#### **AUTHENTICATED ENCRYPTION**

#### So Far ...



We have looked at methods to provide privacy and authenticity separately:

| Goal              | Primitive            | Security notion |
|-------------------|----------------------|-----------------|
| Data privacy      | symmetric encryption | IND-CPA         |
| Data authenticity | MAC                  | UF-CMA          |

#### Authenticated Encryption

In practice we often want both privacy and authenticity.

**Example:** A doctor wishes to send medical information M about Alice to the medical database. Then

- We want data privacy to ensure Alice's medical records remain confidential.
- We want authenticity to ensure the person sending the information is really the doctor and the information was not modified in transit.

We refer to this as authenticated encryption.

#### **Authenticated Encryption Schemes**

Syntactically, an authenticated encryption scheme is just a symmetric encryption scheme  $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  where



#### Privacy of Authenticated Encryption Schemes

The notion of privacy for symmetric encryption carries over, namely we want IND-CPA.

## Integrity of Authenticated Encryption Schemes

Adversary's goal is to get the receiver to accept a "non-authentic" ciphertext C.

Integrity of ciphertexts: C is "non-authentic" if it was never transmitted by the sender.

#### **INT-CTXT**

Let  $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  be a symmetric encryption scheme and A an adversary.

Game INTCTXT
$$_{\mathcal{A}\mathcal{E}}$$

procedure Initialize
 $K \overset{\mathfrak{s}}{\leftarrow} \mathcal{K} ; S \leftarrow \emptyset$ 

procedure Enc( $M$ )
 $C \overset{\mathfrak{s}}{\leftarrow} \mathcal{E}_{K}(M)$ 
 $S \leftarrow S \cup \{C\}$ 

Return  $C$ 

procedure Finalize( $C$ )
 $M \leftarrow \mathcal{D}_{K}(C)$ 
if  $(C \not\in S \land M \neq \bot)$  then return true
Else return false

The int-ctxt advantage of A is

$$\mathsf{Adv}^{\mathrm{int\text{-}ctxt}}_{\mathcal{A}\mathcal{E}}(A) = \mathsf{Pr}[\mathsf{INTCTXT}^A_{\mathcal{A}\mathcal{E}} \Rightarrow \mathsf{true}]$$

#### Integrity with privacy

The goal of authenticated encryption is to provide both integrity and privacy. We will be interested in IND-CPA + INT-CTXT.

#### Plain Encryption Does Not Provide Integrity

$$\begin{array}{l} \underline{\mathsf{Alg}\ \mathcal{E}_{\mathcal{K}}(M)} \\ C[0] \overset{\$}{\leftarrow} \{0,1\}^n \\ \mathsf{For}\ i = 1, \dots, m\ \mathsf{do} \\ C[i] \leftarrow \mathsf{E}_{\mathcal{K}}(C[i-1] \oplus M[i]) \\ \mathsf{Return}\ C \end{array}$$

# $\begin{vmatrix} \textbf{Alg} \ \mathcal{D}_{\mathcal{K}}(\mathcal{C}) \\ \text{For } i = 1, \dots, m \text{ do} \\ M[i] \leftarrow \mathsf{E}_{\mathcal{K}}^{-1}(\mathcal{C}[i]) \oplus \mathcal{C}[i-1] \\ \text{Return } M \end{vmatrix}$



**Question:** Is CBC\$ encryption INT-CTXT secure?

#### Plain Encryption Does Not Provide Integrity

$$\begin{array}{l} \mathbf{Alg} \ \mathcal{E}_{\mathcal{K}}(M) \\ \hline C[0] \stackrel{5}{\leftarrow} \{0,1\}^n \\ \text{For } i=1,\ldots,m \ \text{do} \\ C[i] \leftarrow \mathsf{E}_{\mathcal{K}}(C[i-1] \oplus M[i]) \\ \text{Return } C \end{array}$$

# $M[i]) \begin{array}{|c|c|}\hline \textbf{Alg } \mathcal{D}_{\mathcal{K}}(C) \\\hline \text{For } i=1,\ldots,m \text{ do} \\\hline M[i] \leftarrow \mathsf{E}_{\mathcal{K}}^{-1}(C[i]) \oplus C[i-1] \\\hline \text{Return } M \\\hline \end{array}$



Question: Is CBC\$ encryption INT-CTXT secure?

