
deionizer: a tool for capturing and embedding I/O calls

Michael Bedford Taylor
CSAIL, Massachusetts Institute of Technology

June 8, 2004

1. ABSTRACT
In this paper, we introduce the concept of a deionizer. A deion-

izer is a special type of partial evaluator whose purpose is to create
a new version of a program that can run without accessing a partial
set of I/O resources. Although a deionizer can be used for appli-
cation embedding, this short paper addresses the use of dionization
for improving benchmark accuracy. The paper briefly discusses the
key ideas and then explains the implementation and use of the MIT
deionizer. This deionizer was used to produce the results for a recent
conference paper that compares the Raw processor to a Pentium III.

2. INTRODUCTION
Partial evaluation or program specialization is a well-studied

technique for program optimization [1]. A partial evaluator takes
an input program, PI , and part of its input data, D0. The evaluator
produces an output program PO, which, when run with the remain-
ing input D1, produces the same result as PI with input D0 and D1.

Partial evaluation is typically used for program optimization. If
part of the program’s input is known to be constant, all of the opera-
tions that are dependent only on those inputs can be resolved ahead-
of-time. Alternatively, operations whose inputs are known in part
can be transformed into easier operations; for instance, a divide-by-
2 can be transformed into a shift operation.

This paper describes a specialized form of partial evaluation,
deionization. A deionizer performs partial evaluation; however it
intentionally abstains from optimizing the output program against
the input. The purpose of a deionizer is not to optimize the perfor-
mance of the program, but rather to allow it to run without accessing
the original input devices.

3. USES
Application Embedding One use of deionization is for applica-
tion embedding. For instance, an application may make use of a
number of data files (for instance, bitmaps in a game). Although the
developer may want to develop these files separately in source form
(say, a .gif file), deionization can be used to wrap these files together
into a single binary that is sent to the user. Or, in the case of an em-
bedded system that does not have certain I/O devices, deionization
allows the program to be written as if those I/O devices existed. A
final binary, containing the source and data, and suitable for burning
to a read-only memory, can then be rendered by the deionizer.

Benchmark Accuracy A deionizer can also be used to improve the
accuracy of benchmarks in computer systems. This usage, the focus
of this short paper, allows the I/O and operating system calls to be
removed from benchmark applications. The deionizer described in
this paper was used to improve the accuracy of collected results in a
comparison between a Pentium 3 system and a Raw processor in [2].

This has two benefits:

1. Deionization removes the dependence of program running
time on portions of computing systems that are not salient to
the experiment being undertaken. For instance, when com-
paring two processor implementations, it is typical to mea-
sure the running time of the same application and data set on
the two machines. However, differing implementations of op-
erating systems, I/O architecture, motherboards, network file
systems, and hard drives may cloud our ability to draw con-
clusions about the impact of the processor on the running time
of the program.

2. Deionization eliminates many sources of variability for data
collection, even for successive runs of the same application on
the same machine. The running time of a program that does
I/O can be dependent on the history of the operating system’s
file system cache, the position of disk platters as they spin,
or even the temperature of the hard drive1. If the collecting
machine uses network file storage, the timing variance can be
even worse. Thus, deionization can decrease the noise mar-
gins of experiments, allowing more accurate measurements to
be made.

As the reader may suspect, the choice of the term deionizer is
a double play on words. First, a deionizer as de-io-nizer suggests
an application that removes I/O call. Secondly, classical scientific
experiments often call for water to be deionized in order to ensure
reasonable accuracy of the results.

4. IMPLEMENTATION
A deionizer can be implemented in a number of ways, depend-

ing particularly upon the goal. The MIT deionizer implementation
is intended for use in improving benchmark accuracy rather than for
application embedding, and thus has a number of simplifying limita-
tions. A version that supports application embedding might be closer
to the implementation of a virtual file system; some I/O calls would
go out to the real I/O system; while others would be intercepted and
serviced through processing of internal (often memory-resident) data
structures.

Operation The MIT deionizer targets POSIX-style binaries that are
generated using the GNU binary utilities. As such, it should be us-
able with any system that supports the GNU binary utilities. This
deionizer operates in four passes.

1Some hard drives perform thermal recalibration in response to
temperature-dependent expansion or contraction of components,
causing a pause in the availability of data.

1. First, an automatic tool generates a modified version of the
libc library. This version of libc performs the same I/O opera-
tions as the original libc; however it also intercepts and records
the results of these I/O calls in an internal data structure. The
generation of this file would typically only need to be done
once per system being benchmarked.

2. Second, the input program PI is linked using the special ver-
sion of libc to create an intermediate binary, PM . Thus, PM

is an instrumented version of PI that records the results of I/O
operations.

3. Third, PM is run, creating as a bi-product a C file that con-
tains substitute functions for all of the I/O function calls; this
is essentially a partially evaluated libc library for just that pro-
gram/input set pair.

4. Fourth, the object files of PI are relinked with the compiled C
file to form the final program PO.

Compiled into PO is a strict list of intercepted function calls, their
input parameters, and return parameters (including the value of errno
and other globals.) When one of the substitute I/O function calls is
invoked, it verifies that the call is next on the global list, and returns
the appropriate return values.

Figure 1 shows the relationship between the three programs, PI ,
PM , and PO. Note that dependencies from many levels of the origi-
nal I/O hierarchy have been eliminated from use.

Required Invariants This system assumes that the user can mod-
ify the target program PI to have two function calls. The two calls
bookend the region of the program that should be deionized. The
first call demarks the starting point at which all I/O calls will be
recorded. The second call indicates the ending point of I/O call
recording. The user must ensure that successive runs will lead to
the same state when reaching the first call: for instance, 1) flush-
ing stdout and stderr before entering the first call to ensure that the
buffering on these file descriptors is always in a consistent state, 2)
making sure that the pattern of allocation and deallocation of file de-
scriptors is always the same order to ensure file descriptor numbers
do not change and 3) ensuring that runs consistently run with output
either piped or unpiped to ensure consistent values for isatty. The
user must also ensure that the code after the second call do not de-
pend on the execution of the file system operations in the region to
be deionized.

Typically for our purposes, the only code that is placed before the
first call is a function to record the start time via the processor cycle
counter; the only code after the second call is a function to print out
the end time and the difference between the two times.

5. ANALYSIS
More quantitative analysis of this technique is desirable, but will

not be provided in this document. Measurements of the variance in
program runs, and of the trade-offs in substituting static data for I/O
accesses should be analyzed.

Current processor benchmarks like SpecInt or SpecFP avoid the
use of applications that spend more than a small percentage of their
time in I/O; the use of a deionizer could enlarge the selection of pro-
grams that could be used as processing benchmarks. Additionally,
the input sizes of benchmarks are often set so that the I/O time is re-
duced to a small percentage of run time; this tool could enable more
accurate data-gathering with smaller traces.

6. PORTING TO A NEW SYSTEM

This section discusses the process of porting the MIT deionizer
to a new platform. GNU binutils 2.10 or later is required; objcopy
must support –redefine-sym. The MIT deionizer has two system-
dependent configuration files, which are used to generate the special
version of libc described in part 1 of the subsection Operation:

1. intercept.in, used as input to intercept.pl, to rename I/O func-
tions inside the original version of libc.a. Typically all of
the POSIX layer functions will be renamed (e.g., open, read,
write); however, the standard library may also have special in-
ternal names for these functions (such as close) which will
need to be renamed as well, to guarantee that they are in-
tercepted. Finally, some libraries use weak linking to create
aliases for function names; these can be specified as well. Fi-
nally, newer systems like Linux may have alternative entry
points like “open64” or “read64.” The objdump utility can
also be used on the original libc.a library to identify routines
that invoke POSIX system calls.

2. deionize.in, used as input to deionize.pl, to generate a .c file
containing intercept code, as shown in Figure 1. deionize.in
contains type signatures of the functions in intercept.in. It also
has the annotations remember input buf, which indicates that
the system should record a input memory array, and remem-
ber result buf, which indicates the system should record an
output memory array. The output .c file can be compiled and
archived with the output of intercept.in to form a single .a file
that contains all necessary code for the modified libc.

The UNIX utility strace can be used to examine PO’s execu-
tion to verify that it is no longer calling I/O routines through
the OS.

These two files are linked with PI (in substitution of the original
libc) to generate PM .

7. ACKNOWLEDGMENTS
The author would like to thank Walter Lee, David Wentzlaff, and

Karen Zee for discussions in conjunction with the development of
the MIT deionizer. This research was funded by DARPA, NSF, the
MIT Oxygen Alliance, and an Intel Graduate Fellowship.

REFERENCES
[1] N. Jones. An Introduction to Partial Evaluation. ACM Computing Surveys 28, 3

(September 1996).
[2] M. B. Taylor, et al. Evaluation of the Raw Microprocessor: An Exposed-Wire-

Delay Architecture for ILP and Streams. Proceedings of the International Sympo-
sium on Computer Architecture, 2004.

open
read
write
close
access

dup
dup2
fcntl
ioctl

sync
lseek
stat
fstat

Operating
System

(via syscall)

POSIX Layer

fopen
fread
fwrite
fclose
fgets

STDIO Layer

(via fn call)

Application

Motherboard
I/O

Disk

(via fn call
or macro)

fgetc
ferror
feof
fseek
fstat
...

_int_open
_int_read
_int_write
_int_close
_int_access
_int_fstat

_int_dup
 _int_dup2
