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1 Introduction

We begin by introducing the notion of multi-recipient encryption schemes and recalling a motivating
example. We then proceed to discuss our contributions.

1.1 Multi-recipient encryption schemes

The setting of standard encryption is the following. A receiver has generated for itself a secret
decryption key sk and corresponding public encryption key pk.1 The sender applies an encryption
algorithm E to pk and a message M to obtain a ciphertext C. The receiver can apply to sk and C
a decryption algorithm that recovers M .

The setting of multi-recipient encryption is the following. There are n receivers, numbered
1, . . . , n. Each receiver i has generated for itself a secret decryption key ski and corresponding
public encryption key pki. The sender now applies a multi-recipient encryption algorithm E to
pk1, . . . ,pkn and messages M1, . . . ,Mn to obtain ciphertexts C1, . . . , Cn. Each receiver i can apply
to ski and Ci a decryption algorithm that recovers Mi.

We refer to the primitive enabling this type of encryption as a multi-recipient encryption scheme
(MRES). It is worth noting that its syntax differs from that of a standard encryption scheme only
in that the encryption algorithm of the latter is replaced by a multi-recipient encryption algorithm.
Key-generation and decryption are just like in a standard scheme.

There is of course a naive, or obvious way to build a MRES: for each i let Ci be the result
of applying the encryption algorithm E of a standard scheme to pki,Mi. However, viewing the
task of producing multiple ciphertexts as being done by a single process allows one to explore
reductions in cost that might arise from batching. To exemplify this let us consider an example
due to Kurosawa [Ku].

Suppose receiver i has secret key xi ∈ Zq and public key gxi , operations being in some global,
fixed group of order q. The naive El Gamal based MRES is the following: Pick r1, . . . , rn inde-
pendently at random from Zq and let Ci = (gri , gxiri ·Mi) for 1 ≤ i ≤ n. Instead, Kurosawa [Ku]
suggests that one pick just one r at random from Zq and set Ci = (gr, gxir ·Mi) for 1 ≤ i ≤ n.

Kurosawa points out that his MRES brings two benefits compared to the naive one. First, it
results in bandwidth reduction in the case that the ciphertexts are being broadcast or multi-cast
by the sender, since in that case the transmission would be C = (gr, gx1r · M1, . . . , g

xnr · Mn),
which is about half as many bits as required to transmit the ciphertexts computed by the naive
method. Second, his suggested scheme (approximately) halves the computational cost (number of
exponentiations) for encryption as compared to the naive method. Kurosawa also notes a MRES
derived in a similar way from the Cramer-Shoup encryption scheme [CrSh].

1.2 Security notions for MRESs

The above example shows that there are MRESs that are more efficient than the naive one. But
are they secure? The first step towards answering this important question is to ask what “secure”
means in this context. That is, we need appropriate models and definitions of security, in particular
extensions of standard definitions such as IND-CPA and IND-CCA to the MRES context.

First steps towards this end were taken by Kurosawa, who proposed definitions that are simple
adaptations of the definitions of privacy for standard encryption schemes in the multi-user setting
as given in [BPS, BBM]. The first contribution of our work is to point to weaknesses in Kurosawa’s

1 Let us restrict our attention for the moment to asymmetric schemes. We turn to symmetric schemes later.
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model and provide new definitions of security. Full definitions are in Section 4. Here we expand
briefly on some of the underlying issues.

Kurosawa’s model assumes the adversary is an outsider. But the adversary might be one of
the recipients, enabling it to mount what we call insider attacks. As a legitimate recipient it could
decrypt a received ciphertext, and might then obtain the coins underlying that ciphertext. This is
not a concern if, as in the setting of [BPS, BBM], encryptions to other recipients use independent
coins, but ciphertexts created by a multi-recipient encryption algorithm might be based on related
coins. So in the latter case, possession of the coins underlying a ciphertext sent to one recipient
might enable the adversary to compromise the security of ciphertexts sent to other, legitimate
recipients.

Our model takes this into account by allowing the adversary to corrupt some fraction of the
users and thereby come into possession of their decryption keys. To illustrate the power of insider
attacks, we present in Section 4 a variant of Kurosawa’s scheme that is provably secure in his model
but insecure in our model.

A stronger form of insider attack that one could consider is to allow the adversary to specify the
(public) encryption keys of the corrupted recipients. (In such a rogue-key attack, it would register
public keys created as a function of public keys of other, legitimate users.) Such attacks can be
extremely damaging, as we illustrate in Section 4 with a rogue-key attack that breaks Kurosawa’s
above-mentioned El Gamal based MRES. It is important to be aware of such attacks, but it is
for such reasons that certification authorities require (or should require) that a user registering a
public encryption key prove knowledge of the corresponding secret decryption key. (In that case, our
attack fails.) Accordingly, our model does allow rogue-key attacks, but does not give the adversary
complete freedom in specifying encryption keys of corrupted recipients. Rather, we require that it
may do so only if it also provides a valid corresponding decryption key.

1.3 Randomness re-using MRESs and the reproducibility theorem

Having defined security for MRESs, we want to assess the security of Kurosawa’s schemes and also
to find new, secure MRESs that provide cost reductions compared to the naive ones. Rather than
proceed in an ad hoc manner, we provide general paradigms towards these ends. We introduce a
subclass of MRESs that include all Kurosawa’s MRESs and provide a simple way to test whether
or not a MRES from this subclass is secure. Let us first expand on these items and then turn to
applications.

Randomness re-using MRESs. Consider a multi-recipient encryption algorithm that works as
follows: given messages M1, . . . ,Mn and keys pk1, . . . ,pkn, it picks at random coins r for a single
application of the encryption algorithm E of an underlying standard encryption scheme, and then
outputs (C1, . . . , Cn), where Ci = E(pki,Mi; r) is the encryption of message Mi under key pki

and coins r (1 ≤ i ≤ n). The corresponding MRES is called the randomness re-using MRES
(RR-MRES) associated to the underlying standard encryption scheme.

Note that Kurosawa’s El Gamal based MRES is the RR-MRES associated to the El Gamal
scheme, and his Cramer-Shoup based MRES is the RR-MRES associated to the Cramer-Shoup
encryption scheme. Later we will see other examples that offer cost benefits. RR-MRESs are the
subclass of MRESs on which we focus.

The reproducibility test and theorem. Many RR-MRESs offer performance benefits, but
not all are secure. (We illustrate the latter in Section 5 by showing how H̊astad’s attacks [H̊a] can
be exploited to break RR-MRESs based on RSA embedding schemes such as PKCS#1.) We are
interested in determining which RR-MRESs are secure MRESs. Direct case by case analyses of
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different schemes is possible but would be prohibitive. Instead, we introduce a paradigm based on
which one can determine whether a standard encryption scheme permits secure randomness re-use
(meaning the associated RR-MRES is a secure MRES) based on existing security results about the
underlying standard encryption scheme. It takes two parts: definition of a property of encryption
schemes called reproducibility, and a theorem, called the reproducibility theorem. The latter says
that if a standard encryption scheme is reproducible and is IND-CPA (resp. IND-CCA) in the
standard, single-receiver setting, then the corresponding RR-MRES is also IND-CPA (resp. IND-
CCA) with respect to our notions of security for such schemes. It is usually easy to check whether a
given encryption scheme is reproducible, so numerous applications follow. The approach and result
hold for both asymmetric and symmetric encryption.

Reproducibility itself is quite simply explained. Considering first the case where the standard
encryption scheme is asymmetric, let pk1,pk2 be public encryption keys, and let C1 = Epk1

(M1, r)
be a ciphertext of a message M1 created under key pk1 based on random string r. We say that the
encryption scheme is reproducible if, given pk1,pk2, C1, any message M2, and the secret decryption
key sk2 corresponding to pk2, there is a polynomial time reproduction algorithm that returns
the ciphertext C2 = Epk2

(M2, r). The symmetric case is analogous except that the reproduction
algorithm is denied the first encryption key because this is also the decryption key.

1.4 Secure and efficient MRESs

We now use the above to identify various secure MRESs that offer some cost benefits. These
applications cover asymmetric, symmetric and hybrid schemes.

El Gamal and Cramer-Shoup. The associated RR-MRESs are those of Kurosawa [Ku], of
interest because, as noted previously, they permit reductions in both computation and broadcast
ciphertext size. Kurosawa proved these MRESs secure under the DDH (Decisional Diffie-Hellman)
assumption but, as noted above, his target notion of security is weak. Thus one needs to ask
whether the schemes remain secure under our stronger notion of security.

We show that the base El Gamal and Cramer-Shoup schemes are both reproducible. Our
reproducibility theorem then implies that indeed, Kurosawa’s MRESs remain secure with respect
to our more stringent security notions.

We then extend these results by providing reductions of improved concrete security. These
improvements do not use the reproducibility theorem, instead directly exploiting the reproducibility
property of the base schemes and, as in [BBM, Ku], using self-reducibility properties of the DDH
problem [St, NR, Sh].

CBC encryption. A novel element of our work compared to [Ku, BBM, BPS] is consideration of
the symmetric setting. We show that reproducibility and the corresponding theorem apply in this
setting too.

We consider CBC encryption with random IV, based on a given block cipher. The IV is the
randomness underlying the encryption. Randomness re-use is interesting in this context because it
means that CBC encrypted ciphertexts to different receivers can use the same IV, thereby yielding
savings in bandwidth for broadcast. If the message is one block long then re-using randomness
allows to reduce the length of the broadcast ciphertext by 50%. With regard to security, we show
that the base CBC encryption scheme is reproducible. Since it is known to be IND-CPA assuming
the block cipher is a pseudorandom permutation [BDJR], the reproducibility theorem implies that
the randomness re-using CBC MRES is IND-CPA under the same assumption.

DHIES. This is a Diffie-Hellman based asymmetric encryption scheme adopted by draft stan-
dards ANSI X9.63EC and IEEE P1363a. It has El Gamal-like cost in public-key operations while

5



achieving Cramer-Shoup-like security (IND-CCA), although the proof [ABR] relies on significantly
stronger assumptions than the DDH assumption used in [CrSh]. Unlike El Gamal and Cramer-
Shoup it does not assume the plaintext is a group element, but handles arbitrary plaintext strings
via a hybrid construction involving a symmetric encryption scheme. Randomness re-use for this
scheme is attractive since it results in bandwidth and computational savings in various applications
just as for the El Gamal scheme, so it is important to assess security.