**Answer:** No, because any string C[0]C[1]...C[m] has a valid decryption.

## Plain Encryption Does Not Provide Integrity

$$\begin{array}{l} \mathbf{Alg} \ \mathcal{E}_{K}(M) \\ \hline C[0] \xleftarrow{\$} \{0,1\}^{n} \\ \text{For } i=1,\ldots,m \ \text{do} \\ C[i] \leftarrow \mathsf{E}_{K}(C[i-1] \oplus M[i]) \\ \text{Return } C \\ \end{array}$$

#### adversary A

$$C[0]C[1]C[2] \stackrel{\$}{\leftarrow} \{0,1\}^{3n}$$
  
Return  $C[0]C[1]C[2]$ 

Then

$$\mathsf{Adv}^{\mathrm{int-ctxt}}_{\mathcal{SE}}(A) = 1$$

This violates INT-CTXT.

A scheme whose decryption algorithm never outputs  $\perp$  cannot provide integrity!

Suppose A has the CBC\$ encryption C[0]C[1] of a 1-block known message M. Then it can create an encryption C'[0]C'[1] of any (1-block) message M' of its choice via

$$C'[0] \leftarrow C[0] \oplus M \oplus M'$$
$$C'[1] \leftarrow C[1]$$



#### **Encryption with Redundancy**



Here  $E: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$  is our block cipher and  $h: \{0,1\}^* \to \{0,1\}^n$  is a "redundancy" function, for example

- $h(M[1]...M[m]) = 0^n$
- $h(M[1]...M[m]) = M[1] \oplus \cdots \oplus M[m]$
- A CRC
- h(M[1]...M[m]) is the first n bits of SHA1(M[1]...M[m]).

The redundancy is verified upon decryption.

#### Encryption with Redundancy



Let E:  $\{0,1\}^k \times \{0,1\}^n \rightarrow \{0,1\}^n$  be our block cipher and h:  $\{0,1\}^* \rightarrow \{0,1\}^n$  $\{0,1\}^n$  a redundancy function. Let  $\mathcal{SE} = (\mathcal{K}, \mathcal{E}', \mathcal{D}')$  be CBC\$ encryption and define the encryption with redundancy scheme  $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  via

$$\begin{array}{c|c} \underline{\mathsf{Alg}} \ \mathcal{E}_{\mathcal{K}}(M) \\ \hline M[1] \dots M[m] \leftarrow M \\ M[m+1] \leftarrow h(M) \\ C \overset{\$}{\leftarrow} \mathcal{E}'_{\mathcal{K}}(M[1] \dots M[m]M[m+1]) \\ \text{return } C \end{array} \quad \begin{array}{c|c} \underline{\mathsf{Alg}} \ \mathcal{D}_{\mathcal{K}}(C) \\ M[1] \dots M[m]M[m+1] \leftarrow \mathcal{I} \\ \text{if } (M[m+1] = h(M)) \text{ then} \\ \text{return } M[1] \dots M[m] \\ \text{else return } \bot \end{array}$$

Alg 
$$\mathcal{D}_{K}(C)$$

$$M[1] \dots M[m]M[m+1] \leftarrow \mathcal{D}'_{K}(C)$$
if  $(M[m+1] = h(M))$  then
return  $M[1] \dots M[m]$ 
else return

UCSD Mihir Bellare

#### Arguments in Favor of Encryption with Redundancy



The adversary will have a hard time producing the last enciphered block of a new message.

#### adversary A

$$M[1] \stackrel{\$}{\leftarrow} \{0,1\}^n$$
;  $M[2] \leftarrow h(M[1])$   
 $C[0]C[1]C[2]C[3] \stackrel{\$}{\leftarrow} \mathbf{Enc}(M[1]M[2])$   
Return  $C[0]C[1]C[2]$ 
 $M[1] \stackrel{h(M[1])}{M[2]} h(M[1]M[2])$ 
 $E_K \stackrel{E_K}{\longrightarrow} E_K$ 
 $E_K \stackrel{E_K}{\longrightarrow} E_K$ 

This attack succeeds for any (not secret-key dependent) redundancy function h.

