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Secret key exchange

Problem: Obtain a joint secret key via interaction over a public channel:

Alice Bob

x
$← ...; X ← ...

X−−−−−−→
y

$← ...; Y ← ...
Y←−−−−−−

KA ← FA(x ,Y ) KB ← FB(y ,X )

Desired properties of the protocol:

• KA = KB , meaning Alice and Bob agree on a key

• Adversary given X ,Y can’t compute KA
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Secret Key Exchange

Can you build a secret key exchange protocol?

Symmetric cryptography has existed for thousands of years.

But no secret key exchange protocol was found in that time.

Many people thought it was impossible.

In 1976, Diffie and Hellman proposed one.

This was the birth of public-key (asymmetric) cryptography.
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DH Secret Key Exchange

The following are assumed to be public: A large prime p and a number g
called a generator mod p. Let Zp−1 = {0, 1, . . . , p − 2}.

Alice Bob

x
$← Zp−1; X ← g x mod p

X−−−−−−→
y

$← Zp−1; Y ← g y mod p
Y←−−−−−−

KA ← Y x mod p KB ← X y mod p

• Y x = (g y )x = g xy = (g x)y = X y modulo p, so KA = KB

• Adversary is faced with computing g xy mod p given g x mod p and
g y mod p, which nobody knows how to do efficiently for large p.
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DH Key Exchange Video

http://www.youtube.com/watch?v=3QnD2c4Xovk
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DH Secret Key Exchange: Questions

• How do we pick a large prime p, and how large is large enough?

• What does it mean for g to be a generator modulo p?

• How do we find a generator modulo p?

• How can Alice quickly compute x 7→ g x mod p?

• How can Bob quickly compute y 7→ g y mod p?

• Why is it hard to compute (g x mod p, g y mod p) 7→ g xy mod p?

• . . .

To answer all that and more, we will forget about DH secret key exchange
for a while and take a trip into computational number theory ...
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Notation

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

N = {0, 1, 2, . . .}

Z+ = {1, 2, 3, . . .}

For a,N ∈ Z let gcd(a,N) be the largest d ∈ Z+ such that d divides both
a and N.

Example: gcd(30, 70) = 10.
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Integers mod N

For N ∈ Z+, let

• ZN = {0, 1, . . . ,N − 1}
• Z∗N = {a ∈ ZN : gcd(a,N) = 1}
• ϕ(N) = |Z∗N |

Example: N = 12

• Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
• Z∗12 =

{1, 5, 7, 11}
• ϕ(12) = 4
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Division and mod

INT-DIV(a,N) returns (q, r) such that

• a = qN + r

• 0 ≤ r < N

Refer to q as the quotient and r as the remainder. Then

a mod N = r ∈ ZN

is the remainder when a is divided by N.

Example: INT-DIV(17, 3) = (5, 2) and 17 mod 3 = 2.

Def: a ≡ b (mod N) if a mod N = b mod N.

Example: 17 ≡ 14 (mod 3)
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Groups

Let G be a non-empty set, and let · be a binary operation on G . This
means that for every two points a, b ∈ G , a value a · b is defined.

Example: G = Z∗12 and “·” is multiplication modulo 12, meaning

a · b = ab mod 12

Def: We say that G is a group if it has four properties called closure,
associativity, identity and inverse that we present next.

Fact: If N ∈ Z+ then G = Z∗N with a · b = ab mod N is a group.
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Groups: Closure

Closure: For every a, b ∈ G we have a · b is also in G .

Example: G = Z12 with a · b = ab does not have closure because
7 · 5 = 35 6∈ Z12.

Fact: If N ∈ Z+ then G = Z∗N with a · b = ab mod N satisfies closure,
meaning

gcd(a,N) = gcd(b,N) = 1 implies gcd(ab mod N,N) = 1

Example: Let G = Z∗12 = {1, 5, 7, 11}. Then

5 · 7 mod 12 = 35 mod 12 = 11 ∈ Z∗12

Exercise: Prove the above Fact.
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Groups: Associativity

Associativity: For every a, b, c ∈ G we have (a · b) · c = a · (b · c).

Fact: If N ∈ Z+ then G = Z∗N with a · b = ab mod N satisfies
associativity, meaning

((ab mod N)c) mod N = (a(bc mod N)) mod N

Example:

(5 · 7 mod 12) · 11 mod 12 = (35 mod 12) · 11 mod 12

= 11 · 11 mod 12 = 1

5 · (7 · 11 mod 12) mod 12 = 5 · (77 mod 12) mod 12

= 5 · 5 mod 12 = 1

Exercise: Given an example of a set G and a natural operation
a, b 7→ a · b on G that satisfies closure but not associativity.
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Groups: Identity element

Identity element: There exists an element 1 ∈ G such that
a · 1 = 1 · a = a for all a ∈ G .