Our analysis exploits both asymmetric and symmetric reproducibility. We show that if the
underlying symmetric scheme is reproducible then so is the resulting (asymmetric) DHIES scheme.
In particular, if the symmetric encryption scheme is CBC (the most popular choice in practice) then
DHIES is reproducible. As usual, our reproducibility theorem then implies that the corresponding
randomness re-using multi-recipient scheme is IND-CCA under the assumptions used to establish
that DHIES is IND-CCA.

Pairings-based escrow El Gamal. Boneh and Franklin [BF] introduced an El Gamal like
scheme with global escrow capabilities, based on the Weil pairing. We show that this scheme is
reproducible. Our reproducibility theorem coupled with the result of [BF] then implies that the
corresponding randomness re-using multi-recipient scheme is IND-CPA in the random oracle model
under the Bilinear Diffie-Hellman assumption. Our reproducibility algorithm exploits properties of
the Weil pairing. Again, as for El Gamal scheme, re-using randomness permits computational and
bandwidth savings.

1.5 Minimal assumptions for secure randomness re-use

A basic theoretical question is: under what assumptions can one prove the existence of a stan-
dard encryption scheme whose associated RR-MRES is a secure MRES? We determine minimal
assumptions. We show that there exists a standard encryption scheme whose associated RR-MRES
is IND-CPA (resp. IND-CCA) secure if and only if there exists a standard IND-CPA (resp. IND-
CCA) secure encryption scheme. These results, detailed in Section 8, are obtained by transforming
a given standard encryption scheme into another standard encryption scheme that permits secure
randomness re-use. The transformation uses a pseudorandom function and is simple and efficient.
However, one should note that the resulting RR-MRES does not yield savings in bandwidth for
broadcast encryption.

1.6 Discussion and related work

On re-using randomness. At first glance, re-using coins for different encryptions sounds quite
dangerous. This is because of the well-known fact that privacy in the sense of IND-CPA is not
met if two messages are encrypted using the same coins under the same key. (An attacker can
tell whether or not the messages are the same by seeing whether or not the ciphertexts are the
same.) However, in a RR-MRES, the different encryptions, although using the same coins, are
under different keys. Our results indicate that in this case, security is possible. We consider this
an interesting facet of the role of randomness in encryption.

Using PRGs. A natural question is, instead of re-using randomness, why not use pseudorandom
bit generators? Indeed, randomness generation costs for encryption can be reduced by picking a
single, short random seed s and applying a pseudorandom bit generator G to obtain a sequence
r1, r2, . . . of strings to play the role of coins for successive encryptions. If G is cryptographically
secure in the sense of [BM, Y], then it is easy to see that the resulting encryption preserves semantic
security, not only for encryption to different receivers, but even for multiple encryptions to a single
receiver.
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However, randomness re-use permits applications that usage of pseudorandomness does not
permit. A case in point is the efficiency improvements discussed above. Furthermore, randomness
re-use is attractive even in the absence of such applications because it is simple and efficient. A
hardware implementation, for example, would benefit from not having to spend real-estate on
implementation of a pseudorandom bit generator.

Relation to broadcast encryption. MRESs and broadcast encryption schemes (BESs) [FN]
differ as follows:
• In a BES, the key generation process may be executed by the sender and yields a sequence

of possibly related encryption keys, one per recipient, while in a MRES, key generation is like
that of a standard scheme, meaning each recipient produces (and registers) its own encryption
keys for its own use.

• In a BES, the encryption process takes as input a sequence of encryption keys and a single
message and produces a single ciphertext C called a broadcast ciphertext, while in a MRES,
the encryption process takes as input a sequence of encryption keys and a sequence of messages,
and produces a corresponding sequence of ciphertexts (C[1], . . . ,C[n]) one for each recipient.

Perhaps more succinctly, an MRES is simply a way to mimic, or duplicate, the functionality of a
standard encryption scheme while attempting to use batching to obtain some cost benefits, while
broadcast encryption has a different goal. However, any MRES can be transformed into a natural
associated BES as follows. Recipients are given independently generated keys, and message M is
encrypted by running the multi-recipient encryption algorithm with all messages set to M to yield a
vector which plays the role of the broadcast ciphertext and is sent to all recipients. Each recipient
extracts the component of the vector pertinent to it and decrypts this to obtain the broadcast
message.

2 Asymmetric encryption schemes

We recall the standard definitions, following [BBM] in extending the usual syntax to allow a common
key generation algorithm. Thus an asymmetric (public-key) encryption scheme AE = (G,K, E , D)
consists of four algorithms:
• The randomized common-key generation algorithm G takes as input a security parameter k ∈ N

and, in poly(k) time, returns a common key I; we write I
R← G(k).

• The randomized key generation algorithm K takes as input the common key I and, in poly(k)-
time, returns a pair (pk, sk) consisting of a public key and a corresponding secret key; we write
(pk, sk) R← K(I).

• The randomized encryption algorithm E takes input a public key pk and a plaintext M and,
in poly(k)-time, returns a ciphertext; we write C

R← Epk(M).
• The deterministic, decryption algorithm D takes the secret key sk and a ciphertext C to return

in poly(k)-time the corresponding plaintext or a special symbol ⊥ indicating that the ciphertext
was invalid; we write x← Dsk(C).

Associated to each common key I is a message space MsgSp(I) from which M is allowed to be
drawn. We require that Dsk(Epk(M)) = M for all M ∈MsgSp(I). We will use the terms “plaintext”
and “message” interchangeably.

In our context it is important to make explicit the random choices underlying the randomized
encryption algorithm E . The notation C

R← Epk(M) is thus shorthand for r
R← CoinsE(I,pk) ; C ←

Epk(M ; r), where CoinsE (I,pk) is a set from which E draws its coins.
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As an example to illustrate the addition of a common-key generation algorithm to the usual
syntax, consider a Diffie-Hellman based scheme. Here the common key I could include a description
of a group and a generator for this group. Different parties may have different keys, but the
algorithms are all in the same group.

We recall the standard notion of security of asymmetric encryption schemes in the sense of
indistinguishability. We consider both chosen-plaintext and chosen-ciphertext attacks. The ideas
are from [GoMi, MRS, RS].

Definition 2.1 [Indistinguishability of ciphertexts] Let AE = (G,K, E ,D) be a public-key
encryption scheme. Let Acpa, Acca be adversaries such that the latter has access to an oracle,
Dsk(·). Let I be some initial information string. For b = 0, 1 define the experiments

Experiment Expcpa−b
AE,Acpa

(k)

I
R← G(k) ; (pk, sk) R← K(I)

(m0,m1, st)← Acpa(find, I,pk)
C

R← Epk(mb)
d← Acpa(guess, C, st)
Return d

Experiment Expcca−b
AE ,Acca

(k)

I
R← G(k) ; (pk, sk) R← K(I)

(m0,m1, st)← A
Dsk(·)
cca (find, I,pk)

C
R← Er

pk(mb)

d← A
Dsk(·)
cca (guess, C, st)

Return d

It is mandated that |m0| = |m1| above. We require that Acca does not make oracle query C in the
guess stage. For atk ∈ {cpa, cca} we define the advantages of the adversaries via as follows:

Advatk
AE,Aatk

(k) = Pr
[
Expatk−0

AE,Aatk
(k) = 0

]
− Pr

[
Expatk−1

AE,Aatk
(k) = 0

]
.

The scheme AE is said to be polynomially-secure against chosen-plaintext attack or IND-CPA secure
(resp. chosen-ciphertext attack or IND-CCA secure) if the function Advcpa

AE,Acpa
(·) (resp. Advcca

AE,Acca
(·))

is negligible for any adversary of poly(k) time-complexity.

The concrete-security considerations we will enter at some points in this paper are facilitated by
adopting some conventions. Namely the “time-complexity” of the adversary above is the worst
case execution time of the associated experiment plus the size of the code of the adversary, in some
fixed RAM model of computation. (Note that the execution time refers to the entire experiment,
not just the adversary. In particular, it includes the time for key generation, challenge generation,
and computation of responses to oracle queries if any.) The same convention is used for all other
definitions in this paper.

3 Multi-Recipient Asymmetric Encryption Schemes

An asymmetric multi-recipient encryption scheme (MRES) AE = (G,K, E ,D) consists of four al-
gorithms. The common-key generation algorithm G, key generation algorithm K and decryption
algorithm D are just like those of an ordinary asymmetric encryption scheme. The randomized
multi-encryption algorithm E takes input a public-key vector pk = (pk[1], . . . ,pk[n]) and a plain-
text vector M = (M[1], . . . ,M[n]) and, in poly(k)-time, returns a ciphertext vector C = (C[1], . . .,
C[n]); we write C R← Epk(M). Associated to each common key I is a message space MsgSp(I) from
which the components of M are allowed to be drawn. We require that for all M with components
in the message space, the following experiment returns 1 with probability 1:
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For i = 1, . . . , n do (pk[i], sk[i]) R← K(k) EndFor; C R← Epk(M)
i

R← {1, . . . , n}
If Dsk[i](C[i]) = M[i] then return 1 else return 0

The notation C R← Epk(M) is shorthand for r
R← CoinsE(I,pk) ; C ← Epk(M; r), where

CoinsE(I,pk) is a set from which E draws its coins.
We are interested in a specific class of MRESs, those obtained from a given asymmetric encryp-

tion scheme by using the same coins to encrypt the different messages in the message vector.

Construction 3.1 The randomness-reusing MRES (RR-MRES) associated to a given asymmetric
encryption scheme AE = (G,K, E ,D) is the multi-recipient encryption scheme AE = (G,K, E ,D) in
which the common key generation, key generation algorithms and decryption algorithms are that
of AE and the multi-recipient encryption algorithm is defined as follows:

Epk(M)
Let n be the number of components of M [ and also of pk]
r

R← CoinsE(I,pk)
For i = 1, . . . n do C[i]← Epki

(M[i]; r) EndFor
Return C.

We refer to AE as the base scheme of AE .

We do not specify how C[i] is communicated to user i. It could be that the whole ciphertext
vector C is sent via a broadcast or multi-cast channel and, if all C[i] have a common part due to
a randomness re-use, this part can be sent only once. It could also be that C[i] is sent to party
i directly. This issue depends on the specific application and is not relevant for security of the
scheme. For examples of RR-MRESs see Section 7.

