- Learning in BNs
- Maximum likelihood (ML) estimation

 Estimate CPTs that maximize \(\text{"likelihood"} \)\n \[
 \text{probability of observed data}
 \]

- Complete data

 \[
 \{(x_1(t), x_2(t), \ldots, x_n(t))\}_{t=1}^T \quad T \text{ complete instantiations of nodes } x_1, \ldots, x_n
 \]

- Notation

 Indicator function
 \[
 I(x, x') = \begin{cases}
 1 & \text{if } x = x' \\
 0 & \text{otherwise}
 \end{cases}
 \]

- ML estimates

 \[
 P_{ML}(X_i = x \mid \text{pa}_i = \pi) = \begin{cases}
 \frac{\text{count}(X_i = x, \text{pa}_i = \pi)}{\text{count}(\text{pa}_i = \pi)} & \text{for nodes w/ parents} \\
 \frac{\text{count}(X_i = x)}{T} & \text{for root nodes}
 \end{cases}
 \]

 \[
 = \frac{\sum_{t=1}^T I(x_i(t), x) I(\text{pa}_i(t), \pi)}{\sum_{t=1}^T I(\text{pa}_i(t), \pi)}
 \]

 \[
 = \frac{\sum_{t=1}^T I(x_i(t), x)}{T}
 \]
Ex: Naive Bayes model for document classification

* Variables
 \[Y \in \{1, 2, \ldots, m\} \text{ possible document topics (e.g. } Y \in \{\text{spam, not spam}\}\)
 \[X_i \in \{0, 1\} \text{ = does } i\text{th word in vocabulary (dictionary) appear in document?} \]

* BN = DAG + CPTs

\[
\begin{align*}
 & Y \\
 & \downarrow \\
 & X_1 \quad X_2 \quad \ldots \quad X_n \\
 & \downarrow \\
 & \mathbb{P}(Y=y) \\
 & \mathbb{P}(X_i=1 \mid Y=y)
\end{align*}
\]

* ML estimation of CPTs

Collect and label a large corpus of \(N \) documents

\[
\begin{align*}
 \mathbb{P}_{\text{ML}}(Y=y) &= \text{fraction of documents with topic } y \\
 &= \frac{\text{count}(Y=y)}{N} \\
 &= \text{fraction of documents w/ topic } y
\end{align*}
\]

\[
\begin{align*}
 \mathbb{P}_{\text{ML}}(X_i=1 \mid Y=y) &= \frac{\text{count}(X_i=1, Y=y)}{\text{count}(Y=y)} \\
 &= \text{fraction of documents of topic } y \\
 & \text{that contain } i\text{th word in vocabulary}
\end{align*}
\]
\[P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(x)} \]

Bayes rule

\[\leq \prod_{i=1}^{n} P(X_i = x_i | Y = y)P(Y = y) \]

conditional independence

\[\leq P(X = x, Y = y') \]

marginalization

\[\leq \prod_{y' \neq y} P(X_i = x_i | Y = y')P(Y = y') \]

product rule + cond. ind.

Strengths of model

1. Easy to estimate from a large corpus of documents
2. Simplest baseline

Weaknesses of model

1. Assumption that words appear independently given the topic (naive!)
2. "Bag of words" representation ignores order
3. Documents have only one topic
Ex: Markov models of language

Why do we need language models?

\[\text{MM} \rightarrow \text{speech recognizer} \rightarrow \text{eyelid in joyful} \leftrightarrow \text{Alvin lap hula} \rightarrow \text{I live in La Jolla}\]

- Let \(w_i \) denote word at \(i \)-th position in sentence
- How to model \(P(w_1, w_2, \ldots, w_L) \)?
 - Probability of sentence with \(L \) words \(w_1, w_2, \ldots, w_L \).