Fact: If N ∈ Z+ and G = Z∗N with a · b = ab mod N then 1 is the identity
element because a · 1 mod N = 1 · a mod N = a for all a.

Mihir Bellare UCSD 18



Groups: Inverses

Inverses: For every a ∈ G there exists a unique b ∈ G such that
a · b = b · a = 1.

This b is called the inverse of a and is denoted a−1 if G is understood.

Fact: If N ∈ Z+ and G = Z∗N with a · b = ab mod N then
∀a ∈ Z∗N ∃b ∈ Z∗N such that a · b mod N = 1.

We denote this unique inverse b by a−1 mod N.

Example: 5−1 mod 12 is the b ∈ Z∗12 satisfying 5b mod 12 = 1, so b =

5
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Exercises

Let N ∈ Z+ and let G = ZN . Prove that G is a group under the operation
a · b = (a + b) mod N.

Let n ∈ Z+ and let G = {0, 1}n. Prove that G is a group under the
operation a · b = a ⊕ b.

Let n ∈ Z+ and let G = {0, 1}n. Prove that G is not a group under the
operation a · b = a ∧ b. (This is bit-wise AND, for example
0110 ∧ 1101 = 0100.)
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Computational Shortcuts

What is 5 · 8 · 10 · 16 mod 21?

Slow way: First compute

5 · 8 · 10 · 16 = 40 · 10 · 16 = 400 · 16 = 6400

and then compute 6400 mod 21 = 16

Fast way:

• 5 · 8 mod 21 = 40 mod 21 = 19

• 19 · 10 mod 21 = 190 mod 21 = 1

• 1 · 16 mod 21 = 16
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Exponentiation

Let G be a group and a ∈ G . We let a0 = 1 be the identity element and
for n ≥ 1, we let

an = a · a · · · a︸ ︷︷ ︸
n

.

Also we let
a−n = a−1 · a−1 · · · a−1︸ ︷︷ ︸

n

.

This ensures that for all i , j ∈ Z,

• ai+j = ai · aj

• aij = (ai )j = (aj)i

• a−i = (ai )−1 = (a−1)i

Meaning we can manipulate exponents “as usual”.
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Group Orders

The order of a group G is its size |G |, meaning the number of elements in
it.

Example: The order of Z∗21 is

12 because

Z∗21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

Fact: Let G be a group of order m and a ∈ G . Then, am = 1.

Examples: Modulo 21 we have

• 512 ≡ (53)4 ≡ 204 ≡ (−1)4 ≡ 1

• 812 ≡ (82)6 ≡ (1)6 ≡ 1
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Simplifying exponentiation

Fact: Let G be a group of order m and a ∈ G . Then, am = 1.

Corollary: Let G be a group of order m and a ∈ G . Then for any i ∈ Z,

ai = ai mod m.

Proof: Let (q, r)← INT-DIV(i ,m), so that i = mq + r and r = i mod m.
Then

ai = amq+r = (am)q · ar

But am = 1 by Fact.
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Simplifying exponentiation

Corollary: Let G be a group of order m and a ∈ G . Then for any i ∈ Z,

ai = ai mod m.

Example: What is 574 mod 21?

Solution: Let G = Z∗21 and a = 5. Then, m = 12, so

574 mod 21 = 574 mod 12 mod 21

= 52 mod 21

= 4.
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Exercise

Evaluate the expressions shown in the first column. Your answer, in the
second column, should be a member of the set shown in the third column.
In the first case, the inverse refers to the group Z∗101. Don’t use any
electronic tools; these are designed to be done by hand.

Expression Value In

34−1 mod 101 Z∗101

51602 mod 17 Z∗17

|Z∗24| N
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Measuring Running Time of Algorithms on Numbers

In an algorithms course, the cost of arithmetic is often assumed to be
O(1), because numbers are small. In cryptography numbers are

very, very BIG!

Typical sizes are 2512, 21024, 22048.

Numbers are provided to algorithms in binary. The length of a, denoted
|a|, is the number of bits in the binary encoding of a.

Example: |7| = 3 because 7 is 111 in binary.

