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Abstract

This paper initiates a study of the quantitative aspects of randomness in interactive proofs.

Our main result, which applies to the equivalent form of IP known as Arthur-Merlin (AM)

games, is a randomness-e�cient technique for decreasing the error probability. Given an AM

proof system for L which achieves error probability 1=3 at the cost of Arthur sending l(n)

random bits per round, and given a polynomial k = k(n), we show how to construct an AM

proof system for L which, in the same number of rounds as the original proof system, achieves

error 2�k(n) at the cost of Arthur sending only O(l + k) random bits per round.

Underlying the transformation is a novel sampling method for approximating the aver-

age value of an arbitrary function f : f0; 1gl ! [0; 1]. The method evaluates the function on

O(��2 log ��1) sample points generated using only O(l + log ��1) coin tosses to get an estimate

which with probability at least 1� � is within � of the average value of the function.
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1 Introduction

The notion of an \e�ciently veri�able proof" plays a fundamental role in the study of e�cient

computation. Traditionally this notion is associated with the complexity class NP [21], the set of

languages with short (polynomial length) and polynomial-time veri�able proofs of membership. In

other words, NP as a proof system consists of a prover who provides a short proof and a veri�er

who checks it. How the prover found the proof is immaterial; as long as the veri�er can check it

via some mechanical procedure then the proof is valid.

More recently, Goldwasser, Micali and Racko� suggested that the notion of \e�ciently veri�able

proofs" be extended to include interactive proof systems [27]. Interactive proof systems augment

NP proof systems with two ingredients: interaction and randomness. The veri�er is now no longer

a silent partner; he is allowed to ask the prover questions. Thus the two parties exchange a short

(polynomial in the theorem length) sequence of messages and it is only after the completion of this

exchange that the veri�er decides whether or not he believes the theorem valid. Furthermore, both

parties may 
ip coins, and the proof is probabilistic: there is some small chance that the veri�er

accepts the proof of a false theorem. IP is the class of languages possessing interactive proofs of

membership.

Since their inception interactive proofs have proven to be very useful. The original motivation

for their introduction was the introduction of zero-knowledge interactive proofs [27], which in turn

were suggested as a principal tool for cryptographic protocol design [27]. The wide applicability

of this tool was demonstrated by Goldreich, Micali and Wigderson [26], yielding a dramatic e�ect

on the theory and practice of cryptography. However, in the above mentioned development, the

potential power of interactive proofs to serve as proof systems for languages outside NP was not

taken advantage of. First indications to such potential were presented by Babai [5] and Goldreich,

Micali and Wigderson [26]. But it is only in the last two years that a full understanding of the power

of interactive proofs has emerged. Lund, Fortnow, Karlo� and Nisan [36] showed that IP contains

the polynomial time hierarchy, and Shamir [42] extended this to show that IP equals PSPACE.

We conclude that interaction and randomness make a potent brew. We are well motivated

then, to understand more the precise role played by these ingredients in the granting of so much

power. The principal issue here is to determine how the power of interactive proofs varies with the

amount of interaction (measured by the number of rounds of message exchange) or the number of

coin tosses (of the veri�er).

We can begin by observing that the proof of IP=PSPACE yields proof systems using polyno-

mially many rounds and polynomially many coin tosses. On the other hand it is easy to see that

in the absence of either ingredient the power of IP vanishes. If there is no interaction, then the

veri�er is left to decide on his own, and IP equals BPP. If there is no randomness, then the prover

can anticipate all the veri�er's moves and IP would collapse to NP. So the real question lies in

understanding what happens in between these extremes.

In this regard, the role of interaction has received a lot of study [2, 5, 6, 7, 15]. The role

of randomness remained, in contrast, unaddressed. This paper initiates a study of the role of

randomness in interactive proofs.

Below, we begin by reviewing some de�nitions and background, and brie
y cover what is known

on the role of interaction in interactive proof systems. Next, we turn to randomness, and describe

our results and techniques. We conclude by discussing related work and possible avenues for further

investigation.
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1.1 Interactive Proofs and Arthur-Merlin Games

An interactive proof system [27] consists of two communicating parties, the prover and the veri�er.

The veri�er is restricted to probabilistic polynomial time while the prover is not computationally

restricted. On a common input w of length n they exchange a sequence of messages, with the

number of messages polynomial in n. At the end of this exchange, the veri�er either accepts or

rejects the common input. Associated to a prover-veri�er pair (P; V ) and an input w is a probability

that V accepts w which we denote by P[(P; V ) accepts w].

We say that a language L has an interactive proof if there is a strategy for the veri�er under

which he can be convinced to accept inputs in L but rejects inputs not in L no matter what strategy

the prover follows. More precisely, L has an interactive proof if there is a veri�er V such that two

conditions hold. First, there is a prover P such that P[(P; V ) accepts w] � 2=3 for every w 2 L

(the completeness condition). Second, P[( bP; V ) accepts w] � 1=3 for every prover bP and w 62 L

(the soundness condition). This error probability can be decreased to 2�k(n) for any polynomial

k(n) by standard techniques. Let IP denote the class of languages that possess interactive proofs.

Arthur-Merlin (AM) games, introduced by Babai [5] (see also Babai and Moran [6]), can be

viewed as special kinds of interactive proof systems; they are sometimes called interactive proof

systems with public coins. Merlin is the prover and Arthur the veri�er. Merlin plays just like a

prover in an interactive proof system; the specialty is in the role of Arthur. During the interaction,

Arthur is restricted to tossing coins and sending their outcome to Merlin. At the end of the

interaction he computes a deterministic polynomial time predicate of the common input and the

conversation and decides whether or not to accept based on the value of this predicate. For

convenience we usually focus on \symmetric" games in which the interaction consists of a sequence

of \rounds;" a round consists of Arthur sending a message and Merlin a response. AM proof

systems for a language L are de�ned just like interactive ones.

Goldwasser and Sipser [28] showed that any language having an interactive proof system also

has an AM proof system; the two systems are thus of equal power as far as language recognition

is concerned. Moreover, the equivalence established by [28] preserves the number of rounds. The

advantage of the AM formulation lies in its simpler combinatorial structure, and it is via AM games

that most structural results (including ours and [5, 2, 6, 15, 11]) are proved. In the rest of this

paper we consider AM proof systems.

1.2 The Role of Interaction

Let AM[g(n)] denote the class of languages which possess AM proofs of membership of g(n) rounds

of interaction. Much attention has been devoted to understanding the hierarchy AM = IP =S
c�0AM[nc]. We now brie
y review what is known.

Babai [5] showed that any constant number of rounds is equivalent to two: AM[k] = AM[2]

for any integer k � 2. Later Babai and Moran [6] proved the \speedup" theorem which says that

AM[2g(n)] = AM[g(n)] for any polynomial g(n).1 Note that the speedup cannot be iterated more

than a constant number of times. In particular, whether or not AM = AM[2] remains an open

question.

Boppana, H�astad and Zachos [15] provide some indication that co-NP does not have constant

1 In constructing a g(n) round Arthur-Merlin proof system for L from a 2g(n) round one, the proof of [6] blows

up the message lengths of both parties by large polynomial factors. Recently, Bellare and Rompel [11] were able to

reduce the randomness part of this blowup; see x1.6 for details. In the process they also provide a simpler proof of
the speedup theorem.
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round interactive proofs by showing that if it did, then the polynomial time hierarchy would collapse

to the second level.

Aiello, Goldwasser and H�astad [2] show that if �(n) ! 1 then there are oracles separating

AM[g(n)] from AM[g(n)=�(n)]. However, we note that the results of [36, 42] indicate that rela-

tivized separations are not evidence of real separations, for although IP=PSPACE, a random oracle

separates them [29, 19]. So a better than constant factor collapse in IP need not be ruled out by

the relativized separation results of [2].

1.3 Our Results

The results in this paper represent the �rst attempt to understand the role of randomness in

interactive proofs in a quantitative sense. The speci�c problem we consider is that of reducing

the error probability of an Arthur-Merlin game in a randomness-e�cient manner. We now brie
y

describe the problem and then our contribution.

The Problem. Recall that an AM game is an AM proof system for the language L if the error

probability on any input w (the probability that Arthur accepts if w 62 L or rejects if w 2 L) is at

most 1=3. It is well known that this error probability can be decreased to 2�k for any polynomially

bounded k = k(n) by running the game O(k) times in parallel and taking a majority vote on

the outcomes [5, 6]. Note that this maintains the number of rounds. Supposing that Arthur sent

l = l(n) random bits per round in the original game, this results in a game in each round of which

Arthur sends O(lk) random bits.

Error-reduction is the most basic and most often used transformation of AM games and a

natural place to begin to investigate the possibility of saving coins. The problem we consider is to

accomplish round-preserving error-reduction using fewer coin tosses than the standard method.

