* Alarm example

Binary random variables
- $B =$ burglary
- $E =$ earthquake
- $A =$ alarm
- $J =$ John calls
- $M =$ Mary calls

* Probability captures common sense patterns of reasoning

1. Explaining away: $P(B=1|A=1) > P(B=1)$
 but $P(B=1|A=1, E=1) < P(B=1|A=1)$

 but $P(A=1|J=1, M=0) < P(A=1|J=1)$

3. Intervening events (later today)

Today - from probabilities to graphs

Motivation

- Joint distribution $P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n)$
 - $O(2^n)$ numbers for n binary random variables

- More compact representations

- More efficient algorithms for inference

alarm Example

* Joint distribution

 $P(B, E, A, J, M) = P(B)P(E|B)P(A|B, E)P(J|B, E, A)P(M|B, E, A, J)$

* Conditional independence

 $P(B, E, A, J, M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)$
Directed acyclic graph (DAG)

- Conditional probability tables (CPTs)

| B | E | P(A=1 | B, E) |
|----|----|------------|
| 0 | 0 | 0.001 |
| 0 | 1 | 0.29 |
| 1 | 0 | 0.94 |
| 1 | 1 | 0.95 |

- Joint distribution

Ex: \(P(B=1, E=0, A=1, J=1, M=0) = P(B=1)P(E=0)P(A=1 | B=1, E=0)P(J=1 | A=1)P(M=0 | A=1) \)

\[= 0.001 \times (1-0.002) \times 0.94 \times 0.9 \times (1-0.7) \approx 0.00025 \]

- Any query can be answered from joint distribution

3) Reasoning about intervening events

- Want to compare:
 1. \(P(A=1) = 0.00252 \)
 2. \(P(A=1 | J=1) = 0.0435 \)
 3. \(P(A=1 | J=1, B=1) = ? \)
Brute force calculation

* From product rule:
\[P(A=1\mid B=1, J=1) = \frac{P(A=1, B=1, J=1)}{P(B=1, J=1)} \]

* From marginalization:

 numerator:
 \[P(A=1, B=1, J=1) = \sum_{e,m} P(A=1, B=1, J=1, E=e, M=m) \]

 denominator:
 \[P(B=1, J=1) = \sum_{a,e,m} P(B=1, J=1, A=a, E=e, M=m) \]

More efficient algorithm - Exploit structure of DAG

\[P(A=1\mid B=1, J=1) = \frac{P(J=1\mid A=1, B=1) \cdot P(A=1\mid B=1)}{P(J=1\mid B=1)} \]
(conditionalized Bayes rule)

\[= \frac{P(J=1\mid A=1) \cdot P(A=1\mid B=1)}{P(J=1\mid B=1)} \]
(cond. ind.)

Denominator:
\[P(J=1\mid B=1) = \sum_a P(J=1, A=a\mid B=1) \]
(cond. marginalization)

\[= \sum_a P(A=a\mid B=1) \cdot P(J=1\mid A=a, B=1) \]
(product rule)

\[= \sum_a P(A=a\mid B=1) \cdot P(J=1\mid A=a) \]
\(\uparrow\) computed
\(\uparrow\) CPT

\[= 0.849 \]

\[\Rightarrow P(A=1\mid J=1, B=1) = 0.9965 \rightarrow 3 \]
Now compare:

1. \(P(A=1) = 0.00252 \)
2. \(P(A=1 | J=1) = 0.0435 \uparrow \)
3. \(P(A=1 | J=1, B=1) = 0.9965 \uparrow \uparrow \)

So \(P(A=1) < P(A=1 | J=1) < P(A=1 | J=1, B=1) \)

Also note \(P(A=1 | J=1, B=1) > P(A=1 | B=1) \) \(= 0.94002 \)

Belief Network (BN)

A BN is a DAG

1. nodes represent random variables
2. edges represent conditional dependencies
3. CPTs describe how each node depends on parents

* Conditional independence

Generally true that

\[
P(X_1, X_2, \ldots, X_n) = P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2) \cdots P(X_n | X_1, X_2, \ldots, X_{n-1})
\]

or

\[
\prod_{i=1}^{n} P(X_i | X_1, X_2, \ldots, X_{i-1}) \quad (\star)
\]

In a given domain, suppose that

\[
P(X_1, X_2, \ldots, X_n) = \prod_i P(X_i | \text{parents}(X_i)) \quad (\star \star)
\]

where \(\text{parents}(X_i) \) is some subset of \(\{X_1, X_2, \ldots, X_{i-1}\} \)
Big idea: represent dependence relations by a DAG.

- How to construct a BN?
 1. choose random variables
 2. choose ordering
 3. while there are variables left:
 (a) add node X_i
 (b) set the parents of X_i to the minimal subset satisfying (444)
 (c) define CPT $P(X_i | pa(X_i))$

 * advantages: (1) complete, compact, consistent representation of joint distribution

Ex: for binary variables, if $k = \text{max } \# \text{ of parents of graph, then:}$
$O(n \cdot 2^k)$ numbers will appear in CPTs vs.
$O(2^n)$ for joint distribution

(2) Clean separation of qualitative and quantitative knowledge
DAG encodes conditional independence
CPTs encode numerical influences

- Node ordering
 - Best order is to add "root" causes, then the variables they influence, and so on...
 - From misordered graph, conditional independences in world not obvious

Ex: wrong ordering (M,J,A,E,B)
 - two additional edges!
- more numbers (larger CPTs) to specify the same joint distribution
- less natural (more difficult) to assess the CPTs or learn CPT from data

* Representing CPTs

For simplicity, assume \(X_i \in \{0, 1\} \)
\(Y \in \{0, 1\} \)

How to represent \(P(Y = 1 \mid X_1, X_2, \ldots, X_K) \)?