Running time is measured as a function of the lengths of the inputs.
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Algorithms on numbers

Algorithm Input Output Time

ADD a, b a + b linear
MULT a, b ab quadratic
INT-DIV a, N q,r quadratic
MOD a, N a mod N quadratic
EXT-GCD a, N (d , a′,N ′) quadratic
MOD-INV a ∈ Z∗N , N a−1 mod N quadratic
MOD-EXP a, n, N an mod N cubic
EXPG a, n an ∈ G O(|n|) G -ops
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Extended gcd

EXT-GCD(a,N) 7→ (d , a′,N ′) such that

d = gcd(a,N) = a · a′ + N · N ′ .

Example: EXT-GCD(12, 20) =

(4, 2,−3) because

4 = gcd(12, 20) = 12 · (−3) + 20 · 2 .
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Extended gcd Algorithm

EXT-GCD(a,N) 7→ (d , a′,N ′) such that

d = gcd(a,N) = a · a′ + N · N ′ .

Lemma: Let (q, r) = INT-DIV(a,N). Then, gcd(a,N) = gcd(N, r)

Alg EXT-GCD(a,N) // (a,N) 6= (0, 0)

if N = 0 then return (a, 1, 0)
else

(q, r)← INT-DIV(a,N); (d , x , y)← EXT-GCD(N, r)
a′ ← y ; N ′ ← x − qy
return (d , a′,N ′)

Running time analysis is non-trivial (worst case is Fibonacci numbers) and
shows that the time is O(|a| · |N|). So the extended gcd can be computed
in quadratic time.
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Modular Inverse

For a,N such that gcd(a,N) = 1, we want to compute a−1 mod N,
meaning the unique a′ ∈ Z∗N satisfying aa′ ≡ 1 (mod N).

But if we let (d , a′,N ′)← EXT-GCD(a,N) then

d = 1 = gcd(a,N) = a · a′ + N · N ′

But N · N ′ ≡ 0 (mod N) so aa′ ≡ 1 (mod N)

Alg MOD-INV(a,N)
(d , a′,N ′)← EXT-GCD(a,N)
return a′ mod N

Modular inverse can be computed in quadratic time.
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Modular Exponentiation

Let G be a group and a ∈ G . For n ∈ N, we want to compute an ∈ G .

We know that
an = a · a · · · a︸ ︷︷ ︸

n

Consider:

y ← 1
for i = 1, . . . , n do y ← y · a
return y

Question: Is this a good algorithm?

Answer: It is correct but VERY SLOW. The number of group operations is
O(n) = O(2|n|) so it is exponential time. For n ≈ 2512 it is prohibitively
expensive.
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Fast exponentiation idea

We can compute

a −→ a2 −→ a4 −→ a8 −→ a16 −→ a32

in just 5 steps by repeated squaring. So we can compute an in i steps
when n = 2i .

But what if n is not a power of 2?
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Square-and-Multiply Exponentiation Example

Suppose the binary length of n is 5, meaning the binary representation of
n has the form b4b3b2b1b0. Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

We want to compute an. Our exponentiation algorithm will proceed to
compute the values y5, y4, y3, y2, y1, y0 in turn, as follows:

y5 = 1
y4 = y25 · ab4 = ab4

y3 = y24 · ab3 = a2b4+b3

y2 = y23 · ab2 = a4b4+2b3+b2

y1 = y22 · ab1 = a8b4+4b3+2b2+b1

y0 = y21 · ab0 = a16b4+8b3+4b2+2b1+b0 .
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Square-and-Multiply Exponentiation Algorithm

Let bin(n) = bk−1 . . . b0 be the binary representation of n, meaning

n =
k−1∑
i=0

bi2
i

Alg EXPG (a, n) // a ∈ G , n ≥ 1

bk−1 . . . b0 ← bin(n)
y ← 1
for i = k − 1 downto 0 do y ← y2 · abi
return y

The running time is O(|n|) group operations.

MOD-EXP(a, n,N) returns an mod N in time O(|n| · |N|2), meaning is
cubic time.
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Exercise

Consider the following computational problem:

Input: N, a, b, x , y where N ≥ 1 is an integer, a, b ∈ Z∗N and
x , y are integers with 0 ≤ x , y < N
Output: axby mod N

Let k = |N|.
1. Consider the algorithm that first computes X = ax mod N, then

computes Y = by mod N, and returns XY mod N. Explain why this
has worst case cost of 4k + 1 multiplications modulo N.

2. Design an alternative, faster algorithm for this problem that uses at
most 2k + 1 multiplications modulo N.
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Algorithms on numbers

Algorithm Input Output Time

ADD a, b a + b linear
MULT a, b ab quadratic
INT-DIV a, N q,r quadratic
MOD a, N a mod N quadratic
EXT-GCD a, N (d , a′,N ′) quadratic
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Generators and cyclic groups

Let G be a group of order m and let g ∈ G . We let

〈g〉 = { g i : i ∈ Z } .
Fact: 〈g〉 = { g i : i ∈ Zm }

Exercise: Prove the above Fact.