4 Security of Asymmetric Multi-Recipient Schemes

We provide the definition and follow it with a discussion illustrating how it takes into account the
various security issues mentioned in the introduction.

Model and definition. Let AE = (G,K, E ,D) be an asymmetric MRES. (We are particularly
interested in the case where this is an RR-MRES scheme, but the definition is not restricted to this
case.) Let n be a polynomial. Let B be an adversary attacking AE . B runs in three stages. In the
select stage the adversary is given an initial information string and outputs l such that 1 ≤ l ≤ n,
which indicates that it wants to corrupt n− l users, assumed without loss of generality to be users
l + 1, . . . , n. In the findstage the adversary is given I and the public keys of the honest users
1, . . . , l. It outputs two l-vectors of messages corresponding to choices for the honest users; one
(n− l)-vector of messages corresponding to choices for the corrupted users; a (n− l)-vector of public
keys for the corrupted users; and a (n − l)-vector of corresponding secret keys (see the discussion
below.) Based on a challenge bit b, one of the two l-vectors is selected, and the components of the
(n− l)-vector of messages are appended to yield a challenge n-vector of messages M. The latter is
encrypted via the multi-encryption algorithm to yield a challenge ciphertext C that is returned to
the adversary, now in its guessstage. Finally B returns a bit d as its guess of the challenge bit b.
In each stage the adversary will output state information that is returned to it in the next stage.
In case of chosen-ciphertext attacks in the find and guess stages B is given l decryption oracles
corresponding to the secret keys of the honest users. We now provide a formal definition.
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Definition 4.1 Let AE = (G,K, E ,D) be a multi-receiver asymmetric encryption scheme, let n be
a polynomial. For atk ∈ {cpa, cca} and b ∈ {0, 1} consider the experiment:

Experiment Expn-mr-atk-b
AE,B

(k)

I
R← G(k) ; l← B(select, I) [ 1 ≤ l ≤ n(k)]

For i = 1, . . . , l do (pki, ski)
R← K(I) EndFor

(m1,0,m2,0, . . . ,ml,0 ; m1,1,m2,1, . . . ,ml,1 ; ml+1, . . . ,mn(k) ; pkl+1, skl+1, . . . ,pkn(k), skn(k) ; st)
← BO1(·),...,Ol(·)(find, I,pk1, . . . ,pkl)

pk← (pk1, . . . ,pkn(k))
M← (m1,b, . . . ,ml,b,ml+1, . . . ,mn(k))
C R← Epk(M)
d← BO1(·),...,Ol(·)(guess,C, st)
Return d

Above, the oracles are defined as follows for 1 ≤ i ≤ l: If atk = cpa then Oi(·) = ε and if atk = cca
then Oi(·) = Dski

(·). It is mandated that for all 1 ≤ i ≤ l we have |mi,0| = |mi,1| and also that
if atk = cca then the adversary B does not query Oi(·) on C[i]. The restriction on decryption
oracle queries is necessary since otherwise the adversary can decrypt the corresponding part of the
challenge ciphertext vector and therefore distinguish which plaintext vector was encrypted.

The ind-atk advantage of an adversary B is

Advn-mr-atk
AE ,B

(k) = Pr
[
Expn-mr-atk-0

AE,B
(k) = 0

]
− Pr

[
Expn-mr-atk-1

AE,B
(k) = 0

]
,

Let AE = (G,K, E ,D) be a multi-recipient encryption scheme. We say that it is IND-CPA (resp.
IND-CCA) secure if the function Advn-mr-cpa

AE,B
(·) (respectively Advn-mr-cca

AE,B
(·)) is negligible for any

poly(k)-time adversary B and any polynomial n.

It is convenient to introduce a notion of security for base encryption schemes based on the security
of the corresponding RR-MRES. We stress that the following is a notion of security for (standard)
asymmetric encryption schemes, not for MRESs.

Definition 4.2 Let AE be an asymmetric encryption scheme. We say that it is RR-IND-CPA
(resp. RR-IND-CCA) secure (or, briefly RRS) if the RR-MRES AE associated to AE is IND-CPA
(resp. IND-CCA) secure.

Discussion and comparison with the model of security of [Ku]. Previous works [BPS,
BBM, Ku] only considered outsider attacks, meaning the adversary was not one of the receivers.
A novel element of our model relative to [BPS, BBM, Ku] is the consideration of insider attacks.
The adversary is allowed to corrupt some fraction of the users and choose secret and public keys
for them.

We argue that it is necessary for a model of security of multi-recipient schemes to take into
account insider attacks. The model of [Ku] does not address this problem and we show that there
exist MRESs which can be proven secure using the model of [Ku] but are obviously insecure and
can easily be shown insecure using our model of security.

It is proved in [Ku] that El Gamal scheme permits secure randomness re-use in the multi-
recipient setting. Now consider a modified encryption scheme which differs from El Gamal in that
its encryption algorithm when invoked on one particular public key (e.g. g3) in addition to a
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ciphertext returns randomness used to compute it. Assume this fact is known to the adversary.
When this scheme used in a multi-recipient setting with randomness re-use the adversary can certify
this public key and later after receiving a ciphertext can obtain the random string used to compute
the ciphertexts of other users and thus break the scheme. Under our model the advantage of such
adversary in breaking this scheme will be 1. But in the model of [Ku] all the public keys assumed
to be random, and the scheme can be proven secure.

Consider another example which exploits a different weakness of the model of [Ku]. Let AE ′ =
(G′,K′, E ′,D′) be some IND-CPA secure encryption scheme. Consider a multi-recipient scheme AE
with user i’s public key pki = (gxi ,pk′

i), where gxi is a public key for El Gamal encryption and pk′
i

is a public key of AE ′. Let the encryption algorithm of AE ′ be as follows.

Algorithm Epk(M)
r

R← Zq ; For i = 1, . . . , n do C′[i]← E ′
pk′

i
(r)

Yi ← gr ; Wi ← (gxi)rM [i]
C[i]← (Yi,Wi,C′[i]) EndFor
Return C

We claim that there exists an attack on AE but the scheme can be proven secure under the
model of [Ku]. We first show that AE is insecure in practice by presenting an attack. An adversary
A “corrupts” the first user and chooses pk1 = (gx1 ,pk′

1) in normal way so that it knows x1, sk
′
1.

When A receives a ciphertext vector C it decrypts C′[1] using sk′
1 and obtains r. Now A can

compute M[i] as Wi/(gxi)r. Under our model of security A would have advantage 1. We now show
that AE is secure under the model of [Ku]. Let B be an adversary attacking AE under the model
of [Ku]. Then it is possible to construct an adversary D which attacks El Gamal RR-MRES. But
[Ku] proves the latter scheme is secure, so this would imply that AE is secure. D simply provides
all the public keys it is given to B and outputs message vectors that B outputs. D then receives a
challenge ciphertext vector CD, picks a random r′ and computes a challenge CB for B such that
CB[i] = (CD[i], E ′

pk ′
i
(r′)). Since AE ′ is IND-CPA then the view of B in the simulated experiment is

indistinguishable from the real experiment. Therefore the advantage of B is at most the advantage
of D, but it is proven in [Ku] that the latter is negligible.

Moreover, the model of [Ku], as well as of [BBM, BPS] do not take into account the possibility
of rogue-key attack. This can be particularly damaging in the context of random-string re-use. For
example, suppose the adversary registers public keys (gx)2 = g2x and (gx)3 = g3x where gx is the
key of a legitimate user. Suppose that symmetric session keys K1,K,K are El Gamal encrypted
with the same randomness r under public keys gx, g2x, g3x and broadcast to the users. Thus the
adversary sees the three corresponding ciphertexts (gr, grx ·K1), (gr , g2rx ·K), (gr , g3rx ·K). From
them it can compute K1 = [grx · K1] · [g2rx · K] · [g3rx · K]−1 and obtain the session key of the
legitimate user. As a consequence, the adversary will be able to decrypt the secret information
encrypted under this session key addressed to the legitimate user.

As we mentioned in the introduction, to prevent attacks of this type we put some limitation
on the adversary in this regard, in particular to disallow it from creating public keys whose corre-
sponding secret keys it does not know. The model incorporates this by requiring the adversary to
supply, along with public keys for the corrupted users, corresponding secret keys. This models the
effect of appropriate proofs of knowledge of the secret key that are assumed to be done as part of
the key certification process. The alternative is to explicitly consider the certification process in
the model, and then, in proofs of security, use the extractors, guaranteed by the proof of knowledge
property [BG], to extract the secret keys from the adversary. This being quite a complication of
the model, we have chosen to build in the intended effects of the proofs of knowledge.
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5 Not Every RR-MRES Scheme is Secure

We consider general embedding schemes which first apply a randomized invertible transform to a
message and then apply a trapdoor permutation to the result. The example of such schemes is
RSA-PKCS#1 [PKCS] that has been proven to be IND-CCA secure (in the random oracle model)
[FOPS] and hence is also IND-CCA secure in a multi-user setting [BPS, BBM]. Nonetheless, the
associated RR-MRES scheme is insecure. The attack is as follows. Let Ni be the public modulus of
user i and assume all users have encryption exponent 3. Suppose the sender wants to send a single
message M to three receivers, namely M = (M,M,M). Under the RR-MRES scheme, it will pick
a random string r, using M and a random r will compute a transform x, set C[i] = x3 mod Ni, and
send C[i] to i. An adversary given C can use H̊astad’s attack (based on the fact that the modulii
are relatively prime) to recover x, and them recover M by inverting the transform. The same attack
applies regardless of embedding method, since the latter must be an invertible transform.

This indicates that secure randomness re-use is not possible for all base encryption schemes: there
exist base encryption schemes that are secure, yet the associated RR-MRES is not secure. In fact,
no encryption scheme where the random string used in encryption algorithm is a by-product of
decryption can be a base of a secure RR-MRES, however, there are large classes of base encryption
schemes for which the associated RR-MRES scheme is secure.

6 Reproducibility Test and Theorem

We provide a condition under which a given encryption scheme can be a base of the secure RR-
MRES. Informally speaking, the condition is satisfied for those encryption schemes for which it is
possible, using a public key and ciphertext of a random message, to create ciphertexts for arbitrary
messages under arbitrary keys, such that all ciphertexts employ the same random string as that of
the given ciphertext.

