
AUTHENTICATED ENCRYPTION

Mihir Bellare UCSD 1

So Far ...

We have looked at methods to provide privacy and authenticity separately:

Goal Primitive Security notion

Data privacy symmetric encryption IND-CPA
Data authenticity MAC UF-CMA

Mihir Bellare UCSD 2

Authenticated Encryption

In practice we often want both privacy and authenticity.

Example: A doctor wishes to send medical information M about Alice to
the medical database. Then

• We want data privacy to ensure Alice’s medical records remain
confidential.

• We want authenticity to ensure the person sending the information is
really the doctor and the information was not modified in transit.

We refer to this as authenticated encryption.

Mihir Bellare UCSD 3

Authenticated Encryption Schemes

Syntactically, an authenticated encryption scheme is just a symmetric
encryption scheme AE = (K, E ,D) where

Mihir Bellare UCSD 4

Privacy of Authenticated Encryption Schemes

The notion of privacy for symmetric encryption carries over, namely we
want IND-CPA.

Mihir Bellare UCSD 5

Integrity of Authenticated Encryption Schemes

Adversary’s goal is to get the receiver to accept a “non-authentic”
ciphertext C .

Integrity of ciphertexts: C is “non-authentic” if it was never transmitted
by the sender.

Mihir Bellare UCSD 6

INT-CTXT

Let AE = (K, E ,D) be a symmetric encryption scheme and A an
adversary.

Game INTCTXTAE

procedure Initialize
K

$←K ; S ← ∅

procedure Enc(M)

C
$←EK (M)

S ← S ∪ {C}
Return C

procedure Finalize(C)
M ← DK (C)
if (C 6∈ S ∧M 6= ⊥) then

return true
Else return false

The int-ctxt advantage of A is

Advint-ctxtAE (A) = Pr[INTCTXTA
AE ⇒ true]

Mihir Bellare UCSD 7

Integrity with privacy

The goal of authenticated encryption is to provide both integrity and
privacy. We will be interested in IND-CPA + INT-CTXT.

Mihir Bellare UCSD 8

Plain Encryption Does Not Provide Integrity

Alg EK (M)

C [0]
$←{0, 1}n

For i = 1, . . . ,m do
C [i]← EK (C [i − 1] ⊕ M[i])

Return C

Alg DK (C)

For i = 1, . . . ,m do
M[i]← E−1K (C [i]) ⊕ C [i − 1]

Return M

Question: Is CBC$ encryption INT-CTXT secure?

Answer: No, because any string C [0]C [1] . . .C [m] has a valid decryption.

Mihir Bellare UCSD 9

Plain Encryption Does Not Provide Integrity

Alg EK (M)

C [0]
$←{0, 1}n

For i = 1, . . . ,m do
C [i]← EK (C [i − 1] ⊕ M[i])

Return C

Alg DK (C)

For i = 1, . . . ,m do
M[i]← E−1K (C [i]) ⊕ C [i − 1]

Return M

Question: Is CBC$ encryption INT-CTXT secure?

Answer: No, because any string C [0]C [1] . . .C [m] has a valid decryption.

Mihir Bellare UCSD 10

Plain Encryption Does Not Provide Integrity

Alg EK (M)

C [0]
$←{0, 1}n

For i = 1, . . . ,m do
C [i]← EK (C [i − 1] ⊕ M[i])

Return C

Alg DK (C)

For i = 1, . . . ,m do
M[i]← E−1K (C [i]) ⊕ C [i − 1]

Return M

adversary A

C [0]C [1]C [2]
$←{0, 1}3n

Return C [0]C [1]C [2]

Then

Advint-ctxtSE (A) = 1

This violates INT-CTXT.

A scheme whose decryption algorithm never outputs ⊥ cannot provide
integrity!
Mihir Bellare UCSD 11

A Better Attack on CBC$

Suppose A has the CBC$ encryption C [0]C [1] of a 1-block known message
M. Then it can create an encryption C ′[0]C ′[1] of any (1-block) message
M ′ of its choice via

C ′[0]← C [0] ⊕ M ⊕ M ′

C ′[1]← C [1]

i
?

?

EK

C [1]

M

C [0]

i
?

?

EK

C [1]

M ′

C [0] ⊕ M ⊕ M ′

Mihir Bellare UCSD 12

Encryption with Redundancy

i
?

