ≥ 0. If S

is a probability space (resp. a set) then x
R
← S denotes the operation of selecting an element from S

(resp. uniformly at random from S). Furthermore x1, . . . , xm
R
← S abbreviates x1

R
← S ; . . . ; xm

R
←

S. Let Maps(X, Y) be the set of all functions mapping from set X to set Y .

Finite function families. A (finite) function family F is a finite collection of functions together

with a probability distribution on them. Thus f
R
← F denotes the operation of selecting a function

at random from F according to the underlying distribution. All functions in the collection are
assumed to have the same domain, denoted Dom(F), and the same range, denoted Range(F).

We consider keyed families. Here there is a set of “keys” and each key names a function in F
according to some fixed convention. (Note that different keys can name the same function.) Usually
the set of keys is {0, 1}k for some integer k called the key length. We use several notations for the
function denoted by a key a. Sometimes we write it Fa; other times we view F as a two argument
function and write Fa as F (a, ·). When some key length, and some association of keys to functions
have been fixed and agreed upon, we adopt the convention that the distribution on the function
family is that given by picking a key at random from {0, 1}k and selecting the corresponding

function; namely, f
R
← F is equivalent to a

R
← {0, 1}κ ; f ← Fa. We require that given the key it

is possible to compute the corresponding function efficiently. Measuring the computation time, let
Time(F, n) denote the time of a program to compute Fa(x) = F (a, x) given a and x with |x| ≤ n.

In the families we consider the range Range(F) will be fixed. Furthermore, it will equal the
domain of the keys, namely {0, 1}k. The domain Dom(F) can vary; however, we will work over a
particular block size b (eg. b = 512) and denote B = {0, 1}b. This means we will consider domains
of the form B, B∗, Bn, and B≤n (i.e., strings of at most n blocks).

Pseudorandomness of function families. Intuitively, a finite function family F is pseudoran-
dom if the input-output behavior of a random member of the family is indistinguishable from the
behavior of a random function of the same domain and range. This is formalized via the notion of
statistical tests, or distinguishes [10]. A distinguisher is an oracle algorithm; it is given a random
member either of a family F 1 or of a family F 2, and tries to decide which is the case. For a
distinguisher D let

AdvD(F 1, F 2) = Pr
g

R
←F 1

[Dg = 1]− Pr
g

R
←F 2

[Dg = 1] ,

where the probabilities are over the choices of g and the coin tosses of D.
We are interested in the resources used by the distinguisher to make its decision. Salient

resources are computing time, memory requirements, and number and length of oracle queries.
Even though time and memory limitations may be very different,3 for this extended abstract we
unify the two notions (and slightly abuse notation) by letting time equal the running time plus the
memory required. (Without loss of generality the memory includes the size of the code.) Say that
D (t, q, l, ε) distinguishes F 1 from F 2 if it runs for time t, makes q oracle queries each of length at
most l blocks, and AdvD(F 1, F 2) ≥ ε. (Here ε is called the distinguishing probability.)

Let F be a family with domain X and range Y , ie. F ⊆ Maps(X, Y). View Maps(X, Y) as a
function family with the distribution being uniform; that is, drawing a function at random from
this family just means picking a random function of X to Y .4 We say that D (t, q, l, ε)-breaks F

3While 250 running time may be considered reasonable, memory size of 250 is unreasonable.
4Here we slightly abuse the notation: if the domain X is infinite then choosing a function uniformly from

Maps(X, Y) has no meaning. Instead, one can think of a “random function” as a process that answers each new
query with a random element in the range Y , and answers queries that have already been made in the past in a
consistent way.

8

if D (t, q, l, ε) distinguishes F from Maps(X, Y). We say that F is (t, q, l, ε)-secure if there is no
distinguisher who (t, q, l, ε)-breaks F .

3 The basic cascade construction

Here we present and analyze the basic cascade construction. Let F be a family of functions from
Dom(F) = B = {0, 1}b to {0, 1}k. The key length is the same as the output length, namely k.
For instance, in the case of the compression function of md5 we have k = 128 and b = 512. Define
the families F (1), F (2), F (3), . . . as follows. The members of F (l) will take inputs which are at most
l blocks long; that is, the family F (l) will have domain Dom(F (l)) = B≤l. We call F (l) the l-th
iteration of F . For l ∈ N, define F (l) inductively:

F (l)(a, λ) = a

F (l)(a, x1 . . . xn) = F (F (l)(a, x1 . . . xn−1), xn) if n ≥ 1

where λ denotes the empty string. That is, for n ≤ l, F (l)(x1, . . . , xn) is computed as follows.

a0 ← a
for i = 1, . . . , n do: ai ← F (ai−1, xi)
Output an

Let F (∗) be F (∗)(a, x1, . . . , xn)
def
= F

(n)
a (a, x1, . . . , xn). We call F (∗) the iteration of F .

