In all problems the languages are over the alphabet $\Sigma = \{0, 1\}$.

Problem 1 [40 points] If ϕ is a boolean CNF formula then $\|\phi\|$ denotes the number of variables in it. If $a \in \{0, 1\}^{\|\phi\|}$ is an assignment to the variables of ϕ then we let $\text{NumSatClauses}(\phi, a)$ denote the number of clauses of ϕ that are satisfied by a. We then define the function $\text{MaxSAT}: \Sigma^* \to \mathbb{N}$ as follows: for any boolean formula ϕ we let

$$\text{MaxSAT}(\langle \phi \rangle) = \max_a \{ \text{NumSatClauses}(\phi, a) \}.$$

Above, the maximum is over all assignments $a \in \{0, 1\}^{\|\phi\|}$ to the variables of ϕ. (We also define $\text{MaxSAT}(w)$ to be 0 for any w that does not encode a boolean CNF formula.) Prove the following:

1. [10 points] If the function MaxSAT is polynomial-time computable then $P = NP$.

 Assume $\text{MaxSAT}(\cdot)$ is polynomial-time computable. This means there is a polynomial-time TM M that on input the encoding $\langle \phi \rangle$ of a boolean formula ϕ, halts with output $\text{MaxSAT}(\langle \phi \rangle)$. We have to show that $P = NP$. We will do this by showing that SAT is in P. Since SAT is NP-complete, it follows that $P = NP$.

 To show that SAT is in P we present a polynomial time decision algorithm M' for it. It takes as input the encoding $\langle \phi \rangle$ of a CNF formula ϕ. It uses algorithm M as a subroutine:

 Algorithm $M'(\langle \phi \rangle)$

 Let m be the number of clauses in ϕ

 Let $k \leftarrow M(\langle \phi \rangle)$

 If $k = m$ then accept else reject

2. [30 points] If $P = NP$ then the function MaxSAT is polynomial-time computable.

 Assume $P = NP$. We want to show that $\text{MaxSAT}(\cdot)$ is polynomial-time computable. We begin by considering the language

 $$\text{CSAT} = \{ \langle \phi, k \rangle : \phi \text{ is a boolean formula and } k \in \mathbb{N} \text{ and } \text{MaxSAT}(\phi) \geq k. \}.$$

 It is easy to see that CSAT is in NP. (A witness for membership of $\langle \phi, k \rangle$ in CSAT is an assignment to the variables of ϕ that satisfies at least k clauses of ϕ.) Now, our assumption $P = NP$ means there is a polynomial-time TM M' that decides CSAT. Then the following TM computes $\text{MaxSAT}(\cdot)$:
Algorithm $M(w)$

If w is not the encoding of a boolean formula then return 0
Let φ be the boolean formula such that $w = \langle \varphi \rangle$
Let m be the number of clauses in φ
For $k = m$ downto 1 do
 If $M'(\langle \varphi, k \rangle)$ accepts then return k
End For

This TM runs in polynomial time because M' runs in polynomial time and the length of the input $\langle \varphi, k \rangle$ to M' is bounded by a polynomial in the length of the input $\langle \varphi \rangle$ to M.

Problem 2 [30 points] Let $\text{NP}^* = \text{NP} - \{\emptyset, \Sigma^*\}$ and let $	ext{NPC}$ denote the class of NP-complete languages. Prove the following:

1. [10 points] If $\text{NP}^* \subseteq \text{NPC}$ then $\text{P} = \text{NP}$

Assume $\text{NP}^* \subseteq \text{NP}$. We want to show $\text{P} = \text{NP}$. Since $\text{P} \subseteq \text{NP}$ we only need to show that $\text{NP} \subseteq \text{P}$. So let A be an arbitrary language in NP. We want to show $A \in \text{P}$. Let B be a language in $\text{P} - \{\emptyset, \Sigma^*\}$. (Many such languages exist). Since $\text{P} \subseteq \text{NP}$, B is in NP^*, hence, by our assumption, is NP-complete. So $A \leq_p B$. Recall a basic property of polynomial time reductions: If $A \leq_p B$ and $B \in \text{P}$ then $A \in \text{P}$. But B is indeed in P so this implies A is also in P, as desired.

2. [20 points] If $\text{P} = \text{NP}$ then $\text{NP}^* \subseteq \text{NPC}$

Assume $\text{P} = \text{NP}$ and let $B \not\in \text{NP}^*$. We want to show B is NP-complete. We already know it is in NP, since $\text{NP}^* \subseteq \text{NP}$. Now we need to show it is NP-hard. So let A be an arbitrary language in NP. We want to show $A \leq_p B$. Since $B \neq \emptyset$ and $B \neq \Sigma^*$ we can fix a string $Y \in B$ and a string $N \not\in B$. Also, since $A \in \text{NP}$ and $\text{P} = \text{NP}$ there is a polynomial time algorithm M_A to decide A. Now consider the function $f: \Sigma^* \rightarrow \Sigma^*$ defined by

$$f(x) = \begin{cases} Y & \text{if } x \in A \\ N & \text{if } x \not\in A \end{cases}$$

We claim it is polynomial time computable. Indeed, a polynomial time algorithm M_f to compute f would take input x and output Y if $M_A(x)$ accepts and N otherwise. (The two strings Y, N are part of the description of M_f. Think of them as hardwired into the code.) Clearly $x \in A$ if and only if $f(x) \in B$. So f is a reduction of A to B. That is, $A \leq_p B$, as desired.