Fact: The size |〈g〉| of the set 〈g〉 is a divisor of m

Note: |〈g〉| need not equal m!

Definition: g ∈ G is a generator (or primitive element) of G if 〈g〉 = G ,
meaning |〈g〉| = m.

Definition: G is cyclic if it has a generator, meaning there exists g ∈ G
such that g is a generator of G .
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Generators and cyclic groups: Example

Let G = Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which has order m = 10.

i 0 1 2 3 4 5 6 7 8 9 10

2i mod 11 1 2 4 8 5 10 9 7 3 6 1

5i mod 11 1 5 3 4 9 1 5 3 4 9 1

so

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

〈5〉 = {1, 3, 4, 5, 9}

• 2 a generator because 〈2〉 = Z∗11.

• 5 is not a generator because 〈5〉 6= Z∗11.

• Z∗11 is cyclic because it has a generator.
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Exercise

Let G be the group Z∗10 under the operation of multiplication modulo 10.

1. List the elements of G

2. What is the order of G?

3. Determine the set 〈3〉
4. Determine the set 〈9〉
5. Is G cyclic? Why or why not?
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Discrete Logarithms

If G = 〈g〉 is a cyclic group of order m then for every a ∈ G there is a
unique exponent i ∈ Zm such that g i = a. We call i the discrete logarithm
of a to base g and denote it by

DLogG ,g (a)

The discrete log function is the inverse of the exponentiation function:

DLogG ,g (g i ) = i for all i ∈ Zm

gDLogG ,g (a) = a for all a ∈ G .
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Discrete Logarithms: Example

Let G = Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is a cyclic group of order
m = 10. We know that 2 is a generator, so DLogG ,2(a) is the exponent

i ∈ Z10 such that 2i mod 11 = a.

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a)
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Discrete Logarithms: Example

Let G = Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, which is a cyclic group of order
m = 10. We know that 2 is a generator, so DLogG ,2(a) is the exponent

i ∈ Z10 such that 2i mod 11 = a.

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

a 1 2 3 4 5 6 7 8 9 10

DLogG ,2(a) 0 1 8 2 4 9 7 3 6 5
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Exercise

Let G be the group Z∗10 under the operation of multiplication modulo 10.

1. Show that 3 and 7 are generators of G

2. What is DLogG ,3(7)?

3. What is DLogG ,7(9)?
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Finding Cyclic Groups

Fact 1: Let p be a prime. Then Z∗p is cyclic.

Fact 2: Let G be any group whose order m = |G | is a prime number.
Then G is cyclic.

Note: |Z∗p| = p − 1 is not prime, so Fact 2 doesn’t imply Fact 1!

Fact 3: If F is a finite field then F \ {0} is a cyclic group under the
multiplicative operation of F .
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Computing Discrete Logs

Let G = 〈g〉 be a cyclic group of order m with generator g ∈ G .

Input: X ∈ G
Desired Output: DLogG ,g (X )

That is, we want x such that g x = X .

for x = 0, . . . ,m − 1 do
if g x = X then return x

Is this a good algorithm?

It is

• Correct (always returns the right answer), but

• SLOW!

Run time is O(m) exponentiations, which for G = Z∗p is O(p), which is
exponential time and prohibitive for large p.
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Computing Discrete Logs: Best known algorithms

Group Time to find discrete logarithms

Z∗p e1.92(ln p)
1/3(ln ln p)2/3

ECp
√
p = e ln(p)/2

Here p is a prime and ECp represents an elliptic curve group of order p.

Note: In the first case the actual running time is e1.92(ln q)
1/3(ln ln q)2/3

where q is the largest prime factor of p − 1.

In neither case is a polynomial-time algorithm known.

This (apparent, conjectured) computational intractability of the discrete
log problem makes it the basis for cryptographic schemes in which
breaking the scheme requires discrete log computation.
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Discrete logarithm computation records

In Z∗p:

|p| in bits When
431 2005
530 2007
596 2014

For elliptic curves, current record seems to be for |p| around 113.
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EC: More bang for the buck

Say we want 80-bits of security, meaning discrete log computation by the
best known algorithm should take time 280. Then

• If we work in Z∗p (p a prime) we need to set |Z∗p| = p − 1 ≈ 21024

• But if we work on an elliptic curve group of prime order p then it
suffices to set p ≈ 2160.