Summary of Results. Given a g = g(n) round AM proof system for L in which Arthur sends

l = l(n) random bits per round, and given a polynomially bounded function k = k(n), our main

result is that we can construct a g round AM proof system for L which achieves error probability

� 2�k at the cost of Arthur sending only O(l+ k) random bits per round.

We also show that if we only need to decrease the error probability to n�O(1) then a constant

factor more coins per round su�ces. More precisely, given a g = g(n) round AM proof system

for L in which Arthur sends l = l(n) random bits per round, and given a function � = �(n) with

polynomially bounded inverse, we show how to construct a g round Arthur-Merlin proof system

for L which achieves error probability � at the cost of Arthur sending only O(l) random bits per

round.

Both results extend to the case where the error probability of the original game was 1
2 �n�O(1)

rather than 1=3.

1.4 Comparison with the Case of RP and BPP

The problem of reducing the error probability in a randomness-e�cient manner has received much

attention in the context of the randomized complexity classes RP and BPP.

That such randomness-e�cient error-reduction was possible was pointed out, non-constructively,

by Sipser [44] and Santha [40]. The �rst constructions were obtained by Karp, Pippinger and Sipser

[34] and Chor and Goldreich [18], who showed that the error-probability of a BPP algorithm which

used r = r(n) coin tosses could be reduced to n�c for any given constant c while using only O(r)

coin tosses. Cohen and Wigderson [20] and Impagliazzo and Zuckermann [33], using techniques of
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Ajtai, Komlos and Szemeredi [3], showed how the error could be decreased to 2�k at the cost of

O(r+ k) coins for any polynomially bounded k = k(n).

Furthermore, pseudo-random sequences [14, 45] can be used to decrease the error of any BPP

algorithm to n�c while using only n� coins, for any constants � and c. Coupling this with the results

of [20, 33] and [32, 30], we get that the existence of one-way functions implies that the error of any

BPP algorithm can be reduced to 2�k while using only n� + O(k) coins, for any constant � > 0.

Error-reduction for AM games, however, seems more di�cult to handle. The above mentioned

techniques [44, 40, 34, 18, 20, 33, 3] are not directly applicable here as we are not dealing with

witness-sets which are �xed beforehand, but rather with an adversary (cheating Merlin) that dy-

namically guides, by his responses to the veri�er's coins, the search of the veri�er for rejecting

computations. Furthermore, techniques based on assumptions of computational di�culty are of no

use against a prover who has the power to invert one-way functions. Thus the veri�er cannot use

pseudo-random sequences in place of random ones. We note however that our construction will

exploit techniques from [18] and [3], but in a di�erent manner.

In general, not every result for RP and BPP translates easily (or at all) to a result on the

class IP. Notable examples are results such as BPP equals almost-P [13] and BPP is contained in

non-uniform P [1]. The IP counterpart of the �rst was open for several years and �nally proved by

Nisan and Wigderson [39], while the IP analogue of the second (i.e., IP is contained in non-uniform

NP) is not believed to be true.

1.5 A Result About Sampling

Our results use properties of low independence distributions and random walks on explicitly con-

structed expander graphs. The same tools lead to a novel sampling technique.

The problem in question is to estimate the average value E[f ]
def
= 2�l

P
x2f0;1gl f(x) of a given

function f : f0; 1gl ! [0; 1]. Our interest is in primitives for this task which we call (l; �; �)-

approximators. Such an approximator is a two stage process. The �rst stage is randomized. We

pick a collection of sample points x1; : : : ; xt 2 f0; 1gl. The second stage is deterministic. We

compute, as a function of f(x1); : : : ; f(xt), an estimate. We require that, with probability at least

1� � this estimate is within � of E[f ].

The standard construction of an (l; �; �)-approximator is to select t = O(��2 log ��1) independent

and uniformly distributed sample points and use as the estimate the average value of the function on

these sample points. This requires O(tl) coin tosses and t function evaluations. The construction

of randomness-e�cient (l; �; �)-approximators has been a subject of much research, but existing

constructions [18, 10, 11, 20, 33, 38] that save coins over the standard one su�er from various

restrictions (see x6 for details).

We present a new construction which requires the same (up to a constant multiplicative factor)

number of sample points (and function evaluations) as the standard construction, but these sample

points will be generated using only O(l + log ��1) coin tosses. Our construction is optimal in the

number of sample points, and, amongst the constructions that use this number of sample points,

optimal in the number of coin tosses (both up to constant factors). It works for all functions

f : f0; 1gl ! [0; 1].

It is interesting to note that (l; 1=6; �)-approximators for Boolean functions would su�ce for

error-reduction in BPP whereas our error-reduction for IP relies on (l; �; �)-approximators of arbi-

trary functions ranging in [0; 1] with ��1 being a polynomial.
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1.6 Related Work

Bellare and Rompel [11] have investigated the randomness complexity of the operation of reducing

the number of rounds of an AM game by one-half. Given a 2g(n) round AM proof system for

L in which Arthur sends l(n) random bits per round and Merlin responds with a q(n) bit string,

they show how to construct a g(n) round AM proof system for L in which Arthur sends only

O(l + q log l) random bits per round. This improves on the construction of [6] in which Arthur

sent O(lqg3 log g) random bits per round in the g(n) round game. Of particular interest is the case

where the message lengths of both parties are the same; here the blowup of [6] is polynomial while

that of [11] is logarithmic.

We looked at how the power of IP varies with the amount of randomness. A di�erent direction

was taken by Schrift [41] who investigated how the power of an interactive proof varies with the

quality of the random bits used. She shows that interactive proofs retain their power even when

the parties do not have access to truly random bits, but rather to certain kinds of sources of weak

randomness.

1.7 Avenues for Further Investigation

We list in x7 some open questions related directly to our results. Let us indicate here some more

global future directions.

Our results are about AM games. Although AM games and interactive proofs are equivalent

in language recognition power this does not mean that our results generalize directly to interactive

proofs. This is because there is a cost in randomness when transforming an interactive proof to

an AM game. So one direction of research is to generalize our results to general interactive proofs.

For example, is there a randomness-e�cient way of reducing the error probability of an interactive

proof? Or is there a randomness-e�cient way to transform any interactive proof into an AM game?

Another direction of research is to investigate the role of randomness in zero-knowledge inter-

active proofs. The current situation for zero-knowledge exactly parallels that which existed for IP

before our work. Namely, although there are many results known on reducing interaction, nothing

is known about reducing randomness. A speci�c question is to �nd a randomness-e�cient technique

of reducing the error probability of a zero-knowledge proof.

Another problem is to device methods for randomness-e�cient error-reduction in multi-prover

interactive proof systems [12]. This is particularly interesting in the context of the recent use

of multi-prover proof systems to derive results on the hardness of approximation of optimization

problems. Speci�cally, appropriate reductions in the randomness complexity of error reduction for

two prover one round proof systems would lead to improvement of the results of [9, 22, 8, 37].

2 Preliminaries

We review de�nitions and notation for the Arthur-Merlin games of Babai [5] and Babai and Moran

[6], introduce the accepting probability function, and conclude by showing we can without loss of

generality restrict our attention to a special case.

2.1 Arthur-Merlin Games

An Arthur-Merlin game has two players called Merlin and Arthur. They have a common input;

we will denote it by w and its length by n. A designated start player makes the �rst move and
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after that the players alternate moves. The total number of moves is a polynomially bounded,

polynomial time computable function of the input length which we usually denote by G. A player's

move consists of sending the other player a message. Merlin's message in any of his moves is a q(n)

bit string, computed as an arbitrary function of the common input and Arthur's previous messages.

Arthur's messages are more special: each consists of the outcomes of l(n) independent, unbiased

coins. Here l and q are �xed polynomially bounded, polynomial time computable functions. When

Merlin's last move is completed, Arthur applies a polynomial time computable binary predicate �

to the common input w and the transcript c of the conversation, and is said to accept if and only

if the value of �(w; c) is 1. We call � Arthur's decision predicate. Merlin is said to win the game if

Arthur accepts w. Note that there is no restriction on Merlin's computational power.

We will use a bit s 2 f0; 1g to denote the start player, with 0 standing for Merlin and 1

for Arthur. We call (�;G; l; q; s) an Arthur strategy. A Merlin strategy for the game de�ned by

the Arthur strategy A = (�;G; l; q; s) is a function which, given the common input and the l bit

messages received so far from Arthur, returns a q bit string which is Merlin's next message.

We write G; l; q for G(n); l(n); q(n) respectively, whenever the input length n is understood.

Arthur's i-th message will be typically denoted ri while Merlin's will be denoted yi. GA will denote

the number of Arthur moves and GM = G�GA the number of Merlin moves in the game.

A round consists of an Arthur move followed by a Merlin one, or vice-versa. To simplify

notation we usually assume that the game consists of G=2 rounds with Arthur playing �rst and

Merlin second in each round. We call such a game symmetric. We stress that the consideration of

symmetric games is only for notational ease: all our theorems extend to the general setting. When

A = (�;G; l; q; s) is the Arthur strategy of a symmetric game we let g = G=2 denote the number of

rounds. For the rest of this section we assume the game is symmetric.

