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So Far ...

We have looked at methods to provide privacy and authenticity separately:

Goal Primitive Security notion

Data privacy symmetric encryption IND-CPA
Data authenticity MAC UF-CMA

Mihir Bellare UCSD 2



Authenticated Encryption

In practice we often want both privacy and authenticity.

Example: A doctor wishes to send medical information M about Alice to
the medical database. Then

• We want data privacy to ensure Alice’s medical records remain
confidential.

• We want authenticity to ensure the person sending the information is
really the doctor and the information was not modified in transit.

We refer to this as authenticated encryption.
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Authenticated Encryption Schemes

Syntactically, an authenticated encryption scheme is just a symmetric
encryption scheme AE = (K, E ,D) where
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Privacy of Authenticated Encryption Schemes

The notion of privacy for symmetric encryption carries over, namely we
want IND-CPA.
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Integrity of Authenticated Encryption Schemes

Adversary’s goal is to get the receiver to accept a “non-authentic”
ciphertext C .

Integrity of ciphertexts: C is “non-authentic” if it was never transmitted
by the sender.
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INT-CTXT

Let AE = (K, E ,D) be a symmetric encryption scheme and A an
adversary.

Game INTCTXTAE

procedure Initialize
K

$←K ; S ← ∅

procedure Enc(M)

C
$←EK (M)

S ← S ∪ {C}
Return C

procedure Finalize(C )
M ← DK (C )
if (C 6∈ S ∧M 6= ⊥) then

return true
Else return false

The int-ctxt advantage of A is

Advint-ctxtAE (A) = Pr[INTCTXTA
AE ⇒ true]
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Integrity with privacy

The goal of authenticated encryption is to provide both integrity and
privacy. We will be interested in IND-CPA + INT-CTXT.
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Plain Encryption Does Not Provide Integrity

Alg EK (M)

C [0]
$←{0, 1}n

For i = 1, . . . ,m do
C [i ]← EK (C [i − 1] ⊕ M[i ])

Return C

Alg DK (C )

For i = 1, . . . ,m do
M[i ]← E−1K (C [i ]) ⊕ C [i − 1]

Return M

Question: Is CBC$ encryption INT-CTXT secure?

Answer: No, because any string C [0]C [1] . . .C [m] has a valid decryption.
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Plain Encryption Does Not Provide Integrity

Alg EK (M)

C [0]
$←{0, 1}n

For i = 1, . . . ,m do
C [i ]← EK (C [i − 1] ⊕ M[i ])

Return C

Alg DK (C )

For i = 1, . . . ,m do
M[i ]← E−1K (C [i ]) ⊕ C [i − 1]

Return M

adversary A

C [0]C [1]C [2]
$←{0, 1}3n

Return C [0]C [1]C [2]

Then

Advint-ctxtSE (A) = 1

This violates INT-CTXT.

A scheme whose decryption algorithm never outputs ⊥ cannot provide
integrity!
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A Better Attack on CBC$

Suppose A has the CBC$ encryption C [0]C [1] of a 1-block known message
M. Then it can create an encryption C ′[0]C ′[1] of any (1-block) message
M ′ of its choice via

C ′[0]← C [0] ⊕ M ⊕ M ′

C ′[1]← C [1]

i
?

?

EK

C [1]

M

C [0]

i
?

?

EK

C [1]

M ′

C [0] ⊕ M ⊕ M ′
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Encryption with Redundancy

i
?

?

EK

M[1]

C [1]

i
?

?

EK

M[m]

C [m]

i
?

?

EK

C [2]

M[2] i
?

?

EK

h(M)

C [m + 1]

...

C [0]

Here E : {0, 1}k × {0, 1}n → {0, 1}n is our block cipher and h: {0, 1}∗ →
{0, 1}n is a “redundancy” function, for example

• h(M[1] . . .M[m]) = 0n

• h(M[1] . . .M[m]) = M[1] ⊕ · · · ⊕ M[m]

• A CRC

• h(M[1] . . .M[m]) is the first n bits of SHA1(M[1] . . .M[m]).

The redundancy is verified upon decryption.
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Encryption with Redundancy

i
?

?

EK

M[1]

C [1]

i
?

?

EK

M[m]

C [m]

i
?

?

EK

C [2]

M[2] i
?

?

EK

h(M)

C [m + 1]

...