Prefix-freeness. We want to claim that the pseudorandomness of F translates to the pseudo-
randomness of F (∗) (with parameters specified in the sequel). But there is the “technical” problem
described in Section 1.2. This problem disappears if the inputs are encoded to be a prefix-free set.
(For example, prepend-pend to every input its length, using some appropriate encoding, and then
apply F (∗).) With this, F (∗) is indeed pseudorandom, as we will show below.

We don’t want to fix any particular prefix-free encoding since any such encoding will work.
So instead we introduce the notion of a prefix-free distinguisher. This is a distinguisher D with
the property that the set of queries it asks always forms a prefix-free set. We’ll prove F (∗) is
pseudorandom with respect to prefix-free distinguishers. This implies that using any prefix-free
encoding will suffice against arbitrary distinguishers.

Prefix-free encodings have some drawbacks that makes them unattractive in some settings. We
elaborate on these drawbacks and our solution in the next section. Here we show:

Theorem 3.1 Let F be a function family with Dom(F) = B, range Range(F) = {0, 1}k, and

key length k. Suppose F is (t′, q, 1, ε′)-secure and let l ≥ 1. Then F (∗) is (t, q, l, ε)-secure against

prefix-free distinguishers, where

t = t′ − cq(l + k + b) · (Time(F) + log q) ; ε = qlε′ .

Here c is a specific, small constant whose value can be determined from the proof.

We remark that there was a typo in the above theorem in the preliminary (proceedings) version of
this paper [4]. Namely the factor of q was missing in the expression for ε.

The rest of this section is devoted to proving Theorem 3.1. A natural approach to such a proof
is to reduce the security of F (∗) to the security of F . However, we could not find a straightforward
reduction. Instead, we first define a bunch of “intermediate” function families. We then show, using
two different reductions, that: (I) if only prefix-free distinguishers, that ask at most q queries, are
considered, then the security of F (∗) reduces to the security of the qth family in the bunch; and
(II) the security of any family in the bunch reduces to the security of F . The theorem will follow.

9

The multi-oracle families. Let F be a family of functions from X to Y . The intermediate
function families, called the multi-oracle families, are defined as follows. Informally, in the mth
multi-oracle family the distinguisher is given m functions, g1, . . . , gm, such that either all the g′is
are drawn independently from F or all are drawn independently from Maps(X, Y). (To break this
family, the distinguisher has to tell which is the case.) More formally, define mF as the following
family of functions from [m] × X to Y , with key length mk. The key is interpreted as a vector
~a = a1, . . . , am; a function mF~a in the family mF takes two inputs, i ∈ [m] and x ∈ X, and returns
Fai

(x). We sometimes use f1, . . . , fm to denote the function mF~a that satisfies mF~a(i, x) = fi(x)
for all i and x. When we talk of mF being (t, q, l, ε)-secure, the number q of oracle queries is the
total number made across all the oracles.

Now that the multi-oracle families are defined, we can state two lemmas that together prove
Theorem 3.1:

Lemma 3.2 Let F be a function family with domain Dom(F) = B, range Range(F) = {0, 1}k,
and key length k. Assume qF is (t′, q, 1, ε′)-secure and let l ≥ 1. Then F (∗) is (t, q, l, ε)-secure

against prefix-free distinguishers, where

t = t′ − cql · (b + k + log q + Time(F)) ; ε = lε′ .

Here c is a specific, small constant whose value can be determined from the proof.

Lemma 3.3 Let F be a function family with domain Dom(F) = B, range Range(F) = {0, 1}k

and key length k, and let m ≥ 1. Suppose F is (t′, q, 1, ε′)-secure. Then, mF is (t, q, 1, ε)-secure,

where

t = t′ − c · (mk + q · Time(F) + q(k + b) log q) ; ε = mε′ .

We remark that the key quantity here is the distinguishing probability ε, which, in Lemma 3.2
increases by a factor of l, and in Lemma 3.3 further increases by a factor of q. Typically t′ is large
enough that t should be thought of as being approximately t′.

Theorem 3.1 now follows from Lemmas 3.2 and 3.3. The proof of the former is in Appendix A.
The proof of the latter is in Appendix B.

4 Getting rid of prefix-freeness

Our basic construction is valid as long as the queries are prefix-free. Prefix-freeness can be ensured
by appropriately encoding the queries. For example, prepend the length |q| to each query q in an
appropriate way.