Let A = (�;G; l; q; s) be an Arthur strategy and let t � g. An A-Arthur-history is a sequence

of strings r1y1 � � �rtyt where rj 2 f0; 1gl and yj 2 f0; 1gq for j = 1; : : : ; t. An A-Merlin-history

is a sequence of strings of the form r1y1 � � �rt�1yt�1rt where rj 2 f0; 1gl and yj 2 f0; 1gq for

j = 1; : : : ; t. An A-history is either an A-Arthur-history or an A-Merlin-history. If t = g we call an

A-Arthur-history an A-conversation and otherwise we call it a proper A-Arthur-history. When A

is understood we omit mention of it.

Let M be a Merlin strategy for the game de�ned by A and let t � g. An Arthur history

r1y1 � � �rtyt in which yj = M(w; r1 : : : rj) for j = 1; : : : ; t is called an (A;M)-Arthur-history. A

Merlin history r1y1 � � �rt�1yt�1rt in which yj = M(w; r1 : : : rj) for j = 1; : : : ; t � 1 is called an

(A;M)-Merlin-history. If t = g we call a (A;M)-Arthur-history a (A;M)-conversation. In the

game between A and M each (A;M) conversation occurs with probability 2�lg .

The assumption that the players send the same number of bits in each of their moves (l for

Arthur and q for Merlin) is made only for notational simplicity. All our results generalize to games

in which the number of bits sent in move i is a function of i.

2.2 Arthur-Merlin Proof Systems

Fix a Merlin strategy and a common input w. Then there is a probability (de�ned by Arthur's

random moves) that Arthur will accept. One can now de�ne Arthur-Merlin proof systems for a

language L just like one de�nes interactive proof systems. Namely, we say that an Arthur strategy

A = (�;G; l; q; s) de�nes an Arthur-Merlin proof system for L if whenever w 2 L there exists a

strategy for Merlin under which Arthur accepts with probability � 2=3 (the completeness condition)

and whenever w 62 L the probability that Arthur accepts is � 1=3 regardless of Merlin's strategy

(the soundness condition). Note that since Merlin is computationally unbounded we may, for both
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conditions, simply assume he plays an optimal winning strategy. Note also that this strategy is

deterministic, which justi�es our assuming Merlin deterministic in the �rst place.

As we said above, it actually su�ces to consider an \optimal Merlin" that chooses all its mes-

sages in a way maximizing Arthur's accepting probability. This leads to the much more convenient

formulation of Arthur-Merlin games in terms of max-average combinatorial games as developed by

[5, 6]. We capture this formulation below with the de�nition of the accepting probability function

of the game.

Note that the optimal Merlin strategy depends on the Arthur strategy A. For any Arthur

strategy A we �x a particular optimal Merlin strategy which we denote by M
opt
A .

2.3 The Accepting Probability Function

The game tree and its accepting probability function which we now describe are a convenient way

of analyzing an Arthur Merlin game (cf. [5, 6]).

Fix an input length n. We visualize a tree of depth equal to the number of moves 2g(n). Nodes

in this tree are named according to their level: those at even levels are called Arthur nodes while

those at odd levels are called Merlin nodes. An Arthur node has 2l(n) children, and the set of

branches that lead to these children are labeled by the strings from f0; 1gl(n). Similarly, a Merlin

node has 2q(n) children, and the set of branches that lead to these children are labeled by the strings

from f0; 1gq(n).
The execution of the game de�nes a path beginning at the root. The �rst message r1 that

Arthur sends corresponds to picking the branch out of the root labeled r1, and the game moves to

the corresponding child of the root. It is now Merlin's turn, and his response y1 similarly selects

one of the children of this node. This goes on, with the players alternating, until a leaf is reached.

We label each node of the game tree with an accepting probability chosen so that it bounds

the probability that Arthur will accept in the remaining part of the game (the probability is over

Arthur's messages in the rest | that is in the subtree rooted at this node | of the game). More

formally, we have the following de�nition of the accepting probability function for an Arthur strategy

A = (�; g; l; q; 1). This is a variation of what [6] call the payo� function.

� The value at a conversation (leaf of the tree) is the value of A's deciding predicate:

accA(w; r1y1 : : : rgyg) = �(w; r1y1 : : :rgyg)

� The value at a proper Arthur history (even level internal node of the tree) is the maxi-

mum value of all possible extensions by one move of Merlin: accA(w; r1y1 : : : rt�1yt�1rt) =

maxy accA(w; r1y1 : : : rt�1yt�1rt:y) for t = g(n); : : : ; 1.

� Finally the value at a Merlin history (odd level internal node of the tree) is the average value of all

its extensions by one move of Arthur: accA(w; r1y1 : : : rt�1yt�1) = Er accA(w; r1y1 : : :rt�1yt�1:r)

for t = g(n); : : : ; 1.

The following fact is a direct consequence of the de�nition.

Proposition 2.1 Let A be an Arthur strategy. Let t � g and let r1y1 : : :rtyt be an A-Arthur-

history. Then

accA(w; r1y1 : : : rt�1yt�1:rtyt) � accA(w; r1y1 : : :rt�1yt�1:rt)

with equality holding when yj = M
opt
A (r1 : : :rj�1) for all j = 1; : : : ; t.

A's accepting probability on input w is de�ned as accA(w)
def
= accA(w; �), where � is the empty
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string. The error probability of A on input w with respect to a language L is de�ned as

errLA (w) =

(
1� accA(w) if w 2 L

accA(w) otherwise.

The error probability of A with respect to L is the map from N ! [0; 1] whose value at n is

supjwj=n err
L
A (w). Thus an Arthur strategy A de�nes a proof system for L if its error probability

with respect to L is � 1=3.

We will denote by lg the logarithm in base 2, and by log the logarithm in an unspeci�ed base.

2.4 Restriction to a Special Case

For technical reasons it will be convenient to assume that Arthur messages are of length not less than

c logn, for a speci�c constant c that will arise in our construction. This assumption does not reduce

the generality of our results, since for every c > 0, any Arthur-Merlin game can be transformed |

without increasing the number of rounds or, up to constant factors, the total number of coin tosses

| into one in which Arthur's messages are of length not less than c logn. More precisely, we have

the following.

Proposition 2.2 There is a constant � such that the following is true. Let c be positive and

suppose A = (�;G; l; q; s) de�nes an Arthur-Merlin proof system for L in which l(n) � c lgn. Then

we can construct A� = (��; G�; l�; q�; 1) which de�nes an Arthur-Merlin proof system for L in which

c lgn � l�(n) � �c lgn, the number of moves G� is at most G, and the total number of coins 
ipped

by Arthur increases by a factor of at most �.

The idea of the proof is to group consecutive rounds of the given game into blocks in such a way

that Arthur is sending just over c lgn bits per block, and then \collapse" each block into a single

round. Merlin begins this round by sending his responses to all possible messages of A for the

block, and Arthur then selects one sequence of responses at random. For completeness we provide

details in Appendix A.

3 The Basic Template for our Error-Reduction

We call error-reduction the process of reducing the error probability of an Arthur-Merlin proof

system from � 1=3 to � 2�k for a given polynomially bounded k = k(n).

As an introduction to our error-reduction technique it is helpful to review the standard one

[5, 6]. Given A = (�; g; l; q) de�ning an Arthur-Merlin proof system for L with error � 1=3 we

are required to design A� de�ning an error � 2�k Arthur-Merlin proof system for L. The solution

is to play in parallel m = O(k) independent copies of the old game (the one de�ned by strategy

A). The independence of Arthur's moves in the various \subgames" is used to prove that the error

probability decreases exponentially with the number of subgames.

More concretely, A� will, in round t, send ml random bits to Merlin. These bits are regarded

as a sequence r1t : : : r
m
t of m di�erent round t messages of A. Merlin then responds with strings

y1t : : : y
m
t , and yit is regarded as the response of Merlin to rit in the i-th subgame (i = 1; : : : ; m).

This continues for g rounds. Finally, A� will accept in the new game i� a majority of the subgames

were accepting for the original A. The fact that A� has the desired error is easy to show. However,

the cost of this argument is in the large number of coin tosses used by A�; namely O(lk) coin tosses

per round (to be contrasted with the l coin tosses used in each round of the original game).

9



subgame 1 subgame 2 : : : subgame m

Arthur's message s1 speci�es:

Merlin's response:
...

Arthur's message sg speci�es:

Merlin's response:

r11
y11
...

r1g
y1g

r21
y21
...

r2g
y2g

: : :

: : :

rm1
ym1
...

rmg
ymg

9>>>>>=
>>>>>;

g rounds

Figure 1: Framework of Our Error-Reduction Protocol

Our solution will stay within the template of playing several copies of the original game in

parallel, evaluating each of these subgames individually at the conclusion of the game, and, based

on the outcomes of the subgames, deciding whether or not to accept. Our subgames, however, will

be dependent copies of the original game, and we will prove that although these copies depend on

one another the error probability decreases exponentially with our \investment" in the randomness

of each round.