Definition 6.1 Fix a public-key encryption scheme AE = (G,K, E ,D). Let n be polynomial in k,
and let R be an algorithm that takes as input a public key and ciphertext of a random message,
another random message together with a public-secret key pair, and returns a ciphertext. Consider
the following experiment.

Experiment Exprepr
AE,R(k)

I
R← G(k) ; (pk, sk) R← K(I) ; M

R← MsgSp(I) ; r
R← CoinsE(I,pk)

C ← Epk(M, r) ; (pk ′, sk ′) R← K(I) ; M ′ R← MsgSp(I)
If Epk′(M ′, r) = R(pk, C,M ′,pk ′, sk ′) then Return 1 else Return 0 EndIf

We say that AE is reproducible if for any k there exists a probabilistic, poly(k)-time algorithm R
called the reproduction algorithm such that Exprepr

AE,R(k) outputs 1 with the probability 1.

Later we will show that many popular discrete-log-based encryption schemes are reproducible. It
is an open question whether there exist reproducible encryption schemes of other types.

We now state the main reproducibility theorem. It implies that if an encryption scheme is
reproducible and is IND-CPA (resp. IND-CCA) secure, then it is also RR-IND-CPA (resp. RR-
IND-CCA) secure.

Theorem 6.2 Fix a public-key encryption scheme AE = (G,K, E ,D) and a polynomial n(·). Let
AE = (G,K, E ,D) be the associated RR-MRES. If AE is reproducible then for any poly-time
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adversary Batk, there exists apoly(k)-time adversary Aatk, where atk = {cpa, cca}, such that for
any k

Advn-mr-atk
AE ,Batk

(k) ≤ n(k) ·Advatk
AE,Aatk

(k).

Proof: We first consider the case of chosen-plaintext attack only and then briefly indicate how to
extend the argument to the case of chosen-ciphertext attacks. Let B be an adversary attacking the
RR-MRES AE . We will design an adversary A attacking the scheme AE so that

Advcpa
AE,A(k) ≥ 1

n(k)
·Advn-mr-cpa

AE,B
(k) .

The statement of the Theorem 6.2 follows, so it remains to design A. We begin by describing some
hybrid experiments associated to B and AE . It is convenient to parameterize the hybrids via an
integer j, where j is ranging from 0 to n(k).

Experiment ExpHj [ 0 ≤ j ≤ n(k)]
I

R← G(k) ; l← B(select, I)
For i = 1, . . . , l do (pki, ski)

R← K(I) EndFor
(m1,0,m2,0, . . . ,ml,0 ; m1,1,m2,1, . . . ,ml,1 ; ml+1, . . . ,mn;pkl+1, skl+1, . . . ,pkn, skn, st)←

B(find, I,pk1, . . . ,pkl)
pk← (pk1, . . . ,pkn)
If j ≤ l

then M← (m1,0, . . . ,mj,0,mj+1,1, . . . ,ml,1,ml+1, . . . ,mn)
else M← (m1,0, . . . ,ml,0,ml+1, . . . ,mn)

EndIf
C R← Epk(M) ; d← B(guess,C, st); Return d

Let Pj
def= Pr

[
ExpHj = 0

]
denote the probability that experiment ExpHj returns 0, for j =

0, 1, . . . , n. Now we claim that

Advn-mr-cpa

AE ,B
(k) = Pn − P0 . (1)

This is justified as follows. We claim that

Pr
[
Expn-mr-cpa-0

AE ,B
(k) = 0

]
= Pn and Pr

[
Expn-mr-cpa-1

AE,B
(k) = 0

]
= P0 ,

and after subtraction Equation (1) follows. We now justify the two equations above. In experiment
ExpHn we have j = n and a challenge ciphertext C is computed by encrypting the “left” vector of
messages m1,0, . . . ,ml,0 under l different public keys plus the encryptions of the rest n− l messages,
so that the B’s “view” is the same as in experiment Expn-mr-cpa-0

AE ,B
(k). On the other hand in

experiment ExpH0 we have j = 0 , and a challenge ciphertext C consists of l encryptions of
messages from a “right” vector of messages under l different public keys, plus the encryptions of
the rest n− l messages, so that B’s “view” is the same as in experiment Expn-mr-cpa-1

AE ,B
(k).

Now we turn to the description of A.

Adversary A(find, I,pk)
l ← B(select, I) ; j

R← {1, . . . , n}
If j ≤ l then For i ∈ {1, . . . , j − 1, j + 1, . . . , l} do (pki, ski)

R← K(I) ; pkj ← pk EndFor
else For i = 1, . . . l do (pki, ski)

R← K(I) EndFor
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EndIf
(m1,0,m2,0, . . . ,ml,0 ; m1,1,m2,1, . . . ,ml,1 ; ml+1, . . . ,mn ; pkl+1, skl+1, . . . ,pkn, skn, st′)
← B(find, I,pk1, . . . ,pkl)

If j > l then mj,0 ← mj ; mj,1 ← mj EndIf
st← (j, l ; pk1, sk1, . . . ,pkl, skl ; m1,0,m2,0, . . . ,ml,0 ; m1,1,m2,1, . . . ,ml,1 ; ml+1, . . . ,mn

pkl+1, skl+1, . . . ,pkn, skn, st′)
Return (mj,0,mj,1, st)

Adversary A(guess,C, st)
For i ∈ {1, . . . , j − 1, j + 1, . . . , n} do

If i ≤ j Then M ′ ← mi,0 Else M ′ ← mi,1 EndIf
Ci ← R(pk, C,M ′,pki, ski)

EndFor
C′ ← (C1, . . . , Cj−1, C,Cj+1, . . . , Cn) ; d← B(guess,C′, st′); Return d

We claim that

Pr
[
Expcpa−0

AE ,A (k) = 0
]

=
1
n
·

n∑
j=1

Pj and Pr
[
Expcpa−1

AE,A (k) = 0
]

=
1
n
·

n∑
j=1

Pj−1 . (2)

Subtracting and exploiting the collapse of the sums we get

Advcpa
AE,A(k) =

1
n
·

n∑
j=1

Pj − Pj−1 =
1
n
· [Pn − P0] =

1
n
·Advn-mr-cpa

AE,B
(k)

The statement of the theorem follows, so it remains to justify Equations (2). Each value of j in
{1, . . . , n} is equally likely for A. The j’s ciphertext in B’s challenge ciphertext vector is a A’s chal-
lenge ciphertext. And reproductivity of AE guarantees that all n ciphertexts in a challenge cipher-
text are computed using the same random string. It is easy to see that the experiment Expcpa−0

AE,A (k)
is the same as ExpHj . Similarly, the experiment Expcpa−1

AE,A (k) is the same as ExpHj−1.

The running time of A is one of B plus one of R plus the time to pick a number j ≤ n(k) at
random.

We provide a brief sketch of how to extend the proof to the case of chosen-ciphertext attacks. The
definition of the hybrid experiments is the same with regard to how the inputs to B are computed.
Decryption queries are however answered truthfully, using the correct secret key. The adversary
A is given also the decryption oracle Dsk(·) where sk is the secret key corresponding to its input
public key pk. It proceeds as before. The novel elements is to provide answers to decryption oracle
queries. When the query is to Dski

(·) for 1 ≤ i ≤ l, i 6= j, algorithm A can easily provide the
answer since it is in possession of ski. When i = j it provides the answer by invoking its own given
decryption oracle. The analysis proceeds as before.

7 Analysis of Specific Schemes

In this section we show that many popular encryption schemes are reproducible. Using the known
results about security of these schemes and the result of Theorem 6.2 this would imply that these
schemes are also RRS.

We first consider three DDH-based schemes which work over a group of prime order. A prime-
order-group generator is a probabilistic algorithm that on input a security parameter k returns a
pair (q, g) satisfying the following conditions: q is a prime with 2k−1 < q < 2k; 2q + 1 is a prime;
and g is a generator of Gq.
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7.1 El Gamal

Let G be a prime-order-group generator. This is the common key generation algorithm of the El
Gamal scheme EG = (G,K, E ,D), the rest of the algorithms are as follows:

K(q, g):

x
R← Zq ; X ← gx

pk ← (q, g, X) ; sk ← (q, g, x)
Return (pk, sk)

Epk(M):
Parse pk as (q, g, X)
r

R← Zq ; Y ← gr

T ← Xr ; W ← TM
Return (Y, W )

Dsk(Y, W ):
Parse sk as (q, g, x)
T ← Y x

M ←WT−1

Return M

The message space associated to a common key (q, g) is the group Gq itself. Note that a
generator g is the output of the common key generation algorithm, which means we fix g for all
keys.

Lemma 7.1 The El Gamal encryption scheme EG = (G,K, E ,D) is reproducible.

Proof: On input (pk, (gr, grx · M),M ′,pk′, sk′), where pk = (q, g, gx),pk ′ = (q, g, gx′
), sk ′ =

(q, g, x′), a poly(k)-time reproduction algorithm R returns (gr, (gr)x
′ ·M ′). It is easy to see that

R always outputs a valid ciphertext which is created using the same random string as the given
ciphertext and therefore the experiment Exprepr

EG,R(k) always outputs 1.

The El Gamal scheme in a group of prime order is known to be IND-CPA under the assumption
that the decision Diffie-Hellman (DDH) problem is hard. (This is noted in [C, NR, CrSh, TY]).
Accordingly we define the DDH problem.

Definition 7.2 [DDH] Let G be a prime-order-group generator. Let D be an adversary that on
input q, g and three elements X,Y, T ∈ Gq returns a bit. We consider the following experiments

Experiment Expddh-real
G,D (k)

(q, g) R← G(k)
x

R← Zq ; X ← gx ; y
R← Zq ; Y ← gy

T ← gxy; d← D(q, g, X, Y, T ); Return d

Experiment Expddh-rand
G,D (k)

(q, g) R← G(k)
x

R← Zq ; X ← gx ; y
R← Zq ; Y ← gy

T
R← Gqd← D(q, g, X, Y, T ); Return d

The advantage of D in solving the Decisional Diffie-Hellman (DDH) problem for G is the function
of the security parameter defined by

Advddh
G,D(k) = Pr

[
Expddh-real

G,D (k) = 1
]
− Pr

[
Expddh-rand

G,D (k) = 1
]

.

We say that the DDH problem is hard for G if the function Advddh
G,D(·) is negligible for every

poly(k)-time algorithm D.