However, such encodings require, of the machine evaluating the pseudorandom function, to
perform at least two “passes” of reading the input (e.g., one pass to find the length, and a second
pass to compute the function with the length prepended). Thus the entire input must be stored
in memory (or a buffer) in between the passes. This is a serious drawback when long chunks of
data need to be processed “on the fly”. (An important such scenario is the use of pseudorandom
function families to generate message authentication codes for communicated data).

Here we describe a construction that has practically the same security as prefix-free encoding,
and hardly reduces the efficiency. In particular only one pass is needed. The construction is what
was called F acsc in Section 1.2. Namely given a family F with key length k, construct the family
δ-aF with key length k + δ as follows. Having key (a, d) where a ∈ {0, 1}k and d ∈ {0, 1}δ, let
δ-aFa,d(x) = Fa(xd) for all x, where xd denotes the concatenation of x and d.

10

Now, δ-aF requires only one pass; furthermore, as will be seen, δ can be pretty small. Thus the
efficiency constraint is satisfied. Why is it secure? an informal argument may proceed as follows:
“in order to break δ-aF , one has to generate queries such that, when translated to F , one query will
be a prefix of another. In order for this to happen, the latter query has to contain d as a substring.
Since d is random, this event happens with probability exponentially small in |d| = δ.” However,
this argument assumes that d remains unpredictable by the distinguisher. This unpredictability,
in turn, depends on the security of the construction... thus a more rigorous proof is needed. We
show:

Theorem 4.1 Let F be a function family withDom(F) = B = {0, 1}b, which is is (t′, q, l, ε′)-secure

against prefix-free distinguishers. Then δ-aF is (t, q, l, ε)-secure where

t = t′ − cqTime(F) log δ ; ε = ε′ + blq2−δ.

Here c is a specific small constant determined by the proof.

A proof of Theorem 4.1 appears in Appendix C. Let δ-aF (∗) denote the family constructed from
F (∗) via the above construction. Combining Theorems 3.1 and 4.1 we get:

Corollary 4.2 Let F be a function family with domain Dom(F) = B = {0, 1}b, range Range(F) =
{0, 1}k and key length k. Suppose F is (t′, q, 1, ε′)-secure and let l ≥ 1. Then δ-aF (∗) is (t, q, l, ε)-
secure, where

t = t′ − cq · (k + b + (l + log δ)Time(F) + (k + l + b) log q)

ε = lqε′ + blq2−α.

5 The random-prepend construction

We now show how randomization can improve the security of the cascade construction. Given
family F , define F rcsc

a as follows: on input x choose r
R
← B and return (r, F (∗)(rx)). The gain is

specified in the following theorem. (Here ε(i) denotes the distinguishing probability when i queries
are made.)

Theorem 5.1 Let F be a function family with Dom(F) = B = {0, 1}b, range Range(F) = {0, 1}k,
and key length k. Suppose F is (t′, i, 1, ε′(i))-secure for all i = 1, . . . , q, and let l ≥ 1. Then F rcsc

is (t, q, l, ε)-secure, where

t = t′ − cq(l + k + b) · (Time(F) + log q)

ε = ε′(q) + lqε′(1) + δ

Where δ =
∑q

i=2
qi

2l(i−1) ε
′(i), and c is a specific, small constant whose value can be determined from

the proof.

Compare the ε here to the ε = lqε′ of Theorem 3.1. In the current notation, Theorem 3.1 obtains
ε′ = lqε′(q). But here the first term is a significant improvement; it is only ε′(q). Now the second
term has the lq product, but it is multiplied only by ε′(1), the advantage under a single query,
which is presumably much smaller than ε′(q). The δ term is insignificant. Thus, overall, there is a
significant reduction in ε.

Let us briefly sketch the proof of this theorem. We return to the proof of Lemma 3.2. The
algorithm D2, given a query xj = xj

1 . . . xj
n made by D3 will itself pick rj at random, so that the

11

“effective” query is rjxj
1 . . . xj

n. Now if i = 1 then we end up invoking g1(r
j). Thus at most q queries

are asked of the original family and accounts for the ε′(q) term above. Suppose i ≥ 2. Then, the
maximum number of times any particular gtp is invoked is the maximum number of times any
particular value r turns up in the set {r1, . . . , rq}.

6 Optimality of the analysis

Theorem 3.1 provides a general upper bound on the rate of increase in the advantage ε when
applying the basic cascaded construction. We investigate the optimality of this bound. In other
words, how much can our analysis be improved, without resorting to the particularities of specific
function families?