More precisely, Arthur's message in round t will consist of a randomly chosen \seed" st. This

seed, via an appropriate deterministic process, which we will later describe, speci�es a sequence

of (statistically dependent) strings r1t : : : r
m
t , where m = m(n) is a function of our deterministic

process. These strings will play the role of the original Arthur's round t messages for the di�erent

subgames. The Merlin of the new game computes the sequence of messages speci�ed by the seed

and replies with a sequence of m strings y1t : : :y
m
t that will be interpreted as his answers in the

corresponding m subgames (see Figure 1). At the end, A� evaluates �(w; ri1y
i
1 : : : r

i
gy

i
g) for each

i = 1; : : : ; m and decides whether or not to accept based on some function of these values.

We stress that Arthur's moves in the di�erent rounds are still statistically independent (a new

random seed is selected at each round), and that in round t, A� actually sends the (uniformly

selected) seed st and both parties compute the sequence r1t ; : : : ; r
m
t speci�ed by the seed st.

Within this template we rely on a combination of two di�erent ideas. The �rst idea is to

specify r1t ; : : : ; r
m
t so that this sequence is pairwise independently distributed. We show that we

can approximate the average accepting rate of independent subgames and thereby reduce the error

to � = n�O(1); the restriction on � comes from the fact that the message lengths in the game we

construct here are polynomial in ��1. The second idea is to play many copies of this new game in

each of which the error is non-negligible (i.e. n�O(1)) and take the median value, relying on the

fact that the probability that a majority of the games are not representative is exponentially small.

In the implementation of this step we rely on random walks on explicitly constructed expander

graphs.

We now elaborate on each one of these ideas in turn.

4 Reducing Error to any Non-Negligible Fraction

Here we show how to reduce the error probability to n�O(1) at the cost of multiplying by a constant

factor the number of coin tosses used by Arthur in each round. More precisely, we will prove the

following

10



Theorem 4.1 There is a constant � such that the following is true. Let c be positive and let

A = (�;G; l; q; s) be an Arthur strategy with error probability at most 1
2 � n�c with respect to the

language L. Let �: N ! [0; 1] have polynomially bounded inverse. Then we can construct another

Arthur strategy A� = (��; G; �l; G3
An

2c��1q; s) with error probability at most � with respect to L.

We will see that if we restrict our attention to games in which Arthur's message length l is at least

lg(G3
An

2c��1) then the value of the constant � can be taken to be 2. In particular this is true if

l = !(logn). Otherwise we have to apply Proposition 2.2 to make l � lg(G3
An

2c��1) and this incurs

extra constant factors in coins.

We now proceed to the proof. For notational simplicity we will assume the given game is

symmetric and let g = G=2 be the number of rounds. We begin with a review of the constructions

of pairwise independent sequences. We then give an overview of the protocol and the intuition

behind the analysis. We conclude with a more formal proof of correctness.

4.1 Pairwise Independent Generators

If m is an integer, we let [m]
def
= f1; : : : ; mg.

De�nition 4.2 Let X1; : : : ; Xm be random variables de�ned over a common probability space

and assuming values in a common range R. We say that X1; : : : ; Xm are pairwise independent if

P[Xi1 = x1; Xi2 = x2] = P[Xi1 = x1] �P[Xi2 = x2] for all x1; x2 2 R and all distinct i1; i2 2 [m].

Often we will be interested in random variables which assume all values in their range equiprobably.

In the conventional terminology we have

De�nition 4.3 A random variable is said to be uniform over a �nite set R if it assumes each value

in R with probability 1=jRj.

We will need (deterministic) procedures which take a O(l) bit string s and, in time polynomial in

l and m, specify a sequence of m � 2l strings of l bits each with the property that if s is chosen

at random then the resulting sequence is pairwise independent and uniform over f0; 1gl (cf. [17]).
Accordingly, we make the following

De�nition 4.4 Let P (�; �; �) be a polynomial time algorithm which outputs strings of length equal

to the length of its �rst input. We say that P is a pairwise independent generator if there is a

constant cP > 0 such that Pl;1; : : : ; Pl;2l are pairwise independent and uniform over f0; 1gl for each
l, where Pl;i : f0; 1gcP l ! f0; 1gl is de�ned by Pl;i(s) = P (1l; i; s) and is regarded as a random

variable over the uniform distribution on f0; 1gcP l.

It is well known that pairwise independent generators exist. For completeness, let us sketch two

implementations.

The �rst implementation [18] uses �nite �elds. We identify the sets f0; 1gl and [2l] with GF(2l).

Using Shoup's (deterministic) algorithm [43] we can �nd a degree l irreducible polynomial over

GF(2) in time polynomial in l, and this yields the ability to do polynomial time arithmetic in the

�eld. We now regard s 2 f0; 1g2l as the concatenation of two �eld elements a and b and then let

P (1l; i; s) = ai+ b, the arithmetic being in the �nite �eld. The pairwise independence follows from

the fact that for any pair of points (i1; x1); (i2; x2) with i1 6= i2 there is a unique polynomial of

degree � 1 which passes through these points.

11



It is easy to see that if P is a pairwise independent generator then its associated constant cP is

� 2. So the above implementation is optimal in the number of random bits used.

Goldreich and Levin [25] propose an alternative implementation which, although it uses slightly

more random bits, has the advantage of being more e�cient in practice. In order to describe it we

�rst recall that a l-by-l matrix [aij ] is Toeplitz if ai;j = ai�1;j�1 for each i; j = 2; : : : ; l, and thus

such a matrix is speci�ed by its �rst row and column. The implementation of [25] consists of using

a 3l � 1 bit seed s to specify an l bit vector b and an l by l (0; 1)-Toeplitz matrix M and setting

P (1l; i; s) = Mi+ b, where i is being regarded as a l bit vector and the arithmetic is mod 2.

4.2 The Protocol: Overview

We play m = g3n2c��1 copies of the original game in parallel, with the sequence of strings to play

the role of A's messages being pairwise independently distributed. More precisely, in each round t

Arthur sends a (random) cP l bit long seed st and this is used, via P , to specify the sequence of m

strings r1t : : : r
m
t 2 f0; 1gl which will play the role of A's round t messages. A� accepts i� a majority

of the subgames accept.

The idea of the analysis is to guarantee that at each round the sequence of messages speci�ed by

the seed approximates, with very high probability, the average accepting probability of a sequence

of independently chosen messages. That is, for each t = 1; : : : ; g, assuming s1; : : : ; st�1 have been

chosen, we guarantee that with high probability

1

m

mX
i=1

accA(w; r
i
1y

i
1 : : : r

i
t�1y

i
t�1:r

i
t) �

1

m

mX
i=1

Er accA(w; r
i
1y

i
1 : : :r

i
t�1y

i
t�1:r)

for the random choice of st, where r
1
j : : : r

m
j is the sequence speci�ed by sj . Indeed, if for all rounds

we can guarantee that all seeds selected provide good approximations in this sense, then the fraction

of accepting subgames in the new game will approximate the accepting probability in the original

game.

More precisely we call a seed st bad for a history s1~y1 � � �st�1~yt�1 if the values
1
m

Pm
i=1accA(w; r

i
1y

i
1 : : : r

i
t�1y

i
t�1:r

i
t) and 1

m

Pm
i=1accA(w; r

i
1y

i
1 : : : r

i
t�1y

i
t�1) di�er by more than

n�cg�1, and then show that the fraction of seeds bad for any history is inversely proportional

to m. The appropriate choice of m yields a game in which, with high probability, conversations

have all seeds good for their corresponding histories, and these conversations are \representative".

The restriction that � have a polynomially bounded inverse comes from the fact that Merlin's

message length in the game we construct here is polynomial in ��1.

Let us now describe all this in more detail.

4.3 The Protocol: Speci�cation and Analysis

We �x a pairwise independent generator P and denote by cP its associated constant.

De�nition 4.5 Let m � 2l be a polynomial. Then we let Am denote the Arthur strategy

(�m; g; cP l;mq; s), where

�m(w; s1~y1 � � �sg~yg) =
(

1 if jf i 2 [m] : �(w; ri1y
i
1 : : : r

i
gy

i
g) = 1 gj � m

2
0 otherwise :
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Here rit = P (1l; i; st) and Merlin's round t message ~yt 2 f0; 1gmq is parsed as ~yt = y1t : : :y
m
t with

yit 2 f0; 1gq, for i = 1; : : : ; m and t = 1; : : : ; g.