?

EK

M[1]

C [1]

i
?

?

EK

M[m]

C [m]

i
?

?

EK

C [2]

M[2] i
?

?

EK

h(M)

C [m + 1]

...

C [0]

Here E : {0, 1}k × {0, 1}n → {0, 1}n is our block cipher and h: {0, 1}∗ →
{0, 1}n is a “redundancy” function, for example

• h(M[1] . . .M[m]) = 0n

• h(M[1] . . .M[m]) = M[1] ⊕ · · · ⊕ M[m]

• A CRC

• h(M[1] . . .M[m]) is the first n bits of SHA1(M[1] . . .M[m]).

The redundancy is verified upon decryption.

Mihir Bellare UCSD 13

Encryption with Redundancy

i
?

?

EK

M[1]

C [1]

i
?

?

EK

M[m]

C [m]

i
?

?

EK

C [2]

M[2] i
?

?

EK

h(M)

C [m + 1]

...

C [0]

Let E : {0, 1}k × {0, 1}n → {0, 1}n be our block cipher and h: {0, 1}∗ →
{0, 1}n a redundancy function. Let SE = (K, E ′,D′) be CBC$ encryption
and define the encryption with redundancy scheme AE = (K, E ,D) via

Alg EK (M)

M[1] . . .M[m]← M
M[m + 1]← h(M)

C
$←E ′K (M[1] . . .M[m]M[m + 1])

return C

Alg DK (C)

M[1] . . .M[m]M[m + 1]← D′K (C)
if (M[m + 1] = h(M)) then

return M[1] . . .M[m]
else return ⊥

Mihir Bellare UCSD 14

Arguments in Favor of Encryption with Redundancy

i
?

?

EK

M[1]

C [1]

i
?

?

EK

M[m]

C [m]

i
?

?

EK

C [2]

M[2] i
?

?

EK

h(M)

C [m + 1]

...

C [0]

The adversary will have a hard time producing the last enciphered block of
a new message.

Mihir Bellare UCSD 15

Encryption with Redundancy Fails

adversary A

M[1]
$←{0, 1}n ; M[2]← h(M[1])

C [0]C [1]C [2]C [3]
$← Enc(M[1]M[2])

Return C [0]C [1]C [2]

i
?

?

EK

M[1]

C [1]

i i
?

?

?

?
C [0]

EK

C [2]

EK

C [3]

h(M[1]M[2])

h(M[1])︷︸︸︷
M[2]

This attack succeeds for any (not secret-key dependent) redundancy
function h.

Mihir Bellare UCSD 16

WEP Attack

A “real-life” rendition of this attack broke the 802.11 WEP protocol, which
instantiated h as CRC and used a stream cipher for encryption [BGW].

What makes the attack easy to see is having a clear, strong and formal
security model.

Mihir Bellare UCSD 17

Generic Composition

Build an authenticated encryption scheme AE = (K, E ,D) by combining

• a given IND-CPA symmetric encryption scheme SE = (K′, E ′,D′)
• a given PRF F : {0, 1}k × {0, 1}∗ → {0, 1}n

CBC$-AES CTR$-AES . . .

HMAC-SHA1

CMAC

ECBC
...

Mihir Bellare UCSD 18

Generic Composition

Build an authenticated encryption scheme AE = (K, E ,D) by combining

• a given IND-CPA symmetric encryption scheme SE = (K′, E ′,D′)
• a given PRF F : {0, 1}k × {0, 1}∗ → {0, 1}n

A key K = Ke ||Km for AE always consists of a key Ke for SE and a key
Km for F :

Alg K
Ke

$←K′; Km
$←{0, 1}k

Return Ke ||Km

Mihir Bellare UCSD 19

Generic Composition Methods

The order in which the primitives are applied is important. Can consider

Method Usage

Encrypt-and-MAC (E&M) SSH

MAC-then-encrypt (MtE) SSL/TLS

Encrypt-then-MAC (EtM) IPSec

We study these following [BN].

Mihir Bellare UCSD 20

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA

INT-CTXT

Mihir Bellare UCSD 21

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA NO

INT-CTXT

Why? T = FKm(M) is a deterministic function of M and allows detection
of repeats.