We formalize this question as follows. We introduce a setting where the function family F
(with domain B, range {0, 1}k and key length k) can be accessed only as a black box. That is,
consider an algorithm for deciding whether a given function is random or chosen from F . Instead
of being given an explicit description of how to compute functions in F , the algorithm can now
only query for the values of functions in F at points of its choice. That is, it can ask two types
of queries: oracle queries, addressed at the function tested for being chosen from the family, and
family-queries, addressed at the functions in the family in question. (Family-queries should specify
a key a and a value x, and are answered by Fa(x).) In this setting, called the black-box-family

setting, we show that there exist function families for which the analysis of Theorem 3.1 is (almost)
optimal. In fact, optimality holds even for a random function family. (Still, we note that other
general bounds may exist that, while not improving our bound in the case of the black-box family
setting, do better with other pseudorandom families.)

We present the result in more detail. Let εF (l, q, τ) denote the highest distinguishing probability
in breaking family F by any algorithm that asks a total of at most τ oracle and family queries,
out of which at most q are (prefix-free) oracle queries, and each oracle query consists of at most l
B-blocks. In this language, Theorem 3.1 implies that

εF (∗)(l, q, τ) ≤ lq · εF (1, q, τ + O(l · q)) (1)

for any F . We proceed in two steps as follows. First we show a simple and general distinguishing
algorithm demonstrating that

c(l − 1)q2

2k
≤ εF (∗)(l, q, q) (2)

for some c > 0 and any F . This algorithm works even in the black-box-family setting described
above. That is, it uses an intrinsic property of the cascade construction and requires no knowledge
of the underlying family F .

Inequality (2) by itself does not yet demonstrate optimality of (1). The following additional ob-
servation is needed. Consider the family RF of 2k functions chosen at random from Maps(B, {0, 1}k).
It can be seen, in a straightforward way, that in the black-box-family setting

εRF (1, q, τ) ≤
c′ · τ

2k
(3)

for some c′ > 0. (Here the probabilities are taken also on the choices of the functions in RF .)
Altogether we now have

1

c̃
· (l − 1)q · εRF (1, q, q) ≤ εRF (∗)(l, q, q) (4)

12

and

εRF (∗)(l, q, q) ≤ c̃ · lq · εRF (1, q, O(lq)). (5)

for some c̃ > 0. (Inequalities (3) and (2) imply (4). Inequality (1) implies (5)).

The distinguishing algorithm. The idea is to capitalize on the difference between the prob-
abilities of collisions in random functions and in functions obtained via the cascade construction.
We will ask q queries that differ only in the first block out of the l blocks. (I.e, we choose x2, . . . , xl

and a1, . . . , aq where each xi, ai ∈ B, and ask queries m1, . . . , mq where mj = aj , x2, . . . , xl.)
Output ‘cascaded’ iff any two queries resulted in the same answer. For the analysis, note that

if the oracle is a random function, then the probability of such collisions is O(q2

2k). In a cas-
caded construction, however, the probability of collisions is much higher: consider two queries
m = a, x2, . . . , xl and m′ = a′, x2, . . . , xl. If F (∗)(a, x2, . . . , xk) = F (∗)(a′, x2 . . . , xk) for any k ≤ l,
then also F (∗)(m) = F (∗)(m′). The probability of collision after k blocks, given that no collision

occurred yet, is Ω(q2

2k). Thus collisions happen with probability Ω(lq2

2k). Inequality (1) follows.
We remark that this idea can be extended in a straightforward way to breaking message au-

thentication codes (see [6] for definitions) based on the cascade construction of pseudorandom
functions. We demonstrate the technique on messages of two blocks: first choose an arbitrary
block b ∈ B. Next, keep asking MACS for messages of the form aib where the ai’s are random
blocks, until ai 6= aj are found such that MAC(aib) =MAC(ajb). Now, with significant probability

MAC(ai) =MAC(aj) as well. This is exploited as follows: Choose c ∈ B, ask for m
def
=MAC(aic),

and output the message-tag pair (ajc, m). If indeed MAC(ai) =MAC(aj) then also MAC(ajc) = m.
(We note that this attack applies to a variety of well known MAC schemes, including DES-CBC-
MAC. A similar attack was independently reported by [PV].)

Acknowledgments

We thank Moni Naor for helpful comments.

References

[1] W. Aiello and R. Venkatesan, “Foiling birthday attacks in length doubling transfor-
mations,” Advances in Cryptology – Eurocrypt 96 Proceedings, Lecture Notes in Computer
Science Vol. 1070, U. Maurer ed., Springer-Verlag, 1996.