We call Arthur's round t message in this game a seed , and continue to denote Merlin's round t

message by ~yt = y1t : : : y
m
t with yit 2 f0; 1gq. We will show that by choosing m to be a suitable

polynomial in g and ��1 the error probability of Am with respect to L can be made at most �. We

begin with the following

De�nition 4.6 Let h = s1~y1 � � �st�1~yt�1 be an Am-Arthur-history, and st 2 f0; 1gcP l a seed. We

say that st is bad for h if����� 1m
mX
i=1

h
accA(w; r

i
1y

i
1 : : : r

i
t�1y

i
t�1:r

i
t)� accA(w; r

i
1y

i
1 : : : r

i
t�1y

i
t�1)

i����� � 1

ncg

where rij = P (1l; i; sj) for i = 1; : : : ; m and j = 1; : : : ; t. We say st is good for h if it is not bad

for h. We say that a Am-conversation s1~y1 � � �sg~yg is representative if for each t = 1; : : : ; g it is the

case that st is good for s1~y1 � � �st�1~yt�1.

The virtue of representative conversations is that they always yield the correct outcome: Am accepts

a representative conversation i� the input is in the language. More precisely, we have the following

Lemma 4.7 Let s1~y1 � � �sg~yg be a representative Am conversation. Then

(1) Suppose w 2 L and ~yt = y1t : : :y
m
t is the particular sequence of messages de�ned for t = 1; : : : ; g

and i = 1; : : : ; m by yit = M
opt
A (w; ri1 : : :r

i
t), where r

i
t = P (1l; i; st). Then �m(w; s1~y1 � � �sg~yg) =

1.

(2) Suppose w 62 L. Then �m(w; s1~y1 � � �sg~yg) = 0.

Proof: Suppose �rst that w 2 L and yit = M
opt
A (w; ri1 : : :r

i
t) where r

i
t = P (1l; i; st). Then

accA(w)�
1

m

mX
i=1

accA(w; r
i
1y

i
1 : : : r

i
gy

i
g)

=

gX
t=1

1

m

mX
i=1

h
accA(w; r

i
1y

i
1 : : :r

i
t�1y

i
t�1)� accA(w; r

i
1y

i
1 : : :r

i
ty

i
t)
i

=

gX
t=1

1

m

mX
i=1

h
accA(w; r

i
1y

i
1 : : :r

i
t�1y

i
t�1)� accA(w; r

i
1y

i
1 : : :r

i
t�1y

i
t�1:r

i
t)
i

<

gX
t=1

1

m

mX
i=1

1

ncg
=

1

nc
:

Here the second equality is by Proposition 2.1 and the inequality is by the fact that the conversation

s1~y1 � � �sg~yg is representative. Noting that w 2 L implies accA(w) � 1
2 + n�c we get

1

m

mX
i=1

accA(w; r
i
1y

i
1 : : : r

i
gy

i
g) > accA(w)�

1

nc
� 1

2
;

and hence �m(w; s1~y1 � � �sg~yg) = 1. The argument for w 62 L is much the same, but for completeness

let us give the details. Regardless of the values of ~y1; : : : ; ~yg we have

1

m

mX
i=1

accA(w; r
i
1y

i
1 : : : r

i
gy

i
g)� accA(w)
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=

gX
t=1

1

m

mX
i=1

h
accA(w; r

i
1y

i
1 : : :r

i
ty

i
t)� accA(w; r

i
1y

i
1 : : : r

i
t�1y

i
t�1)

i

�
gX

t=1

1

m

mX
i=1

h
accA(w; r

i
1y

i
1 : : :r

i
t�1y

i
t�1:r

i
t)� accA(w; r

i
1y

i
1 : : : r

i
t�1y

i
t�1)

i

<

gX
t=1

1

m

mX
i=1

1

ncg
=

1

nc
;

again by Proposition 2.1 and the fact that the conversation s1~y1 � � �sg~yg is representative. But this
time accA(w) � 1

2 � n�c and thus we get

1

m

mX
i=1

accA(w; r
i
1y

i
1 : : : r

i
gy

i
g) < accA(w) +

1

nc
� 1

2
;

and hence �m(w; s1~y1 � � �sg~yg) = 0.

Next we show that the fraction of seeds bad for any particular history is inversely proportional to

m.

Lemma 4.8 Let m � 2l and h = s1~y1 � � �st�1~yt�1 an Am-Arthur-history. Then at most a g2n2c=m

fraction of the seeds st 2 f0; 1gcP l are bad for h.

Proof: Let rij = P (1l; i; sj) for i = 1; : : : ; m and j = 1; : : : ; t � 1. For each i = 1; : : : ; m de�ne

Xi : f0; 1gcP l ! [0; 1] by Xi(s) = accA(w; r
i
1y

i
1 : : :r

i
t�1y

i
t�1:P (1

l; i; s)). Note that X1; : : : ; Xm are

pairwise independent when regarded as random variables over the uniform distribution on f0; 1gcP l.
It follows that Var[

Pm
i=1Xi] =

Pm
i=1Var[Xi], and since Var[Xi] � 1 we have Var[

Pm
i=1Xi] � m. So

by Chebyshev's inequality we get

P
h

j 1
m

Pm
i=1(Xi �E[Xi])j � 1

ncg

i
= P

h
j
Pm

i=1 (Xi �E[Xi])j � m
ncg

i

� Var[
Pm

i=1Xi]

(m=(ncg))2

� g2n2c

m
:

To conclude the proof we only need to note that E[Xi] = accA(w; r
i
1y

i
1 : : :r

i
t�1y

i
t�1) by de�nition of

the accepting probability function.

We can use the above lemma to show that representative conversations occur with high probability

when m is appropriately chosen, and thereby derive the desired conclusion.

Lemma 4.9 Let m = g3n2c��1 and assume m � 2l. Then Am has error probability at most � with

respect to L.

Proof: Fix any Merlin strategy M for the game de�ned by Am. By Lemma 4.8 the probability

that a (Am;M) conversation is representative is at least

1� g � g
2n2c

m
= 1� � :

The conclusion now follows from Lemma 4.7.
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If l � lg(g3n2c��1) and we use the �nite �eld implementation of pairwise independent generators

then this says we can reduce the error probability to � at the cost of doubling the number of coin

tosses used per round. To complete the proof of Theorem 4.1 we now only need to note that by

Proposition 2.2 we may assume l � lg(g3n2c��1) at the cost of a constant factor in coins.

5 Error Reduction at Logarithmic Cost

We now show how to reduce the error probability to 2�k using O(k) additional random bits per

round, where k = k(n) is !(logn) and polynomially bounded. More precisely, we prove the following

Theorem 5.1 There is a constant � such that the following is true. Let c be positive and let

A = (�;G; l; q; s) be an Arthur strategy with error probability � 1
2 �n�c with respect to the language

L. Let k : N ! N be polynomially bounded and !(logn). Then we can construct another Arthur

strategy A� = (��; G; �(l+ k); 2000 �G7
Ak

5n2cq; s) with error probability � 2�k with respect to L.

For the proof again assume for simplicity that the given game is symmetric and let g = G=2. The

construction uses explicit constructions of expander graphs.

5.1 Expander Graphs and the Expander Path Lemma

De�nition 5.2 We call G = fGlgl�1 a family of graphs if Gl is for each integer l � 1 a (undirected)

graph on the vertex set f0; 1g2l. We say that G is explicitly constructible if there is a polynomial

time algorithm which on input x 2 f0; 1g2l outputs the list of neighbors of x. We say that G is

d-regular if each Gl is d-regular, and bipartite if each Gl is bipartite.

De�nition 5.3 Let G = fGlgl�1 be a family of d-regular graphs. We denote by A(Gl) the matrix

obtained by dividing every entry of the adjacency matrix of Gl by d. We denote by �2(Gl) the

second eigenvalue of A(Gl). We call �2(G) = supl�1 �2(Gl) the second eigenvalue of G.

De�nition 5.4 Let G be a family of d-regular graphs. We call G a (family of) expanders if

�2(G) < 1.

Gabber and Galil [23] demonstrate the existence of families of explicitly constructible, d-regular,

bipartite expanders. It will be convenient for us to assume the degree d is a power of 2. By adding

edges we can easily modify the construction of [23] to achieve this; via Alon's result [4] we can be

sure that the resulting graph is still an expander. To summarize:

Theorem 5.5 [23] There exists an explicitly constructible family of d-regular expanders with the

degree d being a power of 2.

Let G be a d-regular undirected graph and A the matrix obtained by dividing every entry of

the adjacency matrix of G by d. A random walk on G is the sequence of vertices visited by a

\token" which starts at a random vertex and then moves according to the following transition rule:

if at time t the token is at vertex x then at time t + 1 it moves to a random neighbor of x. In

other words, if Xt is the random variable which describes the position of the token at time t then

fXtgt�0 is the Markov chain whose transition probability matrix is A and whose initial position

X0 is uniform over the vertex set of G. A is the transition probability matrix of the random walk.
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In a modi�ed random walk, the token at any point in time �rst 
ips a coin, and if the coin

value is 1 it performs the random walk transition. Otherwise it stays where it is. In other words

its position is described by the Markov chain whose transition probability matrix is �A = 1
2(I +A),

where I is the N by N identity matrix. The initial position is again uniformly distributed over the

vertex set.