#### WEP Attack

A "real-life" rendition of this attack broke the 802.11 WEP protocol, which instantiated h as CRC and used a stream cipher for encryption [BGW].

What makes the attack easy to see is having a clear, strong and formal security model.

## Generic Composition

Build an authenticated encryption scheme  $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  by combining

- a given IND-CPA symmetric encryption scheme  $\mathcal{SE} = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$
- a given PRF  $F: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^n$

|           | CBC\$-AES | CTR\$-AES |  |
|-----------|-----------|-----------|--|
| HMAC-SHA1 |           |           |  |
| CMAC      |           |           |  |
| ECBC      |           |           |  |
| ÷ :       |           |           |  |

Build an authenticated encryption scheme  $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  by combining

- ullet a given IND-CPA symmetric encryption scheme  $\mathcal{SE} = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$
- a given PRF  $F: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^n$

A key  $K = K_e || K_m$  for AE always consists of a key  $K_e$  for SE and a key  $K_m$  for F:

$$\frac{\mathsf{Alg}\ \mathcal{K}}{\mathsf{K}_{\mathsf{e}} \xleftarrow{\$} \mathcal{K}';\ \mathsf{K}_{\mathsf{m}} \xleftarrow{\$} \{0,1\}^{k}}$$
Return  $|\mathsf{K}_{\mathsf{e}}| |\mathsf{K}_{\mathsf{m}}|$ 

UCSD Mihir Bellare 19

#### Generic Composition Methods

The order in which the primitives are applied is important. Can consider

| Usage   |
|---------|
| SSH     |
| SSL/TLS |
| IPSec   |
|         |

We study these following [BN].

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

$$\begin{array}{c|c} \mathbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(M) \\ \mathrm{Return} \ C'||T \end{array} \qquad \begin{array}{c|c} \mathbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \mathrm{If} \ (T = F_{K_m}(M)) \ \mathrm{then} \ \mathrm{return} \ M \\ \mathrm{Else} \ \mathrm{return} \ \bot \end{array}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  |           |
| INT-CTXT |           |

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

Alg 
$$\mathcal{E}_{K_e||K_m}(M)$$

$$C' \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M)$$

$$T \leftarrow F_{K_m}(M)$$
Return  $C'||T$ 

$$\frac{\mathsf{Alg}\ \mathcal{D}_{K_e||K_m}(C'||T)}{M \leftarrow \mathcal{D}'_{K_e}(C')}$$
 If  $(T = F_{K_m}(M))$  then return  $M$  Else return  $\bot$ 

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | NO        |
| INT-CTXT |           |

Why?  $T = F_{K_m}(M)$  is a deterministic function of M and allows detection of repeats.

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

Alg 
$$\mathcal{E}_{K_e||K_m}(M)$$

$$C' \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M)$$

$$T \leftarrow F_{K_m}(M)$$
Return  $C'||T$ 

$$\begin{split} & \underbrace{\textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T)}_{M \leftarrow \mathcal{D}'_{K_e}(C')} \\ & \text{If} \ (T = F_{K_m}(M)) \ \text{then return} \ M \\ & \text{Else return} \ \bot \end{split}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | NO        |
| INT-CTXT |           |

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(M) \\ \textbf{Return} \ C'||T \\ \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \textbf{If} \ (T = F_{K_m}(M)) \ \textbf{then return} \ M \\ \textbf{Else return} \ \bot \\ \end{array}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | NO        |
| INT-CTXT | NO        |

Why? May be able to modify C' in such a way that its decryption is unchanged.