[2] ANSI X3.106, “American National Standard for Information Systems — Data Encryption
Algorithm — Modes of Operation,” American National Standards Institute, 1983.

[3] M. Bellare, R. Canetti and H. Krawczyk, “Keying hash functions for message au-
thentication,” Advances in Cryptology – Crypto 96 Proceedings, Lecture Notes in Computer
Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

[4] M. Bellare, R. Canetti and H. Krawczyk, “Pseudorandom functions revisited: The
cascade construction and its concrete security,” Proceedings of the 37th Symposium on Foun-

dations of Computer Science, IEEE, 1996.

[5] M. Bellare, R. Guérin and P. Rogaway, “XOR MACs: New methods for message
authentication using finite pseudorandom functions,” Advances in Cryptology – Crypto 95

13

Proceedings, Lecture Notes in Computer Science Vol. 963, D. Coppersmith ed., Springer-
Verlag, 1995.

[6] M. Bellare, J. Kilian and P. Rogaway, “The security of cipher block chaining,” Ad-

vances in Cryptology – Crypto 94 Proceedings, Lecture Notes in Computer Science Vol. 839,
Y. Desmedt ed., Springer-Verlag, 1994.

[7] M. Bellare and P. Rogaway, “Entity authentication and key distribution,” Advances in

Cryptology – Crypto 93 Proceedings, Lecture Notes in Computer Science Vol. 773, D. Stinson
ed., Springer-Verlag, 1993.

[8] L. Carter and M. Wegman, “Universal Hash Functions,” J. of Computer and System
Science 18, 1979, pp. 143–154.

[9] I. Damg̊ard, “A design principle for hash functions,” Advances in Cryptology – Crypto 89
Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag,
1989.

[10] O. Goldreich, S. Goldwasser and S. Micali, “How to construct random functions,”
Journal of the ACM, Vol. 33, No. 4, 210–217, (1986).

[11] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and R. Zuckerman, D.,
“Security Preserving Amplification of Hardness,” Proceedings of the 31st Symposium on

Foundations of Computer Science, IEEE, 1990.

[12] J. Håstad, R. Impagliazzo, L. Levin and M. Luby, “Construction of a pseudo-random
generator from any one-way function,” Manuscript. Earlier versions in STOC 89 and STOC 90.

[13] A. Herzberg and M. Luby, “Public Randomness in Cryptography.” Advances in Cryptol-

ogy – Crypto 92 Proceedings, Lecture Notes in Computer Science Vol. 740, E. Brickell ed.,
Springer-Verlag, 1992.

[14] M. Luby and C. Rackoff, “How to construct pseudorandom permutations from pseudo-
random functions,” SIAM J. Computation, Vol. 17, No. 2, April 1988.

[15] R. Merkle, “One way hash functions and DES,” Advances in Cryptology – Crypto 89
Proceedings, Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag,
1989. (Based on unpublished paper from 1979 and his Ph. D thesis, Stanford, 1979).

[16] M. Naor and O. Reingold, “Synthesizers and their application to the parallel construc-
tion of pseudo-random functions,” Proceedings of the 36th Symposium on Foundations of

Computer Science, IEEE, 1995.

[PV] B. Preneel and P. van Oorschot, “MD-x MAC and building fast MACs from hash
functions,” Advances in Cryptology – Crypto 95 Proceedings, Lecture Notes in Computer
Science Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995.

[17] R. Rivest, “The MD5 message-digest algorithm,” IETF Network Working Group, RFC 1321,
April 1992.

[18] P. Rogaway and D. Coppersmith, “A software optimized encryption algorithm,” Work-
shop on software encryption, Cambridge, 1993.

14

[19] FIPS 180, “Secure Hash Standard”, Federal Information Processing Standard (FIPS), Pub-
lication 180, National Institute of Standards and Technology, US Department of Commerce,
Washington D.C., May 1993.

[20] M. Wegman and L. Carter, “New Hash Functions and Their Use in Authentication and
Set Equality”, JCSS Vol. 22, 1981, pp. 265–279.

A Proof of Lemma 3.2

Let qR
def
= Maps([q] × B, {0, 1}k), and let R(l) def

= Maps(B≤l, {0, 1}k). We construct an algorithm
U : given black-box access to a prefix-free distinguisher D3 that asks at most q queries each of

at most l blocks and has AdvD3(F
(l), Rl) = ε3, U defines a distinguisher D2

def
= UD3 that has

ε2
def
= AdvD2(qF, qR) ≥ ε3/l. To avoid confusion, we refer to D3 as the black-box of U , while the

term oracle is reserved to the input function to be decided upon.