Note that a modi�ed random walk of length k is speci�ed by 2l+k(1+lg d) = 2l+O(k) random

bits.

A property of modi�ed random walks on expanders is the main tool of this section.

Lemma 5.6 (Expander Path Lemma) For any family G = fGlg of expander graphs there is a

constant � � 1 such that the following is true. Suppose � < 1=2 and let L = � lg ��1. Let v 2 N

and let B1; : : : ; Bv be subsets of the vertex set f0; 1g2l which have density at most �. Let b � v be

an integer and let 1 � j1 < : : : < jb � v be a sequence of indices between 1 and v. Consider a

modi�ed random walk of length Lv on the expander and denote by Yj the vertex visited at time Lj

for j = 1; : : : ; v. Then P[Yj1 2 Bj1 ; : : : ; Yjb 2 Bjb ] � (2�)b=2.

We call � the expansion constant of G; it depends only on the second eigenvalue of G. A proof of

Lemma 5.6, following the ideas of [3], appears in Appendix B. A variant of this lemma appears in

[24].

5.2 The Protocol: Overview

We will play in parallel v = O(k= log(kg)) copies of the game presented in x4, setting m such that

the error in each of these games is at most an appropriately chosen �. Since each of our subgames

consists itself of m subgames, we will be playing a total of vm subgames which are arranged in v

blocks each consisting of m subgames. The sequence of v seeds which specify the original Arthur's

messages in each round is itself speci�ed by a random walk on the expander.

More precisely, Arthur's message in the t-th round consists of a \super-seed" st of length

cP l+O(k) (the constant in the O depends on the second eigenvalue and the degree of the expander).

This super-seed is used to specify a random walk of length O(k) on the expander. We denote the

vertices visited at intervals of length L = O(log ��1) by s1t ; : : : ; s
v
t 2 f0; 1g2l. Each s

j
t speci�es via

P a sequence of m strings of l bit each (as in x4). We denote this sequence by r
j;1
t : : : r

j;m
t where

m = g3n2c��1. The string r
j;i
t is regarded as A's round t move in the i-th subgame of the j-th block.

Merlin's (answer) message in round t has the form y
1;1
t : : :y

1;m
t � � �yv;1t : : :y

v;m
t where y

j;i
t is called

Merlin's answer in the i-th subgame of the j-th block. After all g rounds are completed Arthur

evaluates � in each of the subgames and accepts i� in a majority of blocks there is a majority of

accepting conversations.

To analyze the game, we remind the reader that in each block of m subgames, for each round,

at most a g2n2c=m = � fraction of the seeds are bad for the current history (Lemma 4.8). By the

Expander Path Lemma, the probability that a particular sequence of b seeds is bad (in a sequence

of v seeds generated by the random walk) is bounded above by (2�)b=2. Thus, the probability

that in the g rounds of the game at least b = v=2 of the vg seeds are bad is bounded above by�vg
b

� � (2�)b=2 and by appropriate choices of the parameters this can be made � 2�k. It follows that

with probability � 1 � 2�k, the conversations in � 1=2 of the blocks are representative. We can

conclude by applying the analysis of x4.
Let us now specify all this in more detail.
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5.3 The Protocol: Speci�cation and Analysis

We �x an explicitly constructible family of d-regular expander graphs fGlg with d being a power

of 2, and let � denote its expansion constant. We also �x a pairwise independent generator P

whose associated constant cP we assume (without loss of generality) to be even. To specify the

new Arthur strategy we �rst de�ne the parameters

� =
1

200 k4g4

L = � lg ��1 = O(log(kg))

v =
10�k

L
=

10k

lg ��1
= O

�
k

log(kg)

�
m = g3n2c��1

� = 10�(1+ lg d) = O(1) :

De�nition 5.7 For t = 1; : : : ; g let st 2 f0; 1gcP l+�k denote Arthur's round t message; we call st
a super-seed . For j = 1; : : : ; v let s

j
t 2 f0; 1gcP l be the vertex visited at time Lj by the modi�ed

random walk on GcP l=2 that is speci�ed by st. For i = 1; : : : ; m let r
j;i
t = P (1l; i; s

j
t). We let A�

denote the Arthur strategy (��; G; cP l + �k;mvq; s), where

��(w; s1~y
1
1 : : :~y

v
1 � � �sg~y 1

g : : :~y
v
g ) =

(
1 if jf j 2 [v] : �m(w; s

j
1~y

j
1 � � �sjg~y jg ) = 1 gj � v

2
0 otherwise :

Here �m is the decision predicate of the game of De�nition 4.5 and the mvq bit string that is

Merlin's round t message is being parsed as ~y 1
t : : :~y

v
t where ~y

j
t = y

j;1
t : : : y

j;m
t with y

j;i
t 2 f0; 1gq.

De�nition 5.8 If C = s1~y
1
1 : : :~y

v
1 � � �sg~y 1

g : : : ~y
v
g is a A� conversation and j 2 [v], we call

s
j
1~y

j
1 � � �sjg~y jg a sub-conversation of C.

Note that a sub-conversation of a A� conversation is an Am conversation. Our goal will be to show

that if M is any Merlin strategy for the game de�ned by A� then at least half the sub-conversations

of each (A�;M) conversation are representative with probability � 1 � 2�k. We begin with the

following

De�nition 5.9 Let M be a Merlin strategy for the game de�ned by A�. Let s1; : : : ; st�1 be a

sequence of super-seeds, and let ~y 1
u : : :~y

v
u = M(w; s1 : : : su) for u = 1; : : : ; t � 1. For each block

j = 1; : : : ; v and each round t = 1; : : : ; g let

B
j
t (M ; s1; : : : ; st�1) = f sjt 2 f0; 1gcP l : sjt is bad for the Am history s

j
1~y

j
1 � � �sjt�1~y

j
t�1 g

denote the set of seeds which are bad for the current history in this block.

We note that if C = s1~y
1
1 : : :~y

v
1 � � �sg~y 1

g : : : ~y
v
g is a (A�;M) conversation and for each t = 1; : : : ; g it

is the case that s
j
t 62 B

j
t (M ; s1; : : : ; st�1) then the sub-conversation s

j
1~y

j
1 � � �sjg~y jg is representative.

Lemma 5.10 Let M be a Merlin strategy for the game de�ned by A�. Then

P
h
jf (t; j) 2 [g]� [v] : s

j
t 2 B

j
t (M ; s1; : : : ; st�1) gj � v

2

i
� 2�k ;

where the probability is over Arthur's random choice of s1; : : : ; sg.
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Proof: By Lemma 4.8 and our choice of � we know that the density of B
j
t (M ; s1; : : : ; st�1) is at

most � for each block j and round t. Now �x t and assume s1; : : : ; st�1 have been chosen. Let b � v

and suppose 1 � j1 < : : : < jb � v is a sequence of b indices between 1 and v. By Lemma 5.6 we

know that

P
h
s
j1
t 2 B

j1
t (M ; s1; : : : ; st�1); : : : ; s

jb
t 2 B

jb
t (M ; s1; : : : ; st�1)

i
� (2�)b=2 ;

the probability being over Arthur's random choice of st. It follows that

P
h
jf (t; j) 2 [g]� [v] : s

j
t 2 B

j
t (M ; s1; : : : ; st�1) gj � v

2

i
�
 
vg

v=2

!
� (2�)v=4 ;

the probability being over Arthur's random choice of s1; : : : ; sg. We bound this last expression by

(vg)v=2(2�)v=4 = (vg
p
2� )v=2. Substituting

p
2� = (10k2g2)�1 and v = 10k= lg ��1 this is

�
�

10kg

10k2g2 lg ��1

� 10k

2 lg ��1

=

�
1

kg lg ��1

� 5k

lg ��1

=
�
2�k

�5 lg(kg lg ��1)

lg ��1
:

But 1 � lg ��1 � O(1) + 4 lg(kg) so 5 lg(kg lg ��1) � lg ��1 for large enough n and hence the above

is � 2�k as desired.

Now �x an arbitrary Merlin strategy for the game de�ned by A�. Lemma 5.10 implies that

P
h
jf j 2 [v] : s

j
t 62 B

j
t (M ; s1; : : : ; st�1) for all t = 1; : : : ; g gj > v

2

i
� 1� 2�k ;

or, in other words, at least half the sub-conversations of any (A�;M) conversation are representative

with probability � 1 � 2�k . So by Lemma 4.7 and the de�nition of �� it follows that the error

probability of A� with respect to L is � 2�k. This concludes the proof of Theorem 5.1.

6 Randomness-E�cient Approximation

Implicit in the previous sections is a new sampling method. An application of particular interest

is to the problem of approximating the average value of an arbitrary real valued function.

6.1 De�nitions

For f : f0; 1gn ! [0; 1] we let E[f ]
def
= 2�n

P
x2f0;1gn f(x) denote the average value of f . An (l; �; �)-

approximator is a two stage process. In a �rst, randomized, sampling stage, we pick a collection of

sample points x1; : : : ; xt 2 f0; 1gl. In a second, deterministic, estimation stage, we compute, as a

function of f(x1); : : : ; f(xt), an estimate. We require that with probability � 1� � this estimate is

within � of E[f ]. Let us now specify this more precisely. We begin with the sampling stage.