Theorem 6.2 and Lemma 7.1 imply that it is also RR-IND-CPA or, equivalently, EG is IND-CPA
secure and the security degrades linearly as the number of users n increases. The following theorem
shows that it is possible to obtain a tighter relation than the one implied by Theorem 6.2.

Theorem 7.3 Let G be a prime-order-group generator, EG = (G,K, E ,D) the associated El Gamal
encryption scheme, and EG = (G,K, E ,D) the associated RR-MRES as per Construction 3.1. Let
n be a polynomial. Then for any adversary B there exists a distinguisher D such that for any k

Advn-mr-cpa

EG,B
(k) ≤ 2 ·Advddh

G,D(k) +
1

2k−2
,

where the running time of D is one of B plus O(n(k) · k3).

The proof of the above theorem is in Appendix A. [Ku] proves a similar result but for a weaker
notion of security of multi-recipient schemes.
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G(k):

(q, g1)
R← G

g2
R← Gq

K
R← GH(k)

Return (q, g1,
g2, K)

K(q, g1, g2, K):

x1, x2, y1, y2, z
R← Zq

c← gx1
1 gx2

2 ; d← gy1
1 gy2

2

h← gz
1

pk ← (g1, g2, c, d, h, K)
sk ← (x1, x2, y1, y2, z)

Return (pk, sk)

Epk(M):

Parse pk as (g1, g2, c, d, h, K)
r

R← Zq

u1 ← gr
1 ; u2 ← gr

2

e← hrM
α← EHK(u1, u2, e)
v ← crdrα

Return (u1, u2, e, v)

Dsk(u1, u2, e, v):
Parse sk as (x1, x2, y1, y2, z)
α← EHK(u1, u2, e)
If u1

x1+y1αu2
x2+y2α = v

then M ← e/u1
z

else M ← ⊥
EndIf
Return M

Figure 1: Cramer-Shoup scheme

7.2 Cramer-Shoup

We now consider an RR-MRES based on the Cramer-Shoup scheme [CrSh] in order to get IND-CCA
security properties. We first recall the Cramer-Shoup scheme. Let G be a prime-order-group
generator. The algorithms of the associated Cramer-Shoup scheme CS = (G,K, E ,D) are depicted
in Figure 1.

Lemma 7.4 The Cramer-Shoup encryption scheme CS = (G,K, E ,D) is reproducible.

The proof of the above lemma is simple and is similar to the proof of Lemma 7.1.

Proof: We present a polynomial time algorithm R which takes as input a random public key and
a ciphertext of a random message under this key, another random message and a public-secret key
pair and returns a ciphertext.

Algorithm R(pk, C,M ′,pk′, sk′)
Parse pk as (g1, g2, c, d, h,K); Parse C as (u1, u2, e, v)
Parse pk′ as (g1, g2, c

′, d′, h′,K); Parse sk′ as (x′
1, x

′
2, y

′
1, y

′
2, z

′)
e′ ← uz′

1 M ′ ; α′ ← EHK(u1, u2, e
′) ; v′ ← u

x′
1+y′

1α′
1 u

x′
2+y′

2α′
2

Return (u1, u2, e
′, v′)

Let us denote the random string used in a challenge ciphertext C as r. First we note that first
two elements u1 = gr

1, u2 = gr
2 of the output ciphertext are equal to the first two elements of

a challenge ciphertext C as they should due to a fact that r is fixed. Next we note that e′ =
uz′

1 M ′ = grz′
1 M ′ = (h′)rM ′. This means that e′ and thus α′ are of the right form. Similarly

v′ = u
x′
1+y′

1α′
1 u

x′
2+y′

2α′
2 = g

r(x′
1+y′

1α′)
1 g

r(x′
2+y′

2α′)
2 = (c′)r(d′)rα, which is valid computation. Therefore,

R always outputs a valid ciphertext which is created using the same random string as a given
ciphertext and therefore Pr

[
Exprepr

CS,R(k) = 1
]

= 1.

Let Advcr
H,C(k) denote the advantage of an adversary C breaking collision-resistance of H

(Section B.1 recalls the formal definition of collision resistance). If the DDH problem is hard for
G and if H is collision-resistant then CS is IND-CCA secure [CrSh]. Theorem 6.2 and Lemma 7.4
imply that it is also RR-IND-CCA or, equivalently, CS is IND-CCA secure. We match the re-
sult of [Ku] in getting a better security result than the one implied by Theorem 6.2 but we do
it for a stronger notion of security of multi-recipient schemes. The following theorem states our
improvement.
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Epk(M):
Parse pk as (q, g, X)
r

R← Zq ; Y ← gr ; K ← H(Xr)
Let skm be the first ml bits of K
Let ske be the last kl bits of K

C
R← Eske(M) ; T ← Tskm(C)

Return (Y, C, T )

Dsk(Y, C, T ):
Parse sk as (q, g, x)
K ← H(Y x)
Let skm be the first ml bits of K
Let ske be the last kl bits of K
M ← Dske

(C)
If Vskm

(M, T ) = 1 then Return M
else Return ⊥ EndIf

Figure 2: DHIES

Theorem 7.5 Let G be a prime-order-group generator, CS = (G,K, E ,D) the associated Cramer-
Shoup encryption scheme and CS = (G,K, E ,D) the associated RR-MRES as per Construction 3.1.
Let n be a polynomial. Then for any adversary B, which makes qd decryption oracle queries, there
exists an adversary A, a distinguisher D and an adversary C such that for any k

Advn-mr-cca
CS,B

(k) ≤ 2Advddh
G,D(k) + 2Advcr

H,C(k) +
qd(k) + 2

2k−3
,

and the running time of D and C is that of B plus O(n(k) · k3).

Note that the security of CS is tightly related to the security of DDH and does not depend on the
number of the users in the system. The proof of the above theorem is in Appendix B.2.

7.3 DHIES

We consider the other DDH-based encryption scheme DHIES [ABR] which is in several draft
standards. It combines asymmetric and symmetric key encryption methods, a message authen-
tication code and a hash function and provides security against chosen-ciphertext attacks. Let
SE = (K,E,D) be a symmetric encryption scheme with key length kl and let MAC = (T ,V) be a
message authentication code with key length ml, tagging algorithm T and verification algorithm
V. Let H: {0, 1}gl → {0, 1}ml+kl be a function. We assume MAC is deterministic. The common
key and key generation algorithms of DHIES[SE,H,MAC] = (G,K, E ,D) are the same as the ones
of El Gamal encryption scheme. The rest of the algorithms are presented in Figure 2.

Below we use the notion of reproducibility for symmetric encryption and the corresponding
reproducibility theorem; please refer to Section 9 where we properly describe how the notions and
results of this paper related to asymmetric multi-recipient schemes can be naturally extended for
a case of symmetric encryption schemes.

Lemma 7.6 DHIES[SE,H,MAC] = (G,K, E ,D) is reproducible if SE is reproducible.

Proof: Since SE is reproducible then there exists a poly(k)-time reproduction algorithm R′ for SE
which takes a ciphertext and a random message and a secret key and outputs a ciphertext of this
message under this secret key such that it is created using the same random coins as the given
ciphertext. We present a poly(k)-time reproduction algorithm R for DHIES which uses R′.

Algorithm R(pk, (gr , C, T ),M ′,pk′, sk ′)
Parse sk ′ as (q, g, x′)
K ← H((gr)x

′
)

Let skm be the first ml bits of K ; let ske be the last kl bits of K
C ′ ← R′(C,M ′, ske) ; T ′ ← Tskm(C ′) Return (gr, C ′, T ′)
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Note that R first computes symmetric keys for SE and MAC using given gr and then uses R′ to
output a valid symmetric ciphertext which is created using the same random coins as the given
ciphertext C and therefore the whole output (gr, C ′, T ′) is always a valid ciphertext computed using
the same coins as the original ciphertext (gr, C, T ).

7.4 Escrow El Gamal

Boneh and Franklin [BF] suggested the El Gamal encryption scheme with global escrow capabilities.
The EEG = (G,K, E ,D) scheme uses Weil pairing and is defined as follows. The algorithm G on
input a security parameter k chooses a k-bit prime p such that p ≡ 2 mod 3 and p ≡ 6q − 1 for
some prime q ≥ 3. Let E be the elliptic curve defined by y2 = x3 + 1 over Fp. Then it chooses a
random P ∈ E/Fp of order q, computes Q = sP for a random s ∈ Z

∗
q and chooses a hash function

H:Fp2 → {0, 1}m. The message space is {0, 1}m. The escrow key is s. G outputs (p,m,P,Q,H).
The rest of the algorithms are as follows:

K(p, m, P, Q, H):
x

R← Z∗
q ; X ← xP

pk ← (p, P, Q, X)t
sk ← (p, P, Q, x)
Return (pk, sk)

Epk(M):
Parse pk as (p, P, Q, X)
r

R← Z∗
q

g ← ê(X, Q)
Return (rP, M ⊕H(gr))

Dsk(U, V ):
Parse sk as (p, P, Q, x)
M ← V ⊕H(ê(U, xQ))
Return M

We do not define the decryption using the escrow key since it is not relevant for our goal.

Lemma 7.7 The escrow El Gamal encryption scheme EEG = (G,K, E ,D) is reproducible.

Proof: The reproduction algorithm R takes (pk, (rP,M ⊕H((ê(X,Q))r),M ′,pk ′, sk ′) where pk =
(p, P,Q,X), pk′ = (p, P,Q,X ′), sk′ = (p, P,Q, x′) and returns (rP, M ′ ⊕H(ê(rP, x′Q))). Since
ê(aP, bP ) = ê(P,P )ab one can check that R always outputs a valid ciphertext which is created using
the same random string as the given ciphertext and therefore EEG is reproducible.

A standard argument shows that EEG is IND-CPA secure in the random oracle model assuming
Bilinear Diffie-Hellman assumption (see [BF] for proper definitions). The results of Theorem 6.2
and Lemma 7.7 can be extended for the random oracle model and they would imply that EEG
is also RR-IND-CPA or, equivalently, the corresponding multi-recipient scheme EEG is IND-CPA
secure, both in the random oracle model.