Construction of D2 = UD3. Given oracles g1, . . . , gm : B≤l → {0, 1}k, pick i
R
← [l] at random

and start running D3. The latter requires an oracle to a function g : B≤l → {0, 1}k. D2 will supply
answers to the oracle queries of D3. It begins by initializing a counters t to 0. The answer to the
jth oracle query xj

1 . . . xj
n ∈ B≤l is computed follows.

(1) If n ≤ i− 1 then pick at random an i-bit string aj and return aj .

(2) Else (namely n ≥ i)

(2.1) If xj
1 . . . xj

i−1 6= xp
1 . . . xp

i−1 for all p < j then increment t and let cj = t. Else let cj = cp

where p is such that xj
1 . . . xj

i−1 = xp
1 . . . xp

i−1.

(2.2) Using the oracle for g1, . . . , gq compute aj = gcj (x
j
i). Answer F (l)(aj , xj

i+1 . . . xj
n) to

D3.

Finally, output whatever D3 outputs.

Analysis of D2 = UD3. We relate ε2 to ε3 via a hybrids argument, as follows. Define a sequence
of hybrid function families. With each i ∈ {0, 1, . . . , l} and each function g : B≤i → {0, 1}k we
associate a function hg

i : B≤l → {0, 1}k, defined as follows for any x1 . . . xn ∈ B≤l.

hg
i (x1 . . . xn)

def
=

{

g(x1 . . . xn) if n ≤ i

F (∗)(g(x1 . . . xi), xi+1 . . . xn) otherwise.

Define the family Hi
def
= {hg

i : g ∈ Maps(B≤i, {0, 1}k)}. We now define

Pi
def
= Pr

f
R
←Hi

[

Df
3 = 1

]

.

Claim A.1 H0 = F (l) and Hl = R′. In particular:

ε3 = AdvD3(R
(l), F (∗))

= Pr
f

R
←R′

[

Df
3 = 1

]

− Pr
f

R
←F (l)

[

Df
3 = 1

]

= Pl − P0 . (6)

Proof: If i = 0 then x1 . . . xi is the empty string λ. Thus hg
0 is F

(l)
a where a = g(λ). Since g is

random, a is uniformly distributed. This means H0 is indeed F (l). If i = l then hg
l is just g itself,

so Hl = R′. Equation 6 of course follows.

15

Next we show that if the oracle of D2 is a random element of qR then D3 “sees” an oracle chosen from
Hi. Similarly if the oracle of D2 is a random element of qF then D3 “sees” an oracle chosen from
Hi−1. More precisely, let D2(i) denote algorithm D2 with a fixed i ∈ [l]. Consider four experiments.

Experiment 1 (resp 2) is that of running Dg1,...,gq(i) with g1, . . . , gq
R
← R (resp. g1, . . . , gq

R
← F).

Experiment 3 (resp. 4) consists of running Dh
3 with h

R
← Hi (resp. Hi−1). We want to claim that

Experiments 1 and 3 are “equivalent” in the sense that what D3 “sees” at any point is the same
(ie. identically distributed) in these two experiments. Similarly for Experiments 2 and 4.

For this purpose, denote by Xs the random variable whose value is the s-th oracle query. Let
Ys denote the answer that is given to Xs. We now fix a particular sequence of queries x1, . . . , xj

and answers y1, . . . , yj−1. For t = 1, 2, 3, 4 we let Distribution t refer to the distribution given by
Experiment t conditioned on the events Xs = xs for s = 1, . . . , j and Ys = ys for s = 1, . . . , j −
1. (Namely, D3 has posed questions x1, . . . , xj−1 and obtained answers y1, . . . , yj−1; it has also
posed question xj but as yet got back no answer.) We write Prt [·] for the probability under this
(conditional) distribution. Now the above “equivalence” claims amount to the following.

Claim A.2 For any k bit string y—

(1) Pr1 [Ys = y] = Pr3 [Ys = y]

(2) Pr2 [Ys = y] = Pr4 [Ys = y].

Proof: First we prove Part (1). Take the case that the number of blocks n in the current query
xj = xj

1 . . . xj
n is at most i−1. The distinguisher D3 is prefix-free so in particular xj does not occur

as a previous query. So the value g(xj) returned in Experiment 3 is a new random k bit string,
independent of all previous choices. But that is exactly what is returned in Experiment 1. So the
claim is true in this case. We now move on to the more interesting case, namely n ≥ i.