De�nition 6.1 Let l; t; � : N! N. An (l; t; �)-sampler is a (deterministic) algorithm S(�; �) which
runs in time polynomial in its �rst input, and, on input 1n and a seed s 2 f0; 1g�(n), outputs a
sequence of strings r1; : : : ; rt(n) 2 f0; 1gl(n) which we call sample points. The number of sample

points is t. For i = 1; : : : ; t(n) we will denote by Si(1
n; s) the i-th sample point output by S on

input 1n and s 2 f0; 1g�(n).

As we will see when we complete the speci�cation of (l; �; �)-approximation, the seed for the sampler

will be chosen at random. So the seed length � will represent the number of coin tosses that the
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sampler uses. We now turn to the estimation stage.

De�nition 6.2 Let l; t: N! N. A (l; t)-estimator is a (deterministic) polynomial time algorithm

E(�; �) which on input 1n and (x1; : : : ; xt(n)) 2 Rl(n) outputs a real number between 0 and 1.

If Fn is for each integer n a set of functions mapping f0; 1gn to [0; 1] then we will refer to F = fFng
as a class of functions. An approximator consists of a sampler S and an estimator E, and associated

to it is the class of functions which it succeeds in approximating.

De�nition 6.3 Let l: N ! N and �; � : N ! [0; 1]. Let S be a (l; t; �)-sampler and E a (l; t)-

estimator, for some t; � : N! N. For each n and f : f0; 1gl(n) ! [0; 1] we de�ne An;f : f0; 1g�(n) !
[0; 1] by

An;f (s) = E(1n; (f(S1(1
n; s)); : : : ; f(St(n)(1

n; s))))

and regard it as a random variable over the uniform distribution on f0; 1g�(n). We say that A =

(S;E) is an (l; �; �)-approximator for the class of functions F = fFng if

P [ jAn;f �E[f ]j � �(n) ] � 1� �(n)

for each n and each f 2 Fl(n). The number of sample points used is t and the number of coin tosses

used is �.

Note that both S and E are independent of the function f we are trying to approximate.

We assume that the real numbers f(r1); : : : ; f(rt) that are provided to the estimator are trun-

cated to O(log ��1) bits; this level of approximation is suitable for our purposes and henceforth we

will assume total accuracy.

The parameters to consider in designing an (l; �; �)-approximator are the number of sample

points t (which by the above de�nition is also the number of function evaluations), the number of

coin tosses � used (by S) to generate these sample points, and the class F of functions that can be

approximated. For the purpose of the discussion that follows it is helpful to have the following

De�nition 6.4 [10, 11] An (l; �; �)-approximator (S;E) is called oblivious if

E(1n; (x1; : : : ; xt(n))) =
1

t(n)

t(n)X
i=1

xi

for all n and (x1; : : : ; xt(n)) 2 Rl(n), where t is the number of sample points used by (S;E).

Obliviousness is useful in some applications (cf. [11]).

6.2 Approximation Methods

The standard approximation method is to select t = O(��2 log ��1) independent and uniformly

distributed sample points and use as estimate the average value of the function on these sample

points. An application of the Cherno� bound shows that this yields an (l; �; �)-approximator which

works for all functions. However, it uses O(tl) coin tosses.

A large savings in the number of coin tosses is possible by the use of pairwise independence.

With O(l) coin tosses we can specify O(��2��1) pairwise independent sample points and again use
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as estimate the average value of the function on these sample points; an application of Chebyshev's

inequality shows that this yields a (l; �; �)-approximator for all functions (cf. Chor and Goldreich

[18]). The cost is in the number of sample points which now grows in proportion to ��1 rather

than the lg ��1 of the standard method; if we want the number of sample points to be polynomial

in n then we cannot attain exponentially small (in n) error.

Using higher independence and an iterated sampling technique, Bellare and Rompel [10, 11]

are able to remove this restriction. They construct an (l; �; �)-approximator for all functions which,

with O(l+ log ��1 � log l) coin tosses, speci�es O(��6 log6 l+ log3 ��1) sample points and then uses

as estimate the average value of the function on these sample points. Thus they do save coins

compared to the standard method and use a number of sample points which is polynomial in (l; ��1

and) lg ��1, but the number of sample points is much more than that of the standard method.

Using the techniques of Impagliazzo and Zuckermann [33] one can construct an (l; �; �)-

approximator for the class of boolean functions which uses O(��2 log ��1) sample points and

l +O(��4 log2 ��1) coin tosses as long as l = !(��2 log ��1).

The (l; �; �)-approximator that we will present in x6.3 improves on all of these: with only

O(l + log ��1) coin tosses it speci�es the same (up to constant factors) O(��2 log ��1) number of

sample points as the standard method, and works for all functions. It is optimal in the number of

sample points and coin tosses. We note, however, that our approximator will not be oblivious, in

contrast to all the ones mentioned above.

A somewhat coarser kind of approximation to the average of a boolean function f : f0; 1gl !
f0; 1g can be obtained via a random walk on a 2l node explicitly constructed expander graph (cf.

[3, 20, 33]). For example, if E[f ] � 99=100 then we can use O(l+ log ��1) random bits to generate

O(log ��1) sample points such that the average of f on these sample points is � 2=3 with probability

� 1� �. This is useful for many applications such as randomness-e�cient error-reduction for BPP

algorithms.

Other randomness-e�cient sampling techniques include that of Nisan [38] who shows how

O(l log t) random bits su�ce to produce a sequence of l bit strings r1; : : : ; rt such that jP[f(r1) =
� � � = f(rt) = 1]� E[f ]tj < 2�l for all boolean functions f : f0; 1gl ! f0; 1g. Recently Impagliazzo

[31] presented a general technique to extend these kinds of results to real valued functions.

6.3 Our (l; �; �)-approximator

We construct an (l; �; �)-approximator which uses O(l + log ��1) coin tosses and O(��2 log ��1)

sample points, and works for all functions. Up to constant factors, the number of sample points

used by our method is optimal. Namely, any (l; �; �)-approximator (even for just the class of boolean

functions) must use 
(��2 log ��1) sample points (cf. [16]). Furthermore, among methods using the

optimal number of sample points, our method is nearly optimal in the number of coin tosses used

(for a wide range of natural choices for the parameters). Namely, any (l; �; �)-approximator (even for

boolean functions) which uses O(��2 log ��1) sample points must use at least l+lg ��1�lg ��2�O(1)
coin tosses (cf. [16] and consider � < �!(1)).

Let us now proceed to our theorem.

Theorem 6.5 Let l: N ! N and �; � : N ! [0; 1] with l; ��1 and lg ��1 polynomially bounded and

polynomial time computable. Then there exists an (l; �; �)-approximator for all functions which uses

O(��2 log ��1) sample points and O(l+ log ��1) coin tosses.

Proof: We �x an explicitly constructible family of d-regular expander graphs fGlg with d being a
power of 2, and let � denote its expansion constant. We also �x a pairwise independent generator
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P (cf. x4.1) whose associated constant cP we assume (without loss of generality) to be even. We

de�ne the parameters

L = 9� = O(1)

v = lg ��1

m = 29��2 = O(��2)

t = vm = O(��2 lg ��1)

� = 9�(1+ lg d) = O(1)

If m > 2l then we can trivially get a perfect estimate without expending any coin tosses because we

are allowed enough sample points that exact computation becomes feasible. Formally, the sampler

would output a list of all the 2l � t points in f0; 1gl, and the estimator on input 1n and (x1; : : : ; xt)

would output the average of the t values x1; : : : ; xt. So we may assume m � 2l.

The sampler S chooses s 2 f0; 1gcP l+� lg ��1
at random. Let sj denote the vertex visited at time

Lj on the (modi�ed) random walk on GcP l=2 that is speci�ed by s, and let rj;i = P (1n; i; sj) for

j = 1; : : : ; v and i = 1; : : : ; m. The output of the sampler is r1;1; : : : ; r1;m; : : : ; rv;1; : : : ; rv;m. Thus

the approximator uses vm = O(��2 lg ��1) sample points and cP l + � lg ��1 = O(l + lg ��1) coin

tosses.

The estimator E, on input 1n and (x1;1; : : : ; x1;m; : : : ; xv;1; : : : ; xv;m), evaluates xj = 1
m

Pm
i=1x

j;i

for j = 1; : : : ; v and then outputs the median value of x1; : : : ; xv.