C [0]

Let E : {0, 1}k × {0, 1}n → {0, 1}n be our block cipher and h: {0, 1}∗ →
{0, 1}n a redundancy function. Let SE = (K, E ′,D′) be CBC$ encryption
and define the encryption with redundancy scheme AE = (K, E ,D) via

Alg EK (M)

M[1] . . .M[m]← M
M[m + 1]← h(M)

C
$←E ′K (M[1] . . .M[m]M[m + 1])

return C

Alg DK (C )

M[1] . . .M[m]M[m + 1]← D′K (C )
if (M[m + 1] = h(M)) then

return M[1] . . .M[m]
else return ⊥
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Arguments in Favor of Encryption with Redundancy

i
?

?

EK

M[1]

C [1]

i
?

?

EK

M[m]

C [m]

i
?

?

EK

C [2]

M[2] i
?

?

EK

h(M)

C [m + 1]

...

C [0]

The adversary will have a hard time producing the last enciphered block of
a new message.
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Encryption with Redundancy Fails

adversary A

M[1]
$←{0, 1}n ; M[2]← h(M[1])

C [0]C [1]C [2]C [3]
$← Enc(M[1]M[2])

Return C [0]C [1]C [2]

i
?

?

EK

M[1]

C [1]

i i
?

?

?

?
C [0]

EK

C [2]

EK

C [3]

h(M[1]M[2])

h(M[1])︷︸︸︷
M[2]

This attack succeeds for any (not secret-key dependent) redundancy
function h.

Mihir Bellare UCSD 16



WEP Attack

A “real-life” rendition of this attack broke the 802.11 WEP protocol, which
instantiated h as CRC and used a stream cipher for encryption [BGW].

What makes the attack easy to see is having a clear, strong and formal
security model.
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Generic Composition

Build an authenticated encryption scheme AE = (K, E ,D) by combining

• a given IND-CPA symmetric encryption scheme SE = (K′, E ′,D′)
• a given PRF F : {0, 1}k × {0, 1}∗ → {0, 1}n

CBC$-AES CTR$-AES . . .

HMAC-SHA1

CMAC

ECBC
...
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Generic Composition

Build an authenticated encryption scheme AE = (K, E ,D) by combining

• a given IND-CPA symmetric encryption scheme SE = (K′, E ′,D′)
• a given PRF F : {0, 1}k × {0, 1}∗ → {0, 1}n

A key K = Ke ||Km for AE always consists of a key Ke for SE and a key
Km for F :

Alg K
Ke

$←K′; Km
$←{0, 1}k

Return Ke ||Km
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Generic Composition Methods

The order in which the primitives are applied is important. Can consider

Method Usage

Encrypt-and-MAC (E&M) SSH

MAC-then-encrypt (MtE) SSL/TLS

Encrypt-then-MAC (EtM) IPSec

We study these following [BN].
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Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km
(C ′||T )

M ← D′Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA

INT-CTXT
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Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km
(C ′||T )

M ← D′Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA NO

INT-CTXT

Why? T = FKm(M) is a deterministic function of M and allows detection
of repeats.
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Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
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Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km
(C ′||T )

M ← D′Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA NO

INT-CTXT NO

Why? May be able to modify C ′ in such a way that its decryption is
unchanged.
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MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm(M)

C
$←E ′Ke

(M||T )
Return C

Alg DKe ||Km
(C )

M||T ← D′Ke
(C )

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA

INT-CTXT
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MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm(M)

C
$←E ′Ke

(M||T )
Return C

Alg DKe ||Km
(C )

M||T ← D′Ke
(C )

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT

Why? SE ′ = (K′, E ′,D′) is IND-CPA secure.
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MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
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MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm(M)

C
$←E ′Ke
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Why? May be able to modify C in such a way that its decryption is
unchanged.
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Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke
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Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)
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Return C ′||T
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Why? SE ′ = (K′, E ′,D′) is IND-CPA secure.
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Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km
(C ′||T )

M ← D′Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT

Mihir Bellare UCSD 31



Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km
(C ′||T )

M ← D′Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT YES

Why? If C ||T is new then T will be wrong.
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Two keys or one?

We have used separate keys Ke ,Km for the encryption and message
authentication. However, these can be derived from a single key K via
Ke = FK (0) and Km = FK (1), where F is a PRF such as a block cipher,
the CBC-MAC or HMAC.