In this case, in both Experiments 1 and 3, the answer returned to query xj = xj
1 . . . xj

n is computed
by first computing, as a certain function of xj

1, . . . , x
j
i , a value we denote Aj , and using Aj as a key to

return F (∗)(Aj , x
j
i+1 . . . xj

n). It suffices to show that the random variable Aj is identically distributed
in the two experiments. So now let us look at how it is computed in the two experiments.

In Experiment 3, Aj = g(xj
1 . . . xj

i). This means that if the set T = { p < j : xj
1 . . . xj

i = xp
1 . . . xp

i }
is non-empty then Aj = Ap for all p ∈ T . Otherwise Aj is uniformly and independently distributed.

We now argue the same is true in Experiment 1. Let S = {p < j : xj
1 . . . xj

i−1 = xp
1 . . . xp

i−1 }. First,
our construction of D2 guarantees that if S 6= ∅ then there is a single value, which we here denote
v, such that cp = v for all p ∈ S. Now,

If S 6= ∅ then we return gv(x
j
i). If T 6= ∅ then gv(x

j
i) = Ap for all p ∈ T . Else (T = ∅), gv(x

j
i)

is a uniformly distributed k bit string because gv has never before been invoked on xj
i .

If S = ∅ then we return the value on xj
i of a random function gt which has never before been

invoked. So this is a uniformly distributed k bit string.

We now turn to proving Part (2). The case n ≤ i − 1 is identical to Part (1). Assume n ≥ i,
and consider the j-th query xj

1 . . . xj
n. Let Aj be the same random variable as above. But now

in both experiments Aj is computed via the family F . Let Bj be the random variable such that

Aj = F (Bj , x
j
i). We show that, as long as the query xj

1 . . . xj
i−1 is not made, Bj is identically

distributed in the two experiments. (If xj
1 . . . xj

i−1 is queried then the two experiments differ: Let

y denote the answer D3 gets to query xj
1 . . . xj

i−1. In Experiment 4 Bj = y, whereas in Experiment
2 Bj and y are independently (and uniformly) distributed values in {0, 1}k.)

Let the set S and the value v be as before. In Experiment 4, Bj = g(xj
1 . . . xj

i−1). This is equal to

16

Bp for all p ∈ S if S 6= ∅, and otherwise is uniformly distributed. We argue that the same it true
for Experiment 2. Recall that g1, . . . , gm are now drawn randomly from F . Accordingly let Key(i)
be the random variable whose value is the key of gi; ie. gi = FKey(i). Now

If S 6= ∅ then we return gv(x
j
i). Thus Bj = Key(v). Thus Bj = Bp for all p ∈ S.

If S = ∅ then we return the value on xj
i of a random function gt which has never before been

invoked. So Bj = Key(t) is a uniformly distributed k bit string.

This concludes the proof.

Concluding the proof given Claim A.2. Repeated application of Part (1) of the above implies
that the output distribution of D2 in Experiment 1 is equal to the output distribution of D3 in
Experiment 3, that is to Pi. Similarly for Experiments 2 and 4 using Part (2) of the above. That is

Pr
h

R
←qR

[

Dh
2 (i) = 1

]

= Pi

Pr
h

R
←qF

[

Dh
2 (i) = 1

]

= Pi−1 .

Now recall that D2 picks i
R
← [m]. Thus:

Pr
h

R
←qR

[

Dh
2 = 1

]

= (1/l) ·
∑ l

i=1 Pi (7)

Pr
h

R
←qF

[

Dh
2 = 1

]

= (1/l) ·
∑ l

i=1 Pi−1 . (8)

So ε2 = AdvD2(qF, qR) = (1/l) · (Pl − P0) = (1/l) · ε3.

B Proof of Lemma 3.3

Also here we use a hybrids argument. Let R
def
= Maps(B, {0, 1}k), and let mR

def
= Maps([m] ×

B, {0, 1}k). We construct an algorithm U : given black-box access to a prefix-free distinguisher D2

with ε2
def
= AdvD2(mF, mR), U defines a distinguisher D1

def
= UD2 with ε1

def
= AdvD1(qF, qR) ≥ ε2/m.

Algorithm D1, given oracle g, first picks at random an integer i
R
← [m]. Next it proceeds,

informally, as follows. It “picks,” randomly and independently, functions g1, . . . , gi−1 from F . It
“sets” gi to its oracle function g. It also “picks random functions” gi+1, . . . , gm from R. It now
runs D2 with oracles g1, . . . , gm: when the query is to oracle j it answers via gj , invoking its oracle
when j = i and otherwise using one of its chosen functions. It outputs whatever this computation
outputs.