For the analysis, �x f : f0; 1gl ! [0; 1]. Call a seed s 2 f0; 1gcP l bad if����� 1m
mX
i=1

f(ri)� E[f ]

����� � � ;

where ri = P (1n; i; s) for i = 1; : : : ; m. We know that m � 2l, so if s is selected at random then

f(r1); : : : ; f(rm) are pairwise independent random variables. By Chebyshev's inequality it follows

that

P
h

j 1
m

Pm
i=1 f(r

i)�E[f ]j � �
i
� m

m2�2
= 2�9 ;

the probability being over a random choice of the seed. In other words, the density of Bj def
=

f s : s is bad g is � 2�9 for each j = 1; : : : ; v. By Lemma 5.6, the probability that a majority of

the seeds are bad is bounded above by 
v

v=2

!
� (2 � 2�9)v=4 � (2 � (2�8)1=4)v = 2� log ��1

= � :

Thus when xj;i = f(rj;i), with probability � 1� � a majority of the values xj are within � of E[f ].

So with probability � 1� � the median of these values is within � of E[f ].

7 Conclusion and Open Problems

We recall our main result. Suppose we are given an Arthur-Merlin game of g = g(n) rounds in which

Arthur sends l = l(n) (random) bits per round, and suppose this game is a proof system for L with

error probability 1=3. Then given a polynomially bounded function k = k(n) we can construct

a new Arthur Merlin games in which the error probability is reduced to 2�k while maintaining

the number of rounds and using O(l + k) coin tosses per round. Here are some areas for further

investigation.
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� For unbounded g, is there a construction which achieves error 2�k with Arthur 
ipping a total

of only O(gl+k) coins? Note that the total number of coins 
ipped by Arthur in the given game

is gl, and the total number of coins 
ipped in the new game that our result yields is O(g(l+k)).

We know that the analogue of the question we pose is true for BPP algorithms. Namely, a

BPP algorithm which has error 1=3 with respect to L and uses r = r(n) coins can be transformed

into one which has error 2�k and uses O(r + k) coins [20, 33].

� Can our result be generalized to (general) interactive proof systems? We do not know of any

direct non-trivial error-reduction technique for general interactive proof systems. By \direct"

we mean without �rst transforming the interactive proof into an Arthur-Merlin game (a trans-

formation which requires exponentially small error probability), and by \non-trivial" we mean

more e�cient in terms of coin tosses than playing independent copies of the same interactive

proof.

� Is it possible to achieve error 2�k using only l+ O(k) coins per round? Note that the best our

technique yields is 2l +O(k).

Again, the analogue is true for BPP. A BPP algorithm which has error 1=3 with respect to

L and uses r = r(n) coins can be transformed, for any constant c > 0, into one which has error

n�c and still uses only r coins (a result of [34] described in [20]) and one can then apply [20, 33]

to reduce the error to 2�k at the cost of O(k) additional coins.
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A Proof of Proposition 2.2

For simplicity we assume the given game is symmetric and let g = G=2 be the number of rounds.

Without loss of generality we assume the error probability of the given game is � 1=6; this can be

achieved by standard error-reduction (cf. x3) at a constant cost in message lengths and no cost in

rounds. Let b(n) be the least integer such that b(n)l(n) � c lgn and let l� = bl. Let g�(n) be the

least integer such that b(n)(g�(n) + 1) � g(n). We view the given game as being divided into g�

blocks of b rounds each, followed by a block of � b rounds. The new game consists of g� rounds

followed by a �nal Merlin move. Merlin plays �rst and Arthur second in each of the g� rounds.

The execution of the g� rounds will de�ne an A-Arthur-history h1 : : : hg� which is built up round

by round, with round i adding the sequence of strings hi which correspond to moves of the original

players in block i. Initially this history is the empty string. If we assume the �rst t rounds of

the game have been played and h1 : : :ht�1 is de�ned, here is how it is extended. Merlin's message

in round t of the new game is (the encoding of) an l-ary tree of depth b each node of which is

labeled with a q bit string; this represents his responses to each possible sequence of A moves in

block t of the old game with history h1 : : : ht�1. Arthur's round t response is a l� = bl bit random

string which selects a branch of the tree and thus de�nes a particular sequence ht of b moves of the

original game in this block. This sequence is appended to the history, and the parties then move

to the next round.

For the last block, Merlin's message is (the encoding of) a l-ary tree of depth � b each node

of which is labeled with a q bit string; this represents his responses to each possible sequence of

A moves in block g� + 1 of the old game with history h1 : : :hg� . At the conclusion of this move,

Arthur has a polynomial number of A conversations. He evaluates � on each of these, and accepts

if and only if a majority are accepting, and, additionally, if Merlin's message for each round was

indeed (the encoding of) a l-ary tree of the appropriate depth labeled with q bit strings.

The fact that the original game had error probability � 1=6 implies that if w 2 L and Merlin

provides responses corresponding to those of M
opt
A then the majority of conversations extending

a history h = h1 : : : hg� are accepting for at least 2=3 of these histories. Similarly if w 62 L then

regardless of how Merlin responds, the majority of conversations extending a history h = h1 : : : hg�

are accepting for at most 1=3 of these histories. So our �nal game is an Arthur-Merlin proof system

for L.

B Appendix: Proof of the Expander Path Lemma

Fix l and let N = 22l denote the number of nodes of Gl. Let A = A(Gl) and � = 1 � �2(G). We

denote by �1 � �2 � : : :� �N the eigenvalues of A. The fact that all line sums of A equal 1 implies

that the �rst eigenvalue �1 equals 1 and the spectral radius of A (maximum of the absolute values

of all the eigenvalues of A) is 1. Moreover, the expander property says that �2 � 1� � < 1.

We let �A = 1
2(I +A) denote the transition probability matrix of the modi�ed random walk. Its

eigenvalues are ��1 � ��2 � : : : � ��N where ��i =
1
2(1 + �i). It follows that the �rst eigenvalue of �A

is 1, all its eigenvalues are � 0, and ��2 � 1� �=2 < 1.

Since �A is a real symmetric matrix there is an orthonormal basis of RN which consists of

eigenvectors of �A. We �x such a basis u1; : : : ; uN with ui being an eigenvector of �A with eigenvalue
��i. Note that ��1 = 1 implies that u1 = (N�1=2; : : : ; N�1=2). We let V1 be the space spanned by u1
and V2 the space orthogonal to V1 which is spanned by u2; : : : ; uN .

Let kxk denote the Euclidean norm of x 2 RN .
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Lemma B.1 k �Axk � (1� �=2)kxk for any x 2 V2.

Proof: Since u2; : : : ; uN is a basis for V2 there are real numbers c2; : : : ; cN such that x =
PN

s=2 csus.

But �Aus = ��sus and the vectors u2; : : : ; uN are orthonormal, so

k �Axk2 = kPN
s=2 cs

�Ausk2 = kPN
s=2 cs

��susk2 =
PN

s=2 c
2
s
��2s :

Since ��2 � ��3 � : : : � ��N � 0 this implies

k �Axk2 � ��22
PN

s=2 c
2
s = ��22 kxk2 � (1� �=2)2 kxk2

which proves the lemma.

Let ei be the N -vector with 1 in position i and zeroes elsewhere. De�ne the projection matrix Pj

as having its i-th column equal to ei if i 2 Bj and the 0 vector otherwise. Let �
def
= 1

2 [lg
2

2�� ]
�1 and

note that this is a constant which depends only on the second eigenvalue of G. Let L def
= � lg ��1 be

de�ned so that (1� �=2)2L � �.

Lemma B.2 kPj �Aixk �
p
2� kxk for any x 2 RN and any j = 1; : : : ; v and i � L.

Proof: Let x = x1 + x2 where x1 = c1u1 2 V1 and x2 2 V2. Then

kPj �Aixk � kPj �Aix1k+ kPj �Aix2k
� kPjx1k+ k �Aix2k
� [2 (kPjx1k2 + k �Aix2k2)]1=2 :

Here the �rst inequality is by the triangle inequality. The second uses the fact that �Ax1 = x1
and kPjyk � kyk for any y 2 RN . Now the fact that Bj has density � � and x1 = c1u1 implies

that kPjx1k2 � �kx1k2. On the other hand, since A maps V2 into itself we can apply Lemma B.1

repeatedly to conclude that k �Aix2k � (1 � �=2)ikx2k. Our choice of L implies that k �Aix2k2 �
�kx2k2. Putting all this together we get

kPj �Aixk � [2 (�kx1k2 + �kx2k2)]1=2 =
p
2� kxk

as desired.

Let kxk1 denote the L1 norm (that is, the sum of the absolute values of the components) of x 2 RN .
Now let x = (1=N; : : :; 1=N) = N�1=2u1 be the N vector corresponding to the uniform distribution

and set

y = Pjb
�A(jb�jb�1)�L � � �Pj2 �A(j2�j1)�LPj1

�Aj1�Lx :

Lemma B.2 implies that kyk � (2�)b=2kxk = (2�)b=2N�1=2. Thus, the probability that a random

walk, starting at the uniform distribution x, and terminating after Lv steps at distribution y, visits

a vertex in the set Bji at time Lji for i = 1; 2; :::; b is

kyk1 �
p
N kY k � (2�)b=2 :
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