Trying to directly use the same key for the encryption and message
authentication is error-prone, but works if done correctly.
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Exercise: Setup

Alg EK (M)

if |M| 6= 512 then return ⊥
M[1] . . .M[4]← M

Ce [0]
$←{0, 1}128Cm[0]← 0128

for i = 1, . . . , 4 do
Ce [i ]← EK (Ce [i − 1] ⊕ M[i ])
Cm[i ]← EK (Cm[i − 1] ⊕ M[i ])

Ce ← Ce [0]Ce [1]Ce [2]Ce [3]Ce [4]
T ← Cm[4]; return (Ce ,T )

Alg DK ((Ce ,T ))

if |Ce | 6= 640 then return ⊥
Cm[0]← 0128

for i = 1, . . . , 4 do

M[i ]← E−1K (Ce [i ]) ⊕ Ce [i − 1]
Cm[i ]← EK (Cm[i − 1] ⊕ M[i ])

if Cm[4] 6= T then return ⊥
return M

Let E = AES . Let K return a random 128-bit AES key K . Let SE =
(K, E ,D) where E , D are above. Here, X [i ] denotes the i-th 128-bit block
of a string whose length is a multiple of 128.
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Exercise: Questions

1. Is SE IND-CPA-secure? Why or why not?

2. Is SE INT-CTXT-secure? Why or why not?

3. Is SE an Encrypt-and-MAC construction? Justify your answer.
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Exercise

You are given

• An IND-CPA symmetric encryption scheme SE∗ = (K∗, E∗,D∗)
• A PRF F : {0, 1}k × {0, 1}∗ → {0, 1}n

Construct a symmetric encryption scheme SE ′ = (K′, E ′,D′) such that

(1) SE ′ is IND-CPA, but

(2) The MtE combination of SE ′ and F is not INT-CTXT-secure.

Specify SE ′ by giving pseudocode for all the constituent algorithms.

Then prove (1) by a reduction and prove (2) by giving pseudocode for an
efficient adversary achieving int-ctxt advantage 1.
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INT-CTXT security of Encrypt-then-MAC

Encrpt-then-MAC is INT-CTXT-secure assuming PRF-security of F :

Theorem: Let SE = (K′, E ′,D′) be a symmetric encryption scheme. Let
F : {0, 1}k × {0, 1}∗ → {0, 1}n be a family of functions. Let AE = (K, E ,
D) be obtained by composing SE and F in the Encrypt-then-MAC
combination. Let A be an int-ctxt adversary against AE make qe Enc
queries and having running time t. Then we can construct a prf-adversary
B against F such that

Advint-ctxtAE (A) ≤ AdvprfF (B) +
1

2n
.

B makes qe queries to its Fn oracle and has running time t plus some
overhead.
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The adversary B

adversary B

Ke
$←K′; S ← ∅

C ′‖T $← AEncSim

If (C ′,T ) ∈ S then return 0
If T = Fn(C ′) then return 1
Else return 0

Subroutine EncSim(M)

C ′
$←E ′(Ke ,M); T ← Fn(C ′)

S ← S ∪ {(C ′,T ′)}
Return C ′‖T

Note that B itself picks Ke so that it can simulate Enc for A.

Pr[RealBF ⇒ 1] = Advint-ctxtAE (A)

Pr[RandB{0,1}n ⇒ 1] ≤ 1

2n
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Exercise

There is a lot going on in the above proof! The exercise is to work
through it slowly, checking each step and claim.
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Exercise: IND-CPA security of Encrypt-then-MAC

Encrpt-then-MAC is IND-CPA-secure assuming IND-CPA-security of SE ′:

Theorem: Let SE = (K′, E ′,D′) be a symmetric encryption scheme. Let
F : {0, 1}k × {0, 1}∗ → {0, 1}n be a family of functions. Let AE = (K, E ,
D) be obtained by composing SE and F in the Encrypt-then-MAC
combination. Let A be an ind-cpa adversary against AE make q LR
queries and having running time t. Then we can construct an ind-cpa
adversary B against SE ′ such that

Advind-cpaAE (A) ≤ Advind-cpaSE ′ (B) .

B makes q queries to its LR oracle and has running time t plus some
overhead.

The exercise is to prove this theorem.
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Generic Composition in Practice

AE in is based on which in
general is

and in this
case is

SSH E&M insecure secure

SSL MtE insecure insecure

SSL + RFC 4344 MtE insecure secure

IPSec EtM secure secure

WinZip EtM secure insecure

Why?

• Encodings

• Specific “E” and “M” schemes

• For WinZip, disparity between usage and security model
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AE in SSH

?

?

? ?

? ?

len(M)‖len(Pad)‖M‖Padcounter

Encode

M

EncryptKe
MACKm

C T

SSH2 encryption uses inter-packet chaining which is insecure [D, BKN].
RFC 4344 [BKN] proposed fixes that render SSH provably IND-CPA +
INT-CTXT secure. Fixes recommended by Secure Shell Working Group
and included in OpenSSH since 2003. Fixes included in PuTTY since 2008.
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AE in SSL

SSL uses MtE
EKe‖KM

= E ′Ke
(M‖FKm(M))

which we saw is not INT-CTXT-secure in general. But E ′ is CBC$ in SSL,
and in this case the scheme does achieve INT-CTXT [K].