8 From IND-CPA (IND-CCA) to RR-IND-CPA (RR-IND-CCA)

As Section 5 and Section 7 show, some practical encryption schemes such as El Gamal and Cramer-
Shoup are RRS, while some, e.g. RSA-PKCS#1 are not. We now provide a simple method for
an efficient transformation of any encryption scheme which meets the standard notion of security
into RRS one. The construction will use a pseudorandom function family; we recall the notion of
pseudorandomness [GGM] and define the advantage Advprf

F,D(k) of the distinguisher D breaking
pseudorandomness of the function family F in Appendix C.1.

Construction 8.1 Fix an asymmetric encryption scheme AE = (G,K, E ,D) and let k be a se-
curity parameter. Let (I,pk) denote a string containing I and pk. We assume that there exist
polynomially bounded, poly(k)-time computable functions il:N → N, ol:N → N such that for all
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k |(I,pk)| = il(k) and Coins(I,pk) = {0, 1}ol(k) for all I generated by G(k) and all pk gener-
ated by K(k). Fix a polynomially bounded, poly-time computable function kl:N → N and fix a
function family F : {0, 1}kl(k) ×{0, 1}il(k) → {0, 1}ol(k). Then a transformed asymmetric encryption
scheme AE ′[F ] = (G,K, E ′,D) has the same common key generation, key generation and decryption
algorithms as AE and the encryption algorithm is defined as follows:

Algorithm E ′pk(M, r′)
r← F (r′, (I,pk)) ; C ← Epk(M, r)
Return C

In practice a block cipher such as AES can be often used in place F (if its fixed key, input and output
lengths satisfy the assumptions described above). Hence, the cost of the transform is negligible.

Theorem 8.2 Fix an asymmetric encryption scheme AE . Assume that there exist functions
il:N → N, ol:N → N satisfying the conditions defined above. Let AE ′[F ] be a transformed en-
cryption scheme as per Construction 8.1. Let it be a base scheme for the RR-MRES AE ′[F ] which
is defined as per Construction 3.1. Then if AE is IND-CPA (IND-CCA) secure and F is a pseudo-
random function family then AE ′[F ] is RR-IND-CPA (resp. RR-IND-CCA) secure, or, equivalently,
AE ′[F ] is IND-CPA (resp. IND-CCA) secure.

The above theorem states the asymptotic security result. In Appendix C we prove the concrete
security result and the statement of the theorem follows.

The above results show that one can efficiently modify any RSA embedding encryption scheme,
e.g. RSA-PKCS#1, which is IND-CCA secure, by adding one application of a block cipher such
that the resulting scheme becomes RR-IND-CCA.

Corollary 8.3 The existence of IND-CPA (IND-CCA) secure asymmetric encryption scheme is a
necessary and sufficient condition for the existence of RR-IND-CPA (resp. RR-IND-CCA) encryp-
tion scheme.

Proof: It follows from Construction 8.1 and Theorem 8.2 that the existence of IND-CPA schemes
and the existence of PRF function families imply the existence of RR-IND-CPA schemes. It is
known that the existence of IND-CPA schemes implies the existence of one-way functions [IL] and
the existence of one-way functions implies the existence of pseudorandom generators [HILL] which
in turn implies the existence of PRFs [GGM]. Therefore the existence of IND-CPA schemes implies
the existence of RR-IND-CPA schemes. Similarly, for the case of IND-CCA schemes. Another
direction of the corollary is trivial.

9 Multi-Recipient Symmetric Encryption Schemes

The results of this paper for the asymmetric-key setting can be easily adjusted to the symmetric-key
setting. We first recall syntax for symmetric encryption schemes and the corresponding notion of
security under a chosen-plaintext attack.

Syntax. Following [BDJR], a symmetric encryption scheme SE = (K,E,D) consists of three
algorithms.
• A randomized poly(k)-time key generation algorithm K takes a security parameter k and

returns a key sk; we write sk
R← K(k).
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• A randomized poly(k)-time encryption algorithm E takes the key sk and a message M ∈
MsgSp(k) to return a ciphertext C; we write C

R← Esk(M) or r
R← CoinsE(k) ; C ← Esk(M, r).

• A deterministic decryption algorithm D takes sk and a ciphertext C and returns a message M ;
we write M ← Dsk(C).

We require that Dsk(Esk(M)) = M for all M ∈ MsgSp(k).

Notion of security for symmetric-key encryption. Following [BDJR] we recall the security
of a symmetric-key encryption scheme under chosen-plaintext attacks. An adversary wins if it can
find two equal-length messages whose ciphertexts it can later distinguish. An adversary attacking
the encryption scheme is given an encryption oracle EK(·) which returns an encryption of an input
plaintext.

Definition 9.1 [Indistinguishability of symmetric-key ciphertexts] Let SE = (K,E,D) be
a symmetric encryption scheme. For an adversary A, k ∈ N and b ∈ {0, 1} define the experiments
Experiment Expcpa−b

SE,A

sk
R← K(k) ; (m0,m1, st)← AEsk(·)(find)

C
R← Esk(mb)

d← AEsk(·)(guess, C, st)
Return d

It is mandated that |m0| = |m1| above. Now define the advantage of A as follows:

Advcpa
SE,A(k) = Pr

[
Expcpa−0

SE,A (k) = 0
]
− Pr

[
Expcpa−1

SE,A (k) = 0
]

The scheme SE is said to be polynomially-secure against chosen-plaintext attacks if the function
Advcpa

SE,A(·) is negligible for any poly(k)-time adversary.

Symmetric-key MRESs. We now consider MRESs in the symmetric-key setting. Syntax for
such schemes SE = (K,E,D) can be defined similarly to syntax of asymmetric MRESs defined in
Section 2. The only difference is that in the symmetric-key case we do not consider a common-key
generation algorithm and instead of a public/secret key pairs there are symmetric keys.

Again, we are interested in RR-MRESs. We can define them in a symmetric-key setting similarly
to Definition 3.1 for a public-key setting. The only changes are as mentioned above.

Security. Unlike the public-key environment, in the symmetric-key setting the possibility of a
common random string being a by-product of a decryption algorithm is not a threat for a symmetric-
key RR-MRES since it cannot help a user to get any information about non-legitimate messages.
Moreover, for many symmetric encryption schemes the random string used in an encryption algo-
rithm is often public and a part of a ciphertext. Nevertheless we still allow the model to consider
insider attacks. The reason is that it is reasonable to assume that secret keys could be chosen
by users and are not always random and independent. The definition is analogous to the one for
asymmetric setting, but now the adversary is given an encryption oracle which takes as input a
message vector and outputs a ciphertext vector.

The adversary runs in two stages. In both stages it is given an encryption oracle which takes
as input n(k) messages and outputs a ciphertext vector. At the end of the find stage the adversary
outputs two vectors of n messages. In the guess stage the adversary gets as input a challenge
ciphertext vector which is a ciphertext vector corresponding to a random choice of two vectors, and
outputs its guess. We now provide a formal definition.
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Definition 9.2 Let SE = (K,E,D) be a symmetric-key MRES. Let n be polynomial in k and let
B be an adversary. B has access to an oracle which takes a vector. For b ∈ {0, 1} define the
experiments:

Experiment Expn-mr-cpa-b
SE,B

(k)
(l, skl+1, . . . , skn)← B(select)
For i = 1, . . . , l do ski

R← K(k) EndFor
sk← (sk1, . . . , skn)
(m1,0, . . . ,ml,0 ; m1,1, . . . ,ml,1 ; ml+1, . . . ,mn)← BEsk(·)(find)
M← (m1,b, . . . ,ml,b,ml+1, . . . ,mn, st)
C R← Esk(M)
d← BEsk(·)(guess, C, st)
Return d

It is required that |mi,0| = |mi,1| for all 1 ≤ i ≤ n(k). We define the advantage Advn-mr-cpa

SE,B
(k)

of the adversary, IND-CPA security of the symmetric MRES analogously to the definitions for a
public-key case of Section 4.

Reproductivity of symmetric-key encryption schemes. The definition of reproducible
schemes defined in Definition 6.1 can be naturally lifted for the symmetric-key setting.

Definition 9.3 Fix a symmetric-key encryption scheme SE = (K,E,D). Let R be an algorithm
that takes as input a ciphertext of a random message, another random message and a secret key,
and returns a ciphertext. Consider the following experiment.

Experiment Exprepr
SE,R(k)

sk
R← K(k) ; M

R← MsgSp(k) ; r
R← CoinsE(k) ; C ← Esk(M, r)

sk ′ R← K(k) ; M ′ R← MsgSp(k) ; C ′ ← R(C,M ′, sk ′)
If (Esk′(M ′, r) = C ′) then Return 1 else Return 0 EndIf

We say that SE is reproducible if for any k there exists a probabilistic, poly(k)-time algorithm R
such that Exprepr

SE,R(k) outputs 1 with probability 1.

The analog of Theorem 6.2 also holds for a symmetric-key setting. It implies that if SE is repro-
ducible and IND-CPA then it is also RR-IND-CPA.

Theorem 9.4 Fix a symmetric-key encryption scheme SE = (K,E,D) and a polynomial n. Let
SE = (K,E,D) be the corresponding RR-MRES. If SE is reproducible then for any polynomial-time
adversary B, there exists a polynomial-time adversary A, such that

Advn-mr-cpa

SE,B
(k) ≤ n(k) ·Advcpa

SE,A(k)

The proof follows the proof of Theorem 6.2, presenting the adversary A which tries to break a
symmetric encryption scheme and uses the adversary B which attacks the associated symmetric
key RR-MRES. The main difference is that in this case A has to answer B’s encryption oracle
queries. The problem is that A does not know one secret key corresponding to it’s own challenge.
But A has access to an encryption oracle corresponding to this key. So it can query this oracle and
then use the reproduction algorithm to get the rest of the ciphertexts to form a ciphertext vector
as an answer to B’s query. The rest of the proof in analogous.
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CBC. We recall CBC encryption scheme. The message space is a set of all strings whose length is
multiple of s bits. The scheme uses a function family F with input and output length s and a key
length k. A key-generation algorithm of CBC[F ] = (K,E,D) simply outputs a random k-bit key
sk, which specify a function f with a domain and range {0, 1}s. Usually F is a block cipher such
as AES and k = 128. The encryption and decryption algorithms are defined as follows:

Algorithm Esk(M)
Parse M as M1, . . . ,Mp

c0
R← {0, 1}s

For i = 1, . . . , p do ci ← f(ci−1 ⊕Mi)
Return (c0, c1, . . . , cp)

Algorithm Dsk(c0, c1, . . . , cp)
For i = 1, . . . , p do Mi ← f−1(ci)⊕ ci−1

M ←M1‖ . . . ‖Mp

Return M

c0 is often called an initial vector or IV.

