Problem Set 2 Solutions

Problem 1. [30 points] Prove that the following language is neither r.e. nor co-r.e.:

\[L = \{ \langle M_1, M_2 \rangle : M_1, M_2 \text{ are TMs and } M_1(\varepsilon) \text{ halts and } M_2(\varepsilon) \text{ loops} \} \].

The following shows that \(L \) is not co-r.e..

Claim 1: \(\text{BTH} \leq_m L \).

Proof: We need to specify a computable function \(f \) that takes as input \(\langle M \rangle \) and returns \(\langle M_1, M_2 \rangle \) such that:

1. If \(M(\varepsilon) \) halts then \(M_1(\varepsilon) \) halts and \(M_2(\varepsilon) \) loops
2. If \(M(\varepsilon) \) loops then either \(M_1(\varepsilon) \) loops or \(M_2(\varepsilon) \) halts.

Let \(N \) be a TM that loops on all inputs, for example the one whose code is simply “On input \(x \), loop”. Let \(f \) given \(\langle M \rangle \) output \(\langle M, N \rangle \). Checking that the two properties above are true is quite easy.

The following shows that \(L \) is not r.e..

Claim 2: \(\text{BTH} \leq_m \overline{L} \).

Proof: We need to specify a computable function \(f \) that takes as input \(\langle M \rangle \) and returns \(\langle M_1, M_2 \rangle \) such that:

1. If \(M(\varepsilon) \) halts then either \(M_1(\varepsilon) \) loops or \(M_2(\varepsilon) \) halts
2. If \(M(\varepsilon) \) loops then \(M_1(\varepsilon) \) halts and \(M_2(\varepsilon) \) loops.

Let \(N \) be a TM that halts on all inputs, for example the one whose code is simply “On input \(x \), accept”. Let \(f \) given \(\langle M \rangle \) output \(\langle N, M \rangle \). Checking that the two properties above are true is quite easy.

Problem 2. [30 points] Let \(A, B, D \) be languages. We say that \(D \) separates \(A \) from \(B \) if \(A \subseteq D \) and \(D \cap B = \emptyset \). We say that \(A, B \) are separable if there exists a decidable language \(D \) such that \(D \) separates \(A \) from \(B \). Now let

\[
A = \{ \langle M \rangle : M(\langle M \rangle) \text{ rejects} \}
\]

\[
B = \{ \langle M \rangle : M(\langle M \rangle) \text{ accepts} \}
\]

Show that \(A, B \) are not separable.
Hint: Assume to the contrary that they are separable by decidable language D and derive a contradiction (thereby showing D could not exist after all) using ideas similar to those in the proof of undecidability of the halting problem.

Assume towards a contradiction that there is a decidable D that separates A from B. This means:

1. There is a TM M_D that decides D
2. $A \subseteq D$
3. $B \cap D = \emptyset$

To derive our contradiction, we consider the execution of M_D on input $\langle M_D \rangle$. We know that $M_D(\langle M_D \rangle)$ either accepts or rejects (i.e. it does not loop) because M_D decides a language and thus halts on all inputs. We now consider these two possibilities in turn:

- **$M_D(\langle M_D \rangle)$ accepts**
 \[
 \Rightarrow \langle M_D \rangle \in D \quad \text{(because } M_D \text{ decides } D)
 \]
 \[
 \Rightarrow \langle M_D \rangle \notin B \quad \text{(because } B \cap D = \emptyset)
 \]
 \[
 \Rightarrow M_D(\langle M_D \rangle) \text{ does not accept} \quad \text{(by def. of } B.)
 \]

- **$M_D(\langle M_D \rangle)$ rejects**
 \[
 \Rightarrow \langle M_D \rangle \notin D \quad \text{(because } M_D \text{ decides } D)
 \]
 \[
 \Rightarrow \langle M_D \rangle \notin A \quad \text{(because } A \subseteq D)
 \]
 \[
 \Rightarrow M_D(\langle M_D \rangle) \text{ does not reject} \quad \text{(by def. of } A.)
 \]