- Simplifying assumptions
 1. Finite context/memory
 \[
P(w_L | w_1, w_2, \ldots, w_{L-1}) = P(w_L | \underbrace{w_{L-(n-1)}, w_{L-(n-2)}, \ldots, w_{L-1}}_{\text{n-1 previous words}})\]

 special case: "bigram" model
 \[
P(w_L | w_1, \ldots, w_{L-1}) = P(w_L | w_{L-1})\]

 2. Position invariance
 \[
P(w_{L+1} = w' | w_L = w) = P(w_L = w' | w_{L-1} = w)\]

- BN for bigram model of language

\[
\begin{array}{ccccccc}
 w_1 & \rightarrow & w_2 & \rightarrow & \cdots & \rightarrow & w_{L-1} & \rightarrow & w_L \\
\end{array}
\]

same CPTs at all non-root nodes
- Learning bigram model
 - collect large corpus of text, \(\sim 10^8 \) words
 - vocabulary size \(V \sim 10^5 \) dictionary entries
 - count \(C_i = \# \text{ times word } i \text{ appears} \)
 \(C_{ij} = \# \text{ times word } j \text{ follows word } i \)
 - estimate \(P_{ML}(w_e = j \mid w_{e-1} = i) = \frac{C_{ij}}{C_i} \)

- Note: no generalization to unseen word combinations
 (will have 0 probability)

- "n-gram" model: condition on \(n-1 \) previous words
 \(n=1 \) unigram
 \(n=2 \) bigram
 \(n=3 \) trigram

 \[P(w_e \mid w_{1}, \ldots, w_{e-1}) = P(w_e \mid w_{e-(n-1)}, \ldots, w_{e-1}) \]

 n-gram model counts get more sparse as \(n \) increases
ML estimation from incomplete data

- Given fixed graph (DAG) over discrete nodes \(\{X_1, X_2, \ldots, X_n\} \)
 Also data set of \(T \) partial instantiations of \(\{X_1, X_2, \ldots, X_n\} \)

\[
\begin{array}{cccc}
\text{Ex:} & X_1 & X_2 & X_3 & X_4 \\
1 & 0 & ? & 1 & 1 \\
2 & 1 & ? & ? & 1 \\
3 & 0 & ? & 1 & 1 \\
4 & ? & ? & ? & 0
\end{array}
\]

- Goal: estimate CPTs \(P(X_i = x | \text{pa}_i = \pi) \) that maximize the marginal (not joint) probability of partially observed data, (not complete)

- Variables in BN
 \(X = \) all nodes
 \(H = \) hidden nodes
 \(V = \) visible nodes

- Log-likelihood: assume \(T \) examples are i.i.d. from joint distribution \(P(X_1, X_2, \ldots, X_n) \)

\[
L = \log P(\text{data}) = \sum \log P(V(t) = v(t)) = \sum \log P(V(t) = v(t))
\]
\[
\sum_{t=1}^{T} \log \sum_{h} P(V(t) = v(t), H(t) = h) \]
marginalizing over joint for hidden nodes \(X = HUV\)

\[
\sum_{t=1}^{T} \log \sum_{h} \prod_{i=1}^{T} P(X_i = x_i | pa_i = \pi_i) \bigg| V(t) = v(t), H(t) = h
\]

- more complicated to optimize \(L\) from incomplete data
- no "closed-form" solution
- iterative solution

Expectation-Maximization (EM) algorithm

Iterative procedure to maximize \(L(data)\) for incomplete data in terms of CPTs.

By analogy, ML estimates for complete data

\[
P_{ML}(X_i = x | pa_i = \pi_i) = \frac{\text{count}(X_i = x, pa_i = \pi_i)}{\text{count}(pa_i = \pi_i)} = \frac{\sum_{t=1}^{T} I(X_i^{(t)}, x) I(pa_i^{(t)}, \pi_i)}{\sum_{t=1}^{T} I(pa_i^{(t)}, \pi_i)}
\]

For incomplete data, we must "fill in" hidden values:

\[
P_{ML}(X_i = x | pa_i = \pi_i) \leftarrow \frac{\sum_{t=1}^{T} P(X_i = x, pa_i = \pi_i | V = v(t))}{\sum_{t=1}^{T} P(pa_i = \pi_i | V = v(t))}
\]

Intuition: expected statistics ("counts") under \(P(H|V)\)

Substitute for observed counts in complete data case