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

$$\begin{array}{l} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \overline{T \leftarrow F_{K_m}(M)} \\ C \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M||T) \\ \text{Return} \ C \end{array}$$

$$\begin{split} & \frac{\text{Alg } \mathcal{D}_{K_e||K_m}(C)}{M||T \leftarrow \mathcal{D}'_{K_e}(C)} \\ & \text{If } (T = F_{K_m}(M)) \text{ then return } M \\ & \text{Else return } \bot \end{split}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  |           |
| INT-CTXT |           |

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

$$\begin{array}{c|c} \textbf{Alg } \mathcal{E}_{K_e||K_m}(M) \\ \hline T \leftarrow F_{K_m}(M) \\ C \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M||T) \\ \text{Return } C \end{array} \qquad \begin{array}{c|c} \textbf{Alg } \mathcal{D}_{K_e||K_m} \\ \hline M||T \leftarrow \mathcal{D}'_{K_m}(M) \\ \text{If } (T = F_{K_m}(M)) \\ \text{Else return } T \end{array}$$

| $Alg\ \mathcal{D}_{K_e  K_m}(C)$        |   |
|-----------------------------------------|---|
| $M  T \leftarrow \mathcal{D}'_{K_e}(C)$ |   |
| If $(T = F_{K_m}(M))$ then return       | Μ |
| Else return $\perp$                     |   |

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | YES       |
| INT-CTXT |           |

Why?  $\mathcal{SE}' = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$  is IND-CPA secure.

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

$$\begin{array}{l} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \overline{T \leftarrow F_{K_m}(M)} \\ C \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M||T) \\ \text{Return } C \end{array}$$

$$\begin{split} & \underset{M||T \leftarrow \mathcal{D}'_{K_e}(C)}{\operatorname{Alg} \ \mathcal{D}_{K_e}(C)} \\ & \underset{M||T \leftarrow \mathcal{D}'_{K_e}(C)}{\operatorname{If} \ (T = F_{K_m}(M)) \ \text{then return} \ M} \\ & \underset{Else \ \text{return} \ \bot}{\operatorname{Else} \ \text{return} \ \bot} \end{split}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | YES       |
| INT-CTXT |           |

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

Alg 
$$\mathcal{E}_{K_e||K_m}(M)$$
  
 $T \leftarrow F_{K_m}(M)$   
 $C \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M||T)$   
Return  $C$ 

$$\begin{split} & \underbrace{\textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C)}_{M||T \leftarrow \mathcal{D}'_{K_e}(C)} \\ & \text{If } (T = F_{K_m}(M)) \text{ then return } M \\ & \text{Else return } \bot \end{split}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | YES       |
| INT-CTXT | NO        |

Why? May be able to modify C in such a way that its decryption is unchanged.

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

Alg 
$$\mathcal{E}_{K_e||K_m}(M)$$

$$C' \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M)$$

$$T \leftarrow F_{K_m}(C')$$
Return  $C'||T$ 

$$\label{eq:local_equation} \begin{split} & \underbrace{\textbf{Alg}}_{K_e||K_m}(\mathcal{C}'||\mathcal{T}) \\ & \underbrace{M \leftarrow \mathcal{D}'_{K_e}(\mathcal{C}')}_{\text{If }(\mathcal{T} = F_{K_m}(\mathcal{C}')) \text{ then return } M}_{\text{Else return } \bot} \end{split}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  |           |
| INT-CTXT |           |

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(C') \\ \textbf{Return} \ C'||T \\ \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \textbf{If} \ (T = F_{K_m}(C')) \ \textbf{then return} \ M \\ \textbf{Else return} \ \bot \\ \end{array}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | YES       |
| INT-CTXT |           |

Why? 
$$\mathcal{SE}' = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$$
 is IND-CPA secure.

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

Alg 
$$\mathcal{E}_{K_e||K_m}(M)$$

$$C' \stackrel{\$}{\leftarrow} \mathcal{E}'_{K_e}(M)$$

$$T \leftarrow F_{K_m}(C')$$
Return  $C'||T$ 

$$\label{eq:local_equation} \begin{split} & \underbrace{\textbf{Alg}}_{K_e||K_m}(\mathcal{C}'||\mathcal{T}) \\ & \underbrace{M \leftarrow \mathcal{D}'_{K_e}(\mathcal{C}')}_{\text{If } (\mathcal{T} = F_{K_m}(\mathcal{C}')) \text{ then return } M \\ & \text{Else return } \bot \end{split}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | YES       |
| INT-CTXT |           |