Mihir Bellare UCSD 22

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA NO

INT-CTXT

Mihir Bellare UCSD 23

Encrypt-and-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(M)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′Ke
(C ′)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA NO

INT-CTXT NO

Why? May be able to modify C ′ in such a way that its decryption is
unchanged.

Mihir Bellare UCSD 24

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′Ke
(C)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA

INT-CTXT

Mihir Bellare UCSD 25

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′Ke
(C)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT

Why? SE ′ = (K′, E ′,D′) is IND-CPA secure.

Mihir Bellare UCSD 26

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′Ke
(C)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT

Mihir Bellare UCSD 27

MAC-then-Encrypt

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

T ← FKm(M)

C
$←E ′Ke

(M||T)
Return C

Alg DKe ||Km
(C)

M||T ← D′Ke
(C)

If (T = FKm(M)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT NO

Why? May be able to modify C in such a way that its decryption is
unchanged.

Mihir Bellare UCSD 28

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?

IND-CPA

INT-CTXT

Mihir Bellare UCSD 29

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT

Why? SE ′ = (K′, E ′,D′) is IND-CPA secure.

Mihir Bellare UCSD 30

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT

Mihir Bellare UCSD 31

Encrypt-then-MAC

AE = (K, E ,D) is defined by

Alg EKe ||Km
(M)

C ′
$←E ′Ke

(M)
T ← FKm(C ′)
Return C ′||T

Alg DKe ||Km
(C ′||T)

M ← D′Ke
(C ′)

If (T = FKm(C ′)) then return M
Else return ⊥

Security Achieved?

IND-CPA YES

INT-CTXT YES

Why? If C ||T is new then T will be wrong.

Mihir Bellare UCSD 32

Two keys or one?

We have used separate keys Ke ,Km for the encryption and message
authentication. However, these can be derived from a single key K via
Ke = FK (0) and Km = FK (1), where F is a PRF such as a block cipher,
the CBC-MAC or HMAC.

Trying to directly use the same key for the encryption and message
authentication is error-prone, but works if done correctly.

Mihir Bellare UCSD 33

Exercise: Setup

Alg EK (M)

if |M| 6= 512 then return ⊥
M[1] . . .M[4]← M

Ce [0]
$←{0, 1}128Cm[0]← 0128

for i = 1, . . . , 4 do
Ce [i]← EK (Ce [i − 1] ⊕ M[i])
Cm[i]← EK (Cm[i − 1] ⊕ M[i])

Ce ← Ce [0]Ce [1]Ce [2]Ce [3]Ce [4]
T ← Cm[4]; return (Ce ,T)

Alg DK ((Ce ,T))

if |Ce | 6= 640 then return ⊥
Cm[0]← 0128

for i = 1, . . . , 4 do

M[i]← E−1K (Ce [i]) ⊕ Ce [i − 1]
Cm[i]← EK (Cm[i − 1] ⊕ M[i])

if Cm[4] 6= T then return ⊥
return M

Let E = AES . Let K return a random 128-bit AES key K . Let SE =
(K, E ,D) where E , D are above. Here, X [i] denotes the i-th 128-bit block
of a string whose length is a multiple of 128.

Mihir Bellare UCSD 34

Exercise: Questions

1. Is SE IND-CPA-secure? Why or why not?

2. Is SE INT-CTXT-secure? Why or why not?

3. Is SE an Encrypt-and-MAC construction? Justify your answer.

Mihir Bellare UCSD 35

Exercise

You are given

• An IND-CPA symmetric encryption scheme SE∗ = (K∗, E∗,D∗)
• A PRF F : {0, 1}k × {0, 1}∗ → {0, 1}n

Construct a symmetric encryption scheme SE ′ = (K′, E ′,D′) such that

(1) SE ′ is IND-CPA, but

(2) The MtE combination of SE ′ and F is not INT-CTXT-secure.

Specify SE ′ by giving pseudocode for all the constituent algorithms.

Then prove (1) by a reduction and prove (2) by giving pseudocode for an
efficient adversary achieving int-ctxt advantage 1.