Lemma 9.5 CBC encryption scheme CBC[F ] = (K,E,D) is reproducible for any F .

Proof: A polynomial time reproduction algorithm R takes as input R((c0, c1, . . . , cp),M ′, sk ′) and
returns C ′ = Esk′(M ′, c0). It is easy to see that R always outputs a valid ciphertext which is created
using the same random string c0 as a given ciphertext and therefore Exprepr

CBC[F ],R(k) will always
output 1.

The result of [BDJR] states that if F is a pseudorandom function family then CBC[F ] is IND-
CPA. It follows from this result and form the reproduction theorem and Lemma 9.5 that CBC[F ]
is RR-IND-CPA.
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Adversary D(q, g,X, Y, T )
X1 ← X ; T1 ← T ; pk1 ← (q, g,X1)
For i = 2, . . . l do

vi
R← Zq ; wi

R← Zq ; Xi ← (X1)wi · gvi ; Ti ← Twi
1 · Y vi

pki ← (q, g,Xi)
EndFor
(m1,0,m2,0, . . . ,ml,0 ; m1,1,m2,1, . . . ,ml,1 ; ml+1, . . . ,mn ; pkl+1, skl+1, . . . ,pkn, skn, st)
← B(find, q, g,pk1, . . . ,pkl)

b
R← {0, 1}

For i = 1, . . . l do
C[i]← (Y, Ti ·mi,b)

EndFor
For i = l + 1, . . . n do

Parse pki as q, g, gxi

Parse ski as q, g, xi

C[i]← (Y, Y xi ·mi)
EndFor
C← C[1], . . . ,C[n]
d← A(guess,C, st)
If b = d then return 1 else return 0

Figure 3: Adversary D for the proof of Theorem 7.3
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A Proof of Theorem 7.3

The proof is similar to the corresponding proof of [Ku]. We still provide the details since we use
the different notion of security of multi-recipient schemes. Let A be an adversary attacking EG
scheme. We will design a distinguisher D for the DDH problem which we recalled in Definition 7.2
so that

Advddh
G,D(k) ≥ 1

2
·Advn-mr-cpa

EG,B
(k)− 1

2k−1
. (3)

The statement of Theorem 7.3 follows. So it remains to specify D. We present the code for D in
Figure 3.

We now proceed to analyze D. First consider Expddh-real
G,D (k). In this case, the inputs X,Y, T

to D above satisfy T = gxy where X = gx and Y = gy for some x, y in Zq. Using DDH random
self-reducibility and its analysis done in [St, NR, Sh, BBM] we claim that for all i ∈ 2, . . . l the
triples (Xi, Y, Ti) computed by D are also valid Diffie-Hellman triples and Xi, Ti are all uniformly
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and independently distributed over Gq. Thus X1, . . . ,Xl have the proper distribution of public
keys. Since the second triple elements are equal all ciphertexts are computed using the same
random string. Thus, the challenge vector of l ciphertexts together with the n − l ciphertexts are
distributed exactly like a ciphertext in RR-MRES El Gamal scheme under public keys pk1, . . . pkn.
We use it to see that for any k

Pr
[
Expddh-real

G,D (k) = 1
]

=
1
2
· Pr

[
Expn-mr-cpa-0

EG,B
(k) = 0

]
+

1
2
·
(
1− Pr

[
Expn-mr-cpa-0

EG,B
(k) = 0

])

=
1
2

+
1
2
·Advn-mr-cpa

EG,B
(k) . (4)

Now consider Expddh-rand
G,D (k). In this case, the inputs X,Y, T to D above are all uniformly dis-

tributed over Gq. Clearly, for 1 ≤ i ≤ l Xi, Ti are all uniformly and independently distributed
over Gq. Again, we have a proper distribution public keys for the El Gamal cryptosystem. But
now T1, . . . , Tl are random elements in Gq and are independent of anything else. The rest n − l
ciphertexts cannot give any additional information to the adversary since A could compute them
itself using Y and xl+1, . . . , xn. This means that the challenge ciphertext gives B no information
about b, in an information-theoretic sense. We have

Pr
[
Expddh-rand

G,D (k) = 1
]
≤ 1

2
+

1
2k−1

. (5)

The last term accounts for the maximum probability that random inputs to D happen to have
the distribution of a valid Diffie-Hellman triple. For any q this probability is less then 1

2k−1 since
2k−1 < q < 2k. Subtracting Equations 4 and 5 we get

Advddh
G,D(k) = Pr

[
Expddh-real

G,D (k) = 1
]
− Pr

[
Expddh-rand

G,D (k) = 1
]

≥ 1
2
·Advn-mr-cpa

EG,B
(k)− 1

2k−1
,

which is Equation (3).
It remains to show that D runs in time polynomial in k. The overhead for D is that of performing

at most 2n exponentiation operations with respect to a base element in Gq and an exponent in Zq

and 2n multiplication operations of the elements in Gq, which we can bound by O(n(k)k3), and
that’s the added cost in time of D.

B Definition and Proof for Section 7.2

B.1 Collision-resistant hash functions

A family of hash functions H = (GH, EH) is defined by a probabilistic generator algorithm GH —
which takes as input the security parameter k and returns a key K— and a deterministic evaluation
algorithm EH —which takes as input the key K and a string M ∈ {0, 1}∗ and returns a string
EHK(M) ∈ {0, 1}k−1.

Definition B.1 Let H = (GH, EH) be a family of hash functions and let C be an adversary that
on input a key K returns two strings. Now, we consider the following experiment:

Experiment Expcr
H,C(k)

K
R← GH(k) ; (x0, x1)← C(K)

If (x0 6= x1) and EHK(x0) = EHK(x1) then return 1 else return 0
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Adversary D(q, g,X, Y, T )
K

R← GH(k) ; l← B(select, q, g) ; g1 ← g ; g2 ← X ; u1 ← Y ; u2 ← T
For i = 1, . . . , l do

x1,i, x2,i, y1,i, y2,i, z1,i, z2,i
R← Zq ; ci ← g

x1,i

1 g
x2,i

2 ; di ← g
y1,i

1 g
y2,i

2 ; hi ← g
z1,i

1 g
z2,i

2

pki ← (g1, g2, ci, di, hi)
EndFor
b

R← {0, 1}
(m1,0,m2,0, . . . ,ml,0 ; m1,1,m2,1, . . . ,ml,1 ; ml+1, . . . ,mn ; pkl+1, skl+1 . . . ,pkn, skn, st)
← B(find, q, g, pk1, . . . , pkl)

For i = 1, . . . , l do
ei ← u

z1,i

1 u
z2,i

2 mi,b ; αi ← EHK(u1, u2, ei) ; vi ← u
x1,i+y1,iαi

1 u
x2,i+y2,iαi

2 ; Ci ← (u1, u2, ei, vi)
EndFor
For i = l + 1, . . . , n do

Parse ski as (x1,i, x2,i, y1,i, y2,i, z1,i, z2,i)
ei ← uz

1Mi ; αi ← EHK(u1, u2, ei) ; vi ← u
x1,i+y1,iαi

1 u
x2,i+y2,iαi

2 ; Ci ← (u1, u2, ei, vi)
EndFor
C← (C1, . . . , Cn)
d← B(guess,C, st)
reply to B’s decryption queries at any stage as follows:

B
Dski→ C̄ [ This denotes that B makes a query C̄ to Dski

]
parse C̄ as (ū1, ū2, ē, v̄) ; ᾱ← EHK(ū1, ū2, ē)
If ū

x1,i+y1,iᾱ
1 ū

x2,i+y2,iᾱ
2 = v̄ then m← ē/ū

z1,i

1 ū
z2,i

2 else m← ⊥ EndIf
B gets m

If b = d then return 1 else return 0 EndIf

Figure 4: Adversary D for the proof of Theorem 7.5

We define the advantage of adversary C via

Advcr
H,C(k) = Pr

[
Expcr

H,C(k) = 1
]

.

We say that the family of hash functions H is collision-resistant if Advcr
H,C(k) is negligible for every

poly(k)-time algorithm C.

B.2 Proof of Theorem 7.5

The proof is similar to the corresponding proof of [Ku] which in turn uses the techniques of [CrSh,
BBM], but the novel element is that we use the notion of security where the adversary is allowed
to corrupt hones users. We present a distinguisher D in Figure 4. To analyze D we first consider
Expddh-real

G,DA
(k). We show that the view of the adversary B under D’s simulation is exactly as in

the actual experiment. Without loss of generality we assume that B is deterministic, otherwise
the following arguments can be made for each choice of the random coins of the adversary. Thus
we assume that B outputs a fixed number l in the end of its select stage. We show that l public
keys and a challenge ciphertext vector given to B have the correct distribution and that decryption
oracle queries are answered as in a real experiment.

The input to D has the form q, g, gr1 , gr2 , gr1r2. We can read this also as q, g1, g2, u1, u2, where
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u2 = gr2
1 and u2 = gr2

2 . Obviously, for all 1 ≤ i ≤ l ci, di have the right distribution of public keys
since they are computed exactly like in the actual experiment. In the proof in [CrSh] the distin-
guisher has to compute only one public key and it is shown there that h has the right distribution
even though it is computed differently from an actual experiment.. We compute all hi similarly
and the same argument can be applied to show that they have the right distribution. Therefore, l
public keys computed by D have the right distribution.

Now we show that the challenge ciphertext vector has the right distribution. Clearly, u1, u2 are
of the right form. We note that e1, α1, v1, . . . , el, αl, vl are all computed using fixed u1, u2 and use
the claims of [CrSh] to see that besides that they have the right distribution. It is also easy to see
that the rest ciphertexts Cl+1, . . . Cn are computed exactly like in an actual experiment. Thus, the
challenge ciphertext vector (u1, u2, (e1, v1), . . . , (en, vn)) has the right distribution.