$$\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$$
 is defined by

$$\begin{array}{c|c} \textbf{Alg} \ \mathcal{E}_{K_e||K_m}(M) \\ \hline C' \overset{\$}{\leftarrow} \mathcal{E}'_{K_e}(M) \\ T \leftarrow F_{K_m}(C') \\ \textbf{Return} \ C'||T \\ \end{array} \qquad \begin{array}{c|c} \textbf{Alg} \ \mathcal{D}_{K_e||K_m}(C'||T) \\ \hline M \leftarrow \mathcal{D}'_{K_e}(C') \\ \textbf{If} \ (T = F_{K_m}(C')) \ \textbf{then return} \ M \\ \textbf{Else return} \ \bot \\ \end{array}$$

| Security | Achieved? |
|----------|-----------|
| IND-CPA  | YES       |
| INT-CTXT | YES       |

Why? If C||T is new then T will be wrong.

# Two keys or one?

We have used separate keys  $K_e$ ,  $K_m$  for the encryption and message authentication. However, these can be derived from a single key K via  $K_e = F_K(0)$  and  $K_m = F_K(1)$ , where F is a PRF such as a block cipher, the CBC-MAC or HMAC.

Trying to directly use the same key for the encryption and message authentication is error-prone, but works if done correctly.

# $\begin{array}{l} {\color{red} \textbf{Alg} \ \, \mathcal{E}_{\mathcal{K}}(M) \, \\ \\ \text{if} \ \, |\mathcal{M}| \neq 512 \ \text{then return} \ \, \bot \, \\ M[1] \ldots M[4] \leftarrow M \, \\ C_e[0] \stackrel{\$}{\circ} \{0,1\}^{128} C_m[0] \leftarrow 0^{128} \, \\ \text{for} \ \, i = 1, \ldots, 4 \ \text{do} \, \\ C_e[i] \leftarrow E_K(C_e[i-1] \oplus M[i]) \, \\ C_m[i] \leftarrow E_K(C_m[i-1] \oplus M[i]) \, \\ C_e \leftarrow C_e[0] C_e[1] C_e[2] C_e[3] C_e[4] \, \\ T \leftarrow C_m[4]; \ \text{return} \ \, (C_e, T) \, \end{array}$

```
\begin{aligned} & \underset{\text{if } |C_e| \neq 640 \text{ then return } \bot}{\text{if } |C_e| \neq 640 \text{ then return } \bot} \\ & C_m[0] \leftarrow 0^{128} \\ & \text{for } i = 1, \dots, 4 \text{ do} \\ & M[i] \leftarrow E_K^{-1}(C_e[i]) \oplus C_e[i-1] \\ & C_m[i] \leftarrow E_K(C_m[i-1] \oplus M[i]) \\ & \text{if } C_m[4] \neq T \text{ then return } \bot \\ & \text{return } M \end{aligned}
```

Let E = AES. Let  $\mathcal{K}$  return a random 128-bit AES key K. Let  $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  where  $\mathcal{E}$ ,  $\mathcal{D}$  are above. Here, X[i] denotes the i-th 128-bit block of a string whose length is a multiple of 128.

#### Exercise: Questions

- 1. Is SE IND-CPA-secure? Why or why not?
- 2. Is SE INT-CTXT-secure? Why or why not?
- 3. Is  $\mathcal{SE}$  an Encrypt-and-MAC construction? Justify your answer.

UCSD 35 Mihir Bellare

You are given

- An IND-CPA symmetric encryption scheme  $\mathcal{SE}^* = (\mathcal{K}^*, \mathcal{E}^*, \mathcal{D}^*)$
- A PRF F:  $\{0,1\}^k \times \{0,1\}^* \to \{0,1\}^n$

Construct a symmetric encryption scheme  $\mathcal{SE}' = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$  such that

- (1)  $\mathcal{SE}'$  is IND-CPA, but
- (2) The MtE combination of SE' and F is not INT-CTXT-secure.

Specify  $\mathcal{SE}'$  by giving pseudocode for all the constituent algorithms.

Then prove (1) by a reduction and prove (2) by giving pseudocode for an efficient adversary achieving int-ctxt advantage 1.