F in SSL is HMAC.

Sometimes SSL uses RC4 for encryption.
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AEAD

The goal has evolved into Authenticated Encryption with Associated Data
(AEAD) [Ro].

• Associated Data (AD) is authenticated but not encrypted

• Schemes are nonce-based (and deterministic)

Sender

• C ← EK (N,AD,M)

• Send (N,AD,C )

Receiver

• Receive (N,AD,C )

• M ← DK (N,AD,C )

Sender must never re-use a nonce.

But when attacking integrity, the adversary may use any nonce it likes.
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AEAD Schemes

Generic composition: E&M, MtE, EtM extend and again EtM is the
best but others work too under appropriate conditions [NRS14].

1-pass schemes: IAPM [J], XCBC/XEBC [GD], OCB [RBBK, R]

2-pass schemes: CCM [FHW], EAX [BRW], CWC [KVW], GCM [MV]

Stream cipher based: Helix [FWSKLK], SOBER-128 [HR]

• 1-pass schemes are fast

• 2-pass schemes are patent-free

• Stream cipher based schemes are fast
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OCB [RBBK]

i
?

?

?

?

?

?

?

?

�

EN,1,0
K

M[1]

C [1]

EN,2,0
K

M[2]

C [2]

EN,3,0
K

M[3]

C [3]

EN,1,1
K

C [4]

Checksum

S

Checksum = M[1] ⊕ M[2] ⊕ M[3]
S = PMACK (AD) using separate tweaks.
Output may optionally be truncated.
Some complications (not shown) for non-full messages.

Optional in IEEE 802.11i

Mihir Bellare UCSD 46



Patents on 1-pass schemes

• Jutla (IBM) 7093126

• Gligor and Donescu (VDG, Inc.) 6973187

• Rogaway 7046802, 7200227
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2-pass AEAD

• Tailored generic composition of specific base schemes

• Single key

Philosophical questions:

• What is the advantage of one key versus two given that can always
derive the two from the one?

• Why not just do specific generic composition of specific base
schemes?
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CCM [FHW]

CTR-ENCK

i

6

?

?

?

?

-

-

?

?

MN AD

CBC-MACK

Encode

T C

EK

MtE-based but single key throughout. CTR-ENC is nonce-based counter
mode encryption, and CBC-MAC is the basic CBC MAC. Ciphertext is
C‖T . In NIST SP 800-38C, IEEE 802.11i.
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Critiques of CCM [RW]

• Not on-line: message and AD lengths must be known in advance

• Can’t pre-process static AD

• Nonce length depends on message length and the former decreases as
the latter increases

• Awkward/unnecessary parameters

• Complex encodings
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EAX [BRW]

CTR-ENCK

CMAC0
K

CMAC2
K i

?

?

?

?

?-

-

-

?

T

ADM

C

N

CMAC1
K

EtM-based but single key throughout. CTR-ENC is nonce-based counter
mode encryption. Online; can pre-process static AD; always 128-bit nonce;
simple; same performance as CCM. In ANSI C12.22.
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CWC [KVW]

CTR-ENCK

i

?

?

?-

?

?

-
?

?

-

EncodeEK

N AD

T

C

M

CWC-HASHKH

CTR-ENC is nonce-based counter mode encryption. CWC-HASH is a AU
polynomial-based hash. KH is derived from K via E . Parallelizable; 300K
gates for 10 Gbit/s (ASIC at 130 nanometers); Roughly same software
speed as CCM, EAX, but can be improved via precomputation.
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GCM [MV]

CTR-ENCK
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EncodeEK

N AD

T

C

M

GCM-HASHKH

CTR-ENC is nonce-based counter mode encryption. GCM-HASH is a AU
polynomial-based hash. KH is derived from K via E . Can be used as a
MAC. In NIST SP 800-38D.
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Performance Comparisons x32
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Gladman’s C code
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Performance Comparisons x64
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Gladman’s C code
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Which AEAD scheme should I use?

No clear answer. Ask yourself

• What performance do I need?

• Single or multiple keys?

• Patents ok or not?

• Do I need to comply with some standard?
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Authenticated encryption today

• The most important practical goal

• Lots of schemes, standards and implementations

• Big efforts go into making it FAST

• CAESAR competition:
http://competitions.cr.yp.to/caesar.html
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