Why? Because

e1.92(ln 2
1024)1/3(ln ln 21024)2/3 ≈

√
2160 = 280

But now:

Group Size Cost of Exponentiation

2160 1
21024 260

Exponentiation will be 260 times faster in the smaller group!
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DL Formally

Let G = 〈g〉 be a cyclic group of order m, and A an adversary.

Game DLG ,g

procedure Initialize
x

$← Zm;X ← g x

return X

procedure Finalize(x ′)
return (x = x ′)

The dl-advantage of A is

AdvdlG ,g (A) = Pr
[
DLA

G ,g ⇒ true
]
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CDH: The Computational Diffie-Hellman Problem

Let G = 〈g〉 be a cyclic group of order m with generator g ∈ G . The CDH
problem is:

Input: X = g x ∈ G and Y = g y ∈ G
Desired Output: g xy ∈ G

This underlies security of the DH Secret Key Exchange Protocol.

Obvious algorithm: x ← DLogG ,g (X ); Return Y x .

So if one can compute discrete logarithms then one can solve the CDH
problem.

The converse is an open question. Potentially, there is a way to quickly
solve CDH that avoids computing discrete logarithms. But no such way is
known.
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CDH Formally

Let G = 〈g〉 be a cyclic group of order m, and A an adversary.

Game CDHG ,g

procedure Initialize
x , y

$← Zm

X ← g x ;Y ← g y

return X ,Y

procedure Finalize(Z )
return (Z = g xy )

The cdh-advantage of A is

AdvcdhG ,g (A) = Pr
[
CDHA

G ,g ⇒ true
]
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Building cyclic groups

We will need to build (large) groups over which our cryptographic schemes
can work, and find generators in these groups.

How do we do this efficiently?
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Building cyclic groups

To find a suitable prime p and generator g of Z∗p:

• Pick numbers p at random until p is a prime of the desired form

• Pick elements g from Z∗p at random until g is a generator

For this to work we need to know

• How to test if p is prime

• How many numbers in a given range are primes of the desired form

• How to test if g is a generator of Z∗p when p is prime

• How many elements of Z∗p are generators
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Finding primes

Desired: An efficient algorithm that given an integer k returns a prime
p ∈ {2k−1, . . . , 2k − 1} such that q = (p − 1)/2 is also prime.

Alg Findprime(k)
do
p

$←{2k−1, . . . , 2k − 1}
until (p is prime and (p − 1)/2 is prime)
return p

• How do we test primality?

• How many iterations do we need to succeed?
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Primality Testing

Given: integer N
Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , d
√
Ne do

if N mod i = 0 then return false
return true

Correct but SLOW! O(N) running time, exponential. However, we have:

• O(|N|3) time randomized algorithms

• Even a O(|N|8) time deterministic algorithm

Mihir Bellare UCSD 65



Primality Testing

Given: integer N
Output: TRUE if N is prime, FALSE otherwise.

for i = 2, . . . , d
√
Ne do

if N mod i = 0 then return false
return true

Correct but SLOW! O(N) running time, exponential. However, we have:

• O(|N|3) time randomized algorithms

• Even a O(|N|8) time deterministic algorithm

Mihir Bellare UCSD 66



Density of primes

Let π(N) be the number of primes in the range 1, . . . ,N. So if

p
$←{1, . . . ,N} then

Pr [p is a prime] =
π(N)

N

Fact: π(N) ∼ N

ln(N)

So

Pr [p is a prime] ∼ 1

ln(N)

If N = 21024 this is about 0.001488 ≈ 1/1000.

So the number of iterations taken by our algorithm to find a prime is not
too big.
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Recall DH Secret Key Exchange

The following are assumed to be public: A large prime p and a generator g
of Z∗p.

Alice Bob

x
$← Zp−1; X ← g x mod p

X−−−−−−→
y

$← Zp−1; Y ← g y mod p
Y←−−−−−−

KA ← Y x mod p KB ← X y mod p

• Y x = (g y )x = g xy = (g x)y = X y modulo p, so KA = KB

• Adversary is faced with the CDH problem.
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DH Secret Key Exchange: Questions

• How do we pick a large prime p, and how large is large enough?

• What does it mean for g to be a generator modulo p?

• How do we find a generator modulo p?

• How can Alice quickly compute x 7→ g x mod p?

• How can Bob quickly compute y 7→ g y mod p?

• Why is it hard to compute (g x mod p, g y mod p) 7→ g xy mod p?

• . . .

Exercise: Answer as many of these questions as you can based on the
content of this chapter.
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