To pick g1, . . . , gi−1 from F meant to pick randomly i − 1 keys a1, . . . , ai−1
R
← {0, 1}k and

reply to query (j, x), for j < i, by F (aj , x). Furthermore, D1 of course can’t really “pick random
functions”. What it does is that each time D2 asks a query (j, x) with j > i it picks a random k
bit string if (j, x) was not asked before, returns it, and also records it; else it has already picked a
reply so it looks up its record and returns this reply.

In the worst case D1 still has to make q1 = q2 queries to its oracle g (although on the average
it is q2/m). Its running time t1 is that of D2 plus the time to pick the extra keys, which is
O(mk), and to record and respond to queries, which involves computation of Faj

and comes to
O(q1 ·Time(F) + q1k log q1). Altogether this comes to t1 = t2 + c · (mk + q1 ·Time(F) + q1k log q1).

For i = 0, . . . , m let Gi = F ×· · ·×F ×R×· · ·×R where there are i copies of F and m− i copies
of R. To pick a vector (g1, . . . , gm) of functions at random from this space means the obvious thing,

17

namely to pick gj at random from F for j = 1, . . . , i and at random from R for j = i + 1, . . . , m.
We let

Pi = Pr
(g1,...,gm)

R
←Gi

[Dg1,...,gm

2 = 1]

be the probability that D2 outputs one when its oracles are chosen randomly from Gi. Let D1(i)
denote the operation of D1 with fixed i. Now note that for i = 1, . . . , m:

Pr
g

R
←R

[Dg(i) = 1] = Pi−1

Pr
g

R
←F

[Dg(i) = 1] = Pi .

Thus

Pr
g

R
←R

[Dg
1 = 1] = (1/m) ·

∑m
j=i Pj−1

Pr
g

R
←F

[Dg
1 = 1] = (1/m) ·

∑m
j=1 Pj .

Thus the advantage of D1 is:

AdvD1(F, R) = Pr
g

R
←F

[Dg
1 = 1]− Pr

g
R
←R

[Dg
1 = 1]

= (1/m) · (Pm − P0) .

However now observe that

Pm = Pr
g1,...,gm

R
←F

[Dg1,...,gm

2 = 1]

= Pr
g

R
←mF

[Dg
2 = 1]

and

P0 = Pr
g1,...,gm

R
←R

[Dg1,...,gm

2 = 1]

= Pr
g

R
←mR

[Dg
2 = 1] .

Thus AdvD1(F, R) ≥ (1/m) · AdvD2(mF, mR) = ε2/m as required.

C Proof of Theorem 4.1

Let X and Y be the domain and range of the family F , and let R
def
= Maps(X, Y). We construct an

algorithm U : given black-box access to a prefix-free distinguisher D4 with ε4
def
= AdvD4(δ-aF, R),

U defines a distinguisher D3
def
= UD4 with ε3

def
= AdvD3(F, R) ≥ ε4 − blq2−δ.

Distinguisher D3, with oracle access to a function g (where g is chosen at random either from

F or from R), will proceed as follows. First pick d
R
← {0, 1}δ. Next, run D4 where each query x

of D4 is answered by g(xd). If any of the queries of D4 contains d as a substring then output ‘1’
(meaning ‘g is pseudorandom’). Otherwise, output whatever D4 outputs.

For the analysis, let

P4,r = Pr
g

R
←R

[Dg
4 = 1]

P4,f = Pr
g

R
←δ-aF

[Dg
4 = 1]

P3,r = Pr
g

R
←R

[Dg
3 = 1]

P3,f = Pr
g

R
←F

[Dg
3 = 1] .

18

Now, if g, the oracle of D3, is taken at random from R, then the answers given by D3 to D4’s queries
are those of a random function. That is, any two different queries are answered by independently
chosen values from Y . Furthermore, if g

R
← F then the answers given by D3 to D4’s queries are

those of a function g
R
← δ-aF . Thus,

P4,f − P4,r ≥ ε4.

When g
R
← R, the probability that any one of D4’s queries contains d as a substring is at most the

probability that a random value in {0, 1}δ appears as a substring in a given set of q strings each
of length bl. This probability is less than blq2−δ. Thus, P3,r ≤ P4,r + blq2−δ. On the other hand,
whenever D4 outputs ‘1’, D3 outputs ‘1’ as well. Thus, P3,f ≥ P4,f. We conclude that

ε3 ≥ P3,f − P3,r ≥ P4,f − P4,r + lq2−α ≥ ε4 − blq2−δ.

The other parameters of the reduction can be easily verified.

19

