Problem Set 1 Solutions

Problem 1. [40 points] If \(f : \Sigma^* \to \Sigma^* \) is a function we define the image of \(f \) as
\[
\text{Img}(f) = \{ f(w) : w \in \Sigma^* \}.
\]
Let \(L \) be a non-empty language. Prove that \(L \) is r.e. if and only if there exists a computable function \(f : \Sigma^* \to \Sigma^* \) such that \(L = \text{Img}(f) \).

The two directions of the “if and only if” are proved separately.

Claim 1: Suppose there exists a computable function \(f : \Sigma^* \to \Sigma^* \) such that \(L = \text{Img}(f) \). Then \(L \) is r.e..

Proof: Let \(M_f \) be a TM that computes the function \(f \). We specify a verifier \(V \) for \(L \):

Verifier \(V(x, w) \)
- If \(M_f(w) = x \) then accept else reject

The “certificate” for the membership of \(x \) in \(L \) is a pre-image of \(x \) under \(f \), namely a point \(w \) such that \(f(w) = x \). This exists if and only if \(x \in L \) because \(L = \text{Img}(f) \).

Claim 2: Suppose \(L \) is r.e.. Then there exists a computable function \(f : \Sigma^* \to \Sigma^* \) such that \(L = \text{Img}(f) \).

Proof: Let \(M \) be a TM that recognizes \(L \). Since \(L \) is non-empty we may fix a point \(x_0 \in L \). Let \(M' \) be the following TM that takes as input a string \(w \):

\[M'(w) \]
- If \(w \) is not the encoding of a pair of strings then return \(x_0 \)
- Else
 - Let \(x, y \) be the strings such that \(w = \langle x, y \rangle \)
 - Run \(M(x) \) for \(|y|\) steps
 - If it accepts then return \(x \) else return \(x_0 \)

We define the function \(f \) by \(f(w) = M'(w) \) for all \(w \in \Sigma^* \). (This function is well-defined since \(M'(w) \) halts with some output for all \(w \in \Sigma^* \), and furthermore is computable by definition.)

Now, for correctness, the claim is that \(\text{Img}(f) = L \) where \(f \) is defined above. To prove this, we show two things: that \(\text{Img}(f) \subseteq L \) and that \(L \subseteq \text{Img}(f) \).
To see that $L \subseteq \text{Img}(f)$ let x be any string in L. We need to show that $x \in \text{Img}(f)$, meaning there is some w such that $M'(w) = x$. Since $x \in L$ we know that $M(x)$ accepts, and we can let y be such that $M(x)$ accepts in $|y|$ steps. Now set $w = \langle x, y \rangle$, and we have $M'(w) = f(w) = x$.

To see that $\text{Img}(f) \subseteq L$ let x be any string in $\text{Img}(f)$. We need to show that $x \in L$. Since $x \in \text{Img}(f)$, there is some w such that $M'(w) = x$. By definition of M' it must be that either $w = \langle x, y \rangle$ for some y such that $M(x)$ accepts in $|y|$ steps, or $x = x_0$. In either case, $x \in L$.

Note the first claim did not use the assumption that $L \neq \emptyset$, but the second claim did use it. Indeed, the second claim is not true without this assumption.

Problem 2. [30 points] Prove that the following language is decidable:

$$A = \{ \langle M \rangle : \text{The head of TM } M \text{ stays within the first 2011 tape squares in } M's \text{ computation on input } \varepsilon \}.$$

To show that A is decidable, we need to specify a TM M_A that on input $\langle M \rangle$ accepts if $\langle M \rangle \in A$ and rejects otherwise. Note that M_A must halt on all inputs.

The natural strategy for M_A to attempt is to start running M on input ε, keeping track of the number of tape squares that M is using. If the computation $M(\varepsilon)$ ever hits the 2012-th tape square, then M_A can reject. If $M(\varepsilon)$ halts having stayed within the first 2011 squares then M_A can accept. But what if $M(\varepsilon)$ keeps going, staying all the while within the first 2011 squares? The problem is: if M_A stops, thinking $M(\varepsilon)$ will never hit square 2012, maybe it would have had it run longer.

To address this, recall that a configuration of TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ is a triple (u, q, v) where q is the current state, u is the string to the left of the head, excluding the scanned symbol, and v is the string to the right of the head, including the scanned symbol and up to the last non-blank. We claim that the following algorithm M_A decides A:

Algorithm $M_A(\langle M \rangle)$

$\mathcal{C} \leftarrow \emptyset$

Repeat

Run $M(\varepsilon)$ for one more step and let C be the resulting configuration

If the 2012-th square has been hit then reject

If the configuration C is a halting one then accept

If $C \in \mathcal{C}$ then accept

$\mathcal{C} \leftarrow \mathcal{C} \cup \{ C \}$

Now we want to argue that this algorithm is correct.

Let $\mathcal{C}(M)$ be the set of all possible configurations for the computation $M(\varepsilon)$ in which the used part of the tape consists of at most 2011 squares, meaning $|uv| \leq 2011$. Let $N(M)$ denote the size of the set $\mathcal{C}(M)$. Then

$$N(M) \leq |\Gamma|^{2012} \cdot |Q| \cdot 2012.$$

Now, let C_1, C_2, \ldots be the sequence of configurations of M running on input ε. If M stays within 2011 squares then all these configurations are from \mathcal{C}. The key observation is that if it stays
within 2011 squares for more than $N(M)$ moves, it must at some point return to an already used configuration; that is, $C_j = C_i$ for some $i < j \leq N + 1$. But if so, its future is determined: after reaching C_j it will keep repeating the sequence C_{i+1}, \ldots, C_j. That is, it is simply in an infinite loop inside the 2011 squares. So it will never go the 2012-th square, meaning M_A can accept. This shows that the above algorithm always halts in at most $N(M)$ simulation steps, and takes the correct decision.