Finally we show that the decryption oracle queries (ū1, ū2, ē, v̄) are answered correctly. This
is because the condition of a valid ciphertext is computed as in the actual experiment and the
plaintext is computed as M = ē/ū

z1,i

1 ū
z2,i

2 = ē/hr2
i for 1 ≤ i ≤ l if the query was made to Dski

,
which is as in the actual decryption algorithm. Thus for any k and polynomial n we have

Pr
[
Expddh-real

G,D
(k) = 1

]
=

1
2

+
1
2
·Advn-mr-cca

CS,B
(k) . (6)

Similarly to the corresponding proofs of [CrSh, BBM, Ku] one can show that if D’s input is
a random tuple and if H is a collision-resistant function family, then B’s view in the simulated
experiment is independent from it’s challenge bit. More precisely, there exists a polynomial time
adversary C such that for every k

Pr
[
Expddh-rand

G,D
(k) = 1

]
≤ 1

2
+ Advcr

H,C(k) +
qd(k) + 2

2k−2
(7)

where qd is the number of decryption oracle queries made by B. We omit the details.
The statement of Theorem 7.5 follows Equation (6) and Equation (7). It remains to show that

D runs in time polynomial in k. To show that D runs in time polynomial in k we note that the
overhead for D is that of performing at most O(n) exponentiation operations with respect to a
base element in Gq and an exponent in Zq and O(n) multiplication operations of the elements in
Gq, which we can bound by O(n(k)k3), and that’s the added cost in time of D.

C Definition and Proof for Section 8

C.1 Pseudorandom function families

Let kl:N→ N, il:N→ N, ol:N→ N be polynomially bounded, poly-time computable functions and
let k ∈ N be a security parameter. A family of functions F is a map {0, 1}kl(k) × {0, 1}il(k) →
{0, 1}ol(k) which takes a key K ∈ {0, 1}kl(k) and an input x ∈ {0, 1}il(k) and returns a string
y = F (K,M) where y ∈ {0, 1}ol(k). The notation g

R← F is a shorthand for K
R← {0, 1}kl(k) ; g ←

F (K, ·). We call g a random instance of F . Let R denote the family of all functions of {0, 1}il(k)

to {0, 1}ol(k) so that g
R← R denotes the operation of selecting at random a function of {0, 1}il(k) to

{0, 1}ol(k). We call g a random function. A distinguisher D takes as input a security parameter k
and has access to an oracle for a function g : {0, 1}il(k) → {0, 1}ol(k) and outputs a bit.

Definition C.1 Let F,R be as above, let D be a distinguisher. Define the advantage of D as

Advprf
F,D(k) = Pr

[
Dg(·)(k) = 1 : g

R← F
]
− Pr

[
Dg(·)(k) = 1 : g

R← R
]
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The function family F is said to be pseudorandom if Advprf
F,D(·) is negligible for any adversary

whose running time is polynomial in k.

C.2 Proof of Theorem 8.2

We prove that for any poly-time adversary Aatk, there exist a poly-time adversary Batk, where
atk = {cpa, cca} and a distinguisher D, such that for any k

Advn-mr-atk
AE ′[F ],Aatk

(k) ≤ n(k) ·Advatk
AE ,Batk

(k) + 2 ·Advprf
F,D(k)

The statement of Theorem 8.2 is implied by the this result. We first prove it for the case of chosen-
plaintext attacks and then show how the proof can be extended for the case of chosen-ciphertext
attacks. Let R be a family of all functions of {0, 1}il(k) → {0, 1}ol(k). Let A be a poly-time adversary
attacking the security of the multi-recipient scheme AE ′[F ]. We will construct a distinguisher D
which attacks F as a pseudorandom function family and an adversary B which attacks the security
of AE such that their running time is polynomial and

Advprf
F,D(k) =

1
2
· (Advn-mr-cpa

AE ′[F ],A
(k)−Advn-mr-cpa

AE ′[R],A
(k)) (8)

Advcpa
AE ,B(k) ≥ 1

n(k)
·Advn-mr-cpa

AE ′[R],A
(k) (9)

where AE ′[R] denotes the encryption scheme which uses a random function in place of the random
instance of the pseudorandom function family. The statement of the theorem follows. It remains
to specify the strategies of D and B. The distinguisher D takes k and has access to an oracle
g: {0, 1}il(k) → {0, 1}ol(k). D will run A as a subroutine. Here is the algorithm for D.

Distinguisher Dg(·)(k)
I ← G(k) ; l← A(select, I); For i = 1 . . . , l do (pki, ski)

R← K(I) EndFor
(m1,0,m2,0, . . . ,ml,0 ; m1,1,m2,1, . . . ,ml,1 ; ml+1, . . . ,mn ; pkl+1, skl+1, . . . ,pkn, skn, st)
← A(find, I,pk1, . . . ,pkl)

b
R← {0, 1} ; M← (m1,b, . . . ,ml,b,ml+1, . . . mn) ; pk← (pk1, . . . ,pkn) ; C← E ′g(·)

pk (M)
d← A(guess,C, st)
If b = d then return 1 else return 0

Above E ′g(·)
pk denotes the procedure which substitutes all applications of F (r′, ·) in E ′pk(·)with an

application of g(·).
We now analyze the distinguisher. We claim that

Pr
[

Dg(·)(k) = 1 : g
R← F

]
= Pr

[
b = d : g

R← F
]

=
1
2

+
1
2
·Advn-mr-cpa

AE ′[F ],A
(k)

Pr
[

Dg(·)(k) = 1 : g
R← R

]
= Pr

[
b = d : g

R← R
]

=
1
2

+
1
2
·Advn-mr-cpa

AE ′[R],A
(k)

The above equations are justified as follows. If g is an instance of F then A’s view in the simulated
experiment is indistinguishable from its view in Expn-mr-cpa-b

AE ′[F ],A
(k). This is true since in the real

experiment the challenge ciphertext vector for A’s guess stage is computed using an instance of
the function family F specified by the key, which is the random string used by the encryption
algorithm. In the simulated experiment D uses its oracle which is also a random instance of the
function family F . Similarly, if g is an instance of R then A’s view in the simulated experiment is
indistinguishable from it’s view in Expn-mr-cpa-b

AE ′[R],A
(k). After subtraction we get Equation (8).
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We now prove Equation (9). Let A be an adversary which attacks the security of AE ′[R]. We
will use the hybrid experiments ExpHj for 0 ≤ j ≤ n(k) we defined in the proof of Theorem 6.2,

which are associated to A and the encryption scheme AE ′[R] . Let Pj
def= Pr

[
ExpHj = 0

]
denote

the probability that experiment ExpHj returns 0, for j = 0, 1, . . . , n. Similarly to the proof of
Theorem 6.2 we claim that

Advn-mr-cpa

AE ′[R],A
(k) = Pn − P0 . (10)

We now present the adversary B which attacks the security of AE. It will use A. Here is the code
for B:

Adversary B(find, I,pk)
l ← A(select, I) ; j

R← {1, . . . , n}
If j ≤ l then For i ∈ {1, . . . , j − 1, j + 1, . . . , l} do (pki, ski)

R← K(I) ; pkj ← pk EndFor
else For i = 1, . . . l do (pki, ski)

R← K(I) EndFor EndIf
(m1,0,m2,0, . . . ,ml,0 ; m1,1,m2,1, . . . ,ml,1 ; ml+1, . . . ,mn ; pkl+1, skl+1, . . . ,pkn, skn ; st′)
← A(find, I,pk1, . . . ,pkl)

For i = l + 1, . . . , n do mi,0 ← mi ; mi,1 ← mi EndFor
st← (I, j, l ; pk1, sk1, . . . ,pkn, skn ; m1,0,m2,0, . . . ,mj,0,mj,1, . . . ,mn,1 ; st′)
Return (mj,0,mj,1, st)

Adversary B(guess, C, st)
For i ∈ {1, . . . , j − 1, j + 1, . . . , n} do

If pki = pk then m← Dski
(C); If m = mj,0 then Return 0 else Return 1

Else
If ∃k: 1 ≤ k < i,pkk = pki then ri ← rk; Else pk = (pk1, . . . ,pkn) ; ri

R← Coins(I,pk) EndIf
EndIf

EndFor
For i = 1, . . . , j − 1 do Ci ← Epki

(mi,0, ri)
For i = j + 1, . . . , n do Ci ← Epki

(mi,1, ri)
Cj ← C ; C← (C1, . . . , Cn) ; d← A(guess,C, st′)
Return d

We now analyze the adversary B. All values of j in {1, . . . n} are equally likely for B, so we
focus on one particular value of j. If all the public keys created by B and those which are output
by A are different from B’s “challenge” public key pk, then we claim that the view of A in the
experiment simulated by B is indistinguishable from A’s view in the experiment ExpHj. This is
true since the only potential difference among these experiments from A’s view is how the values ri

used as coin tosses for Epki
are computed. In the experiment ExpHj the values ri are computed as

the output of a random function and B computes ri by dynamically simulating a random function.
If at least one of the public keys created by B or one of those which are output by A happens

to be the same as B’s “challenge” public key pk, then A’s view in the simulated experiment is
different from its view in the experiment ExpHj , since for them to be the same B should compute
the component of C corresponding to this public key using the same randomness as was used to
compute its own challenge ciphertext C (since this randomness is the output of the random function
invoked on the same inputs), , but B has no way of learning this randomness. However, in this case
B learns a challenge secret key and can always win its game by decrypting the challenge ciphertext.
Thus we claim that

Pr
[
Expcpa−0

AE ,B (k) = 0
]
≥ 1

n
·

n∑
j=1

Pj and Pr
[
Expcpa−1

AE,B (k) = 0
]
≤ 1

n
·

n∑
j=1

Pj−1 . (11)
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Subtracting and exploiting the collapse of the sums we get

Advcpa
AE,A(k) ≥ 1

n
·

n∑
j=1

[Pj − Pj−1] =
1
n
· [Pn − P0] =

1
n
·Advn-mr-cpa

AE ′[R],A
(k)

Equation (9) follows.
We now sketch out how to extend the proof to the case of chosen-ciphertext attacks. Both D

and B now have to answer A’s decryption oracle queries, which can be made to Dski
for 1 ≤ i ≤ l.

D can easily do so since it possesses all the secret keys sk1, . . . , skl. B knows all but one secret
key, it does not know skj but it has access to a decryption oracle which corresponds to this key.
When A makes a query to Dskj

B provides an answer by invoking its own decryption oracle. The
definition of hybrid experiments remains the same, except that A can ask decryption oracle queries,
which are answered truthfully, using the correct secret key. The rest of the analysis is as before.

It remains to specify running times of D and B. The running time of B is one of A plus the
time to pick a number j ≤ n(k) at random. The running time of D is one of A.
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