UCSD Mihir Bellare

## INT-CTXT security of Encrypt-then-MAC

Encrpt-then-MAC is INT-CTXT-secure assuming PRF-security of F:

Theorem: Let  $\mathcal{SE} = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$  be a symmetric encryption scheme. Let  $F: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^n$  be a family of functions. Let  $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  be obtained by composing  $\mathcal{SE}$  and F in the Encrypt-then-MAC combination. Let A be an int-ctxt adversary against  $\mathcal{AE}$  make  $q_e$  **Enc** queries and having running time t. Then we can construct a prf-adversary B against F such that

$$\mathsf{Adv}^{\mathrm{int-ctxt}}_{\mathcal{AE}}(A) \leq \mathsf{Adv}^{\mathrm{prf}}_{F}(B) + \frac{1}{2^{n}}$$
.

B makes  $q_e$  queries to its **Fn** oracle and has running time t plus some overhead.

Mihir Bellare UCSD 37

#### adversary B

$$\begin{split} & \mathcal{K}_e \overset{\$}{\leftarrow} \mathcal{K}'; \ \mathcal{S} \leftarrow \emptyset \\ & \mathcal{C}' \| \ \mathcal{T} \overset{\$}{\leftarrow} \mathcal{A}^{\operatorname{EncSim}} \\ & \text{If } (\mathcal{C}', \mathcal{T}) \in \mathcal{S} \text{ then return 0} \\ & \text{If } \mathcal{T} = \textbf{Fn}(\mathcal{C}') \text{ then return 1} \\ & \text{Else return 0} \end{split}$$

# Subroutine $\operatorname{EncSim}(M)$ $C' \stackrel{\$}{\leftarrow} \mathcal{E}'(K_e, M); \ T \leftarrow \operatorname{Fn}(C')$ $S \leftarrow S \cup \{(C', T')\}$ Return $C' \parallel T$

Note that B itself picks  $K_e$  so that it can simulate **Enc** for A.

$$\Pr[\operatorname{Real}_F^{\mathcal{B}} \Rightarrow 1] = \mathsf{Adv}_{\mathcal{AE}}^{\operatorname{int-ctxt}}(A)$$
 $\Pr[\operatorname{Rand}_{\{0,1\}^n}^{\mathcal{B}} \Rightarrow 1] \leq \frac{1}{2^n}$ 

#### Exercise

There is a lot going on in the above proof! The exercise is to work through it slowly, checking each step and claim.

## Exercise: IND-CPA security of Encrypt-then-MAC

Encrpt-then-MAC is IND-CPA-secure assuming IND-CPA-security of  $\mathcal{SE}'$ :

Theorem: Let  $\mathcal{SE} = (\mathcal{K}', \mathcal{E}', \mathcal{D}')$  be a symmetric encryption scheme. Let  $F: \{0,1\}^k \times \{0,1\}^* \to \{0,1\}^n$  be a family of functions. Let  $\mathcal{AE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  be obtained by composing  $\mathcal{SE}$  and F in the Encrypt-then-MAC combination. Let A be an ind-cpa adversary against  $\mathcal{AE}$  make q LR queries and having running time t. Then we can construct an ind-cpa adversary B against  $\mathcal{SE}'$  such that

$$\mathsf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{A}\mathcal{E}}(A) \leq \mathsf{Adv}^{\mathrm{ind-cpa}}_{\mathcal{S}\mathcal{E}'}(B)$$
.

B makes q queries to its **LR** oracle and has running time t plus some overhead.

The exercise is to prove this theorem.

Mihir Bellare UCSD 40

# Generic Composition in Practice

| AE in          | is based on | which in general is | and in this case is |
|----------------|-------------|---------------------|---------------------|
| SSH            | E&M         | insecure            | secure              |
| SSL            | MtE         | insecure            | insecure            |
| SSL + RFC 4344 | MtE         | insecure            | secure              |
| IPSec          | EtM         | secure              | secure              |
| WinZip         | EtM         | secure              | insecure            |

#### Why?

- Encodings
- Specific "E" and "M" schemes
- For WinZip, disparity between usage and security model



SSH2 encryption uses inter-packet chaining which is insecure [D, BKN]. RFC 4344 [BKN] proposed fixes that render SSH provably IND-CPA + INT-CTXT secure. Fixes recommended by Secure Shell Working Group and included in OpenSSH since 2003. Fixes included in PuTTY since 2008.

