Quiz 1 Solutions

Problem 1 [16 points] Let

\[A = \{ w \in \{0,1\}^* : \text{Either } w \text{ begins with a 0 and contains at least one 1,} \]
\[\text{or } w \text{ ends with a 1 and contains at least one 0} \} \]

In the box below, write a regular expression describing the language \(A \):

\[0(0 \cup 1)^*1(0 \cup 1)^* \cup (0 \cup 1)^*0(0 \cup 1)^*1 \]

In the first case, \(w \) is a string beginning with a 0, followed by any string consisting of zero or more ones and zeros, followed by a 1, followed again by any string consisting of zero or more ones and zeros. In the second case, \(w \) is a string consisting of any string of zero or more ones and zeros, followed by a 0, followed by any string of zero or more ones and zeros, followed by a 1.

Problem 2 [30 points] Let

\[A = \{ w \in \{0,1\}^* : w \text{ contains either } 111 \text{ or } 101 \text{ as a substring} \} \]

1. [15 points] Draw the state diagram of a DFA with \textit{at most five states} that recognizes \(A \).

2. [15 points] Draw the state diagram of a NFA with \textit{at most four states} that recognizes \(A \).
Problem 3 [32 points] If $w \in \{0,1\}^*$ is a string then $\text{flip}(w)$ is the string obtained by flipping each bit of w. (For example, $\text{flip}(01101) = 10010$). If $A \subseteq \{0,1\}^*$ is a language, we let

$$B = \{ w \in \{0,1\}^* : \text{flip}(w) \in A \}$$
$$C = \{ w \in A : \text{flip}(w) \not\in A \}.$$

Assuming A is regular, prove the following:

1. [16 points] B is regular.

 We use the template for proofs of closure properties that we have used many times in class.

 Given: A is regular. So there is a DFA $M = (Q,\{0,1\},\delta,q_0,F)$ that accepts A.

 Want: To show that B is regular. We will do this by constructing a DFA N that recognizes B. (It would suffice to construct an NFA, but in this case it is just as easy to construct a DFA, so we do.)

 Construction: We simply flip the labels on the arrows of M, turning ones into zeros and zeros into ones. Formally, our DFA is $N = (Q,\{0,1\},\delta',q_0,F)$, meaning all components are the same as in M except for the transition function. The new transition function is defined for all $q \in Q$ and all $\sigma \in \{0,1\}$ by

 $$\delta'(q,\sigma) = \begin{cases}
 \delta(q,0) & \text{if } \sigma = 1 \\
 \delta(q,1) & \text{if } \sigma = 0 .
 \end{cases}$$

 Correctness of construction: M goes from q_0 to a state f on an input w if and only if N goes from q_0 to f on input $\text{flip}(w)$. So M accepts w if and only if N accepts $\text{flip}(w)$.

2. [16 points] C is regular. (Hint: Use the fact that B is regular. You may do so even if you did not prove this.)

 A string w is in C exactly when the following two conditions are both met: (1) w is in A, and (2) $\text{flip}(w) \not\in A$, meaning w is not in B. This means that $C = A \cap \overline{B}$. Now, we can show that C is regular by using known closure properties of the class of regular languages:
<table>
<thead>
<tr>
<th>Claim</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>B is regular</td>
<td>B is regular, and we know that L regular implies \overline{L} regular for any language L.</td>
</tr>
<tr>
<td>A is regular</td>
<td>by assumption</td>
</tr>
<tr>
<td>$A \cap B$ is regular</td>
<td>A, \overline{B} are both regular, and we know that L_1, L_2 regular implies $L_1 \cap L_2$ regular for any languages L_1, L_2.</td>
</tr>
<tr>
<td>C is regular</td>
<td>$C = A \cap \overline{B}$</td>
</tr>
</tbody>
</table>

Problem 4 [22 points] Recall that $|x|$ denotes the length of a string x, and let

$$A = \{ x0^{2|x|} : x \in \{0, 1\}^* \}.$$

Prove that A is not regular.

We use the usual template. The proof is by contradiction.

Assume: $A = \{ x0^{2|x|} : x \in \{0, 1\}^* \}$ is regular.

The assumption means that the pumping lemma (Theorem 1.37, page 78 of the text) applies to A. We imagine ourselves “interacting” with the lemma as follows:

We give it A, and it returns a pumping length p. Now, we choose a string $s \in A$ of length greater than p, and return it to the lemma. The choice of string is important for the rest of the argument, and we set it to $s = 1^p0^{2p}$. This is in A, because $w = 1^p$ is a string of length p, and thus s is $w0^{2|w|}$. Because s has a length greater than p, the pumping lemma says that s can be split into xyz which obey the three conditions of the pumping lemma. The lemma returns x, y, z to us. We then choose $i = 2$ and return it to the lemma. At this point, the lemma guarantees that
(1) \(xy^2z \in A \)
(2) \(|y| > 0 \)
(3) \(|xy| \leq p \)

Because the first \(p \) symbols of \(s \) are all 1, we know by condition (3) above that \(x \) and \(y \) must contain only ones. Condition (2) states that \(y \) must have length greater than zero, so we know \(y \) contains at least one one. So there exist \(a, b, c \) such that \(x = 1^a \), \(y = 1^b \) and \(z = 1^{p-a-b}0^{2p} \) and \(b \geq 1 \) and \(a + b \leq p \). So

\[
xy^2z = 1^a1^b1^b1^{p-a-b}0^{2p} = 1^{a+2b+p-a-b}0^{2p} = 1^{p+b}0^{2p} .
\]

However, there is no string \(w \) such that \(1^{p+b}0^{2p} = w0^{|w|} \), because the only choice for \(w \) would be \(1^{p+b} \) which has length \(p+b \geq p+1 \). So the definition of \(A \) tells us that \(xy^2z \not\in A \). But condition (1) says \(xy^2z \in A \). They can’t both be true, so we have a contradiction. This means our assumption that \(A \) was regular is false.