Mihir Bellare UCSD 36

INT-CTXT security of Encrypt-then-MAC

Encrpt-then-MAC is INT-CTXT-secure assuming PRF-security of F :

Theorem: Let SE = (K′, E ′,D′) be a symmetric encryption scheme. Let
F : {0, 1}k × {0, 1}∗ → {0, 1}n be a family of functions. Let AE = (K, E ,
D) be obtained by composing SE and F in the Encrypt-then-MAC
combination. Let A be an int-ctxt adversary against AE make qe Enc
queries and having running time t. Then we can construct a prf-adversary
B against F such that

Advint-ctxtAE (A) ≤ AdvprfF (B) +
1

2n
.

B makes qe queries to its Fn oracle and has running time t plus some
overhead.

Mihir Bellare UCSD 37

The adversary B

adversary B

Ke
$←K′; S ← ∅

C ′‖T $← AEncSim

If (C ′,T) ∈ S then return 0
If T = Fn(C ′) then return 1
Else return 0

Subroutine EncSim(M)

C ′
$←E ′(Ke ,M); T ← Fn(C ′)

S ← S ∪ {(C ′,T ′)}
Return C ′‖T

Note that B itself picks Ke so that it can simulate Enc for A.

Pr[RealBF ⇒ 1] = Advint-ctxtAE (A)

Pr[RandB{0,1}n ⇒ 1] ≤ 1

2n

Mihir Bellare UCSD 38

Exercise

There is a lot going on in the above proof! The exercise is to work
through it slowly, checking each step and claim.

Mihir Bellare UCSD 39

Exercise: IND-CPA security of Encrypt-then-MAC

Encrpt-then-MAC is IND-CPA-secure assuming IND-CPA-security of SE ′:

Theorem: Let SE = (K′, E ′,D′) be a symmetric encryption scheme. Let
F : {0, 1}k × {0, 1}∗ → {0, 1}n be a family of functions. Let AE = (K, E ,
D) be obtained by composing SE and F in the Encrypt-then-MAC
combination. Let A be an ind-cpa adversary against AE make q LR
queries and having running time t. Then we can construct an ind-cpa
adversary B against SE ′ such that

Advind-cpaAE (A) ≤ Advind-cpaSE ′ (B) .

B makes q queries to its LR oracle and has running time t plus some
overhead.

The exercise is to prove this theorem.

Mihir Bellare UCSD 40

Generic Composition in Practice

AE in is based on which in
general is

and in this
case is

SSH E&M insecure secure

SSL MtE insecure insecure

SSL + RFC 4344 MtE insecure secure

IPSec EtM secure secure

WinZip EtM secure insecure

Why?

• Encodings

• Specific “E” and “M” schemes

• For WinZip, disparity between usage and security model

Mihir Bellare UCSD 41

AE in SSH

?

?

? ?

? ?

len(M)‖len(Pad)‖M‖Padcounter

Encode

M

EncryptKe
MACKm

C T

SSH2 encryption uses inter-packet chaining which is insecure [D, BKN].
RFC 4344 [BKN] proposed fixes that render SSH provably IND-CPA +
INT-CTXT secure. Fixes recommended by Secure Shell Working Group
and included in OpenSSH since 2003. Fixes included in PuTTY since 2008.

Mihir Bellare UCSD 42

AE in SSL

SSL uses MtE
EKe‖KM

= E ′Ke
(M‖FKm(M))

which we saw is not INT-CTXT-secure in general. But E ′ is CBC$ in SSL,
and in this case the scheme does achieve INT-CTXT [K].

F in SSL is HMAC.

Sometimes SSL uses RC4 for encryption.

Mihir Bellare UCSD 43

AEAD

The goal has evolved into Authenticated Encryption with Associated Data
(AEAD) [Ro].

• Associated Data (AD) is authenticated but not encrypted

• Schemes are nonce-based (and deterministic)

Sender

• C ← EK (N,AD,M)

• Send (N,AD,C)

Receiver

• Receive (N,AD,C)

• M ← DK (N,AD,C)

Sender must never re-use a nonce.

But when attacking integrity, the adversary may use any nonce it likes.

Mihir Bellare UCSD 44

AEAD Schemes

Generic composition: E&M, MtE, EtM extend and again EtM is the
best but others work too under appropriate conditions [NRS14].

1-pass schemes: IAPM [J], XCBC/XEBC [GD], OCB [RBBK, R]

2-pass schemes: CCM [FHW], EAX [BRW], CWC [KVW], GCM [MV]

Stream cipher based: Helix [FWSKLK], SOBER-128 [HR]

• 1-pass schemes are fast

• 2-pass schemes are patent-free

• Stream cipher based schemes are fast

Mihir Bellare UCSD 45

OCB [RBBK]

i
?

?

?

?

?

?

?

?

�

EN,1,0
K

M[1]

C [1]

EN,2,0
K

M[2]

C [2]

EN,3,0
K

M[3]

C [3]

EN,1,1
K

C [4]

Checksum

S

Checksum = M[1] ⊕ M[2] ⊕ M[3]
S = PMACK (AD) using separate tweaks.
Output may optionally be truncated.
Some complications (not shown) for non-full messages.

Optional in IEEE 802.11i

Mihir Bellare UCSD 46

Patents on 1-pass schemes

• Jutla (IBM) 7093126

• Gligor and Donescu (VDG, Inc.) 6973187

• Rogaway 7046802, 7200227

Mihir Bellare UCSD 47

2-pass AEAD

• Tailored generic composition of specific base schemes

• Single key

Philosophical questions:

• What is the advantage of one key versus two given that can always
derive the two from the one?

• Why not just do specific generic composition of specific base
schemes?

Mihir Bellare UCSD 48

CCM [FHW]

CTR-ENCK

i

6

?

?

?

?

-

-

?

?

MN AD

CBC-MACK

Encode

T C

EK

MtE-based but single key throughout. CTR-ENC is nonce-based counter
mode encryption, and CBC-MAC is the basic CBC MAC. Ciphertext is
C‖T . In NIST SP 800-38C, IEEE 802.11i.

Mihir Bellare UCSD 49

Critiques of CCM [RW]

• Not on-line: message and AD lengths must be known in advance

• Can’t pre-process static AD

• Nonce length depends on message length and the former decreases as
the latter increases

• Awkward/unnecessary parameters

• Complex encodings

Mihir Bellare UCSD 50

EAX [BRW]

CTR-ENCK

CMAC0
K

CMAC2
K i

?

?

?

?

?-

-

-

?

T

ADM

C

N

CMAC1
K

EtM-based but single key throughout. CTR-ENC is nonce-based counter
mode encryption. Online; can pre-process static AD; always 128-bit nonce;
simple; same performance as CCM. In ANSI C12.22.

Mihir Bellare UCSD 51

CWC [KVW]

CTR-ENCK

i

?

?

?-

?

?

-
?

?

-

EncodeEK

N AD

T

C

M

CWC-HASHKH

CTR-ENC is nonce-based counter mode encryption. CWC-HASH is a AU
polynomial-based hash. KH is derived from K via E . Parallelizable; 300K
gates for 10 Gbit/s (ASIC at 130 nanometers); Roughly same software
speed as CCM, EAX, but can be improved via precomputation.
Mihir Bellare UCSD 52

GCM [MV]

CTR-ENCK

i

?

?

?-

?

?

-
?

?

-

EncodeEK

N AD

T

C

M

GCM-HASHKH

CTR-ENC is nonce-based counter mode encryption. GCM-HASH is a AU
polynomial-based hash. KH is derived from K via E . Can be used as a
MAC. In NIST SP 800-38D.

Mihir Bellare UCSD 53

Performance Comparisons x32

CCM

GCM

OCB
ECB

message length (bytes)

c
lo

c
k
 c

y
c
le

s
 p

e
r

b
y
te

Gladman’s C code

Mihir Bellare UCSD 54

Performance Comparisons x64

message length (bytes)

c
lo

c
k
 c

y
c
le

s
 p

e
r

b
y
te

ECB
OCB

GCM
CCM

Gladman’s C code

Mihir Bellare UCSD 55

Which AEAD scheme should I use?

No clear answer. Ask yourself

• What performance do I need?

• Single or multiple keys?

• Patents ok or not?

• Do I need to comply with some standard?

Mihir Bellare UCSD 56

Authenticated encryption today

• The most important practical goal

• Lots of schemes, standards and implementations

• Big efforts go into making it FAST

• CAESAR competition:
http://competitions.cr.yp.to/caesar.html

Mihir Bellare UCSD 57

http://competitions.cr.yp.to/caesar.html