## AE in SSL

SSL uses MtE

$$\mathcal{E}_{K_e \parallel K_M} = \mathcal{E}'_{K_e}(M \parallel F_{K_m}(M))$$

which we saw is not INT-CTXT-secure in general. But  $\mathcal{E}'$  is CBC\$ in SSL, and in this case the scheme does achieve INT-CTXT [K].

F in SSL is HMAC.

Sometimes SSL uses RC4 for encryption.

The goal has evolved into Authenticated Encryption with Associated Data (AEAD) [Ro].

- Associated Data (AD) is authenticated but not encrypted
- Schemes are nonce-based (and deterministic)

Sender

- $C \leftarrow \mathcal{E}_K(N, AD, M)$
- Send (*N*, *AD*, *C*)

Receiver

- Receive (N, AD, C)
- $M \leftarrow \mathcal{D}_K(N, AD, C)$

Sender must never re-use a nonce.

But when attacking integrity, the adversary may use any nonce it likes.

#### **AEAD** Schemes

**Generic composition:** E&M, MtE, EtM extend and again EtM is the best but others work too under appropriate conditions [NRS14].

1-pass schemes: IAPM [J], XCBC/XEBC [GD], OCB [RBBK, R]

2-pass schemes: CCM [FHW], EAX [BRW], CWC [KVW], GCM [MV]

Stream cipher based: Helix [FWSKLK], SOBER-128 [HR]

- 1-pass schemes are fast
- 2-pass schemes are patent-free
- Stream cipher based schemes are fast

# OCB [RBBK]





Checksum =  $M[1] \oplus M[2] \oplus M[3]$   $S = \mathrm{PMAC}_K(AD)$  using separate tweaks. Output may optionally be truncated. Some complications (not shown) for non-full messages.

Optional in IEEE 802.11i

## Patents on 1-pass schemes

- Jutla (IBM) 7093126
- Gligor and Donescu (VDG, Inc.) 6973187
- Rogaway 7046802, 7200227

## 2-pass AEAD

- Tailored generic composition of specific base schemes
- Single key

#### Philosophical questions:

- What is the advantage of one key versus two given that can always derive the two from the one?
- Why not just do specific generic composition of specific base schemes?

# CCM [FHW]



MtE-based but single key throughout. CTR-ENC is nonce-based counter mode encryption, and CBC-MAC is the basic CBC MAC. Ciphertext is  $C \parallel T$ . In NIST SP 800-38C, IEEE 802.11i.

# Critiques of CCM [RW]

- Not on-line: message and AD lengths must be known in advance
- Can't pre-process static AD
- Nonce length depends on message length and the former decreases as the latter increases
- Awkward/unnecessary parameters
- Complex encodings



EtM-based but single key throughout. CTR-ENC is nonce-based counter mode encryption. Online; can pre-process static AD; always 128-bit nonce; simple; same performance as CCM. In ANSI C12.22.

# CWC [KVW]



CTR-ENC is nonce-based counter mode encryption. CWC-HASH is a AU polynomial-based hash.  $K_H$  is derived from K via E. Parallelizable; 300K gates for 10 Gbit/s (ASIC at 130 nanometers); Roughly same software speed as CCM, EAX, but can be improved via precomputation.

Mihir Bellare UCSD 52



CTR-ENC is nonce-based counter mode encryption. GCM-HASH is a AU polynomial-based hash.  $K_H$  is derived from K via E. Can be used as a MAC. In NIST SP 800-38D.



Gladman's C code



Gladman's C code

### Which AEAD scheme should I use?

No clear answer. Ask yourself

- What performance do I need?
- Single or multiple keys?
- Patents ok or not?
- Do I need to comply with some standard?

## Authenticated encryption today

- The most important practical goal
- Lots of schemes, standards and implementations
- Big efforts go into making it FAST
- CAESAR competition: http://competitions.cr.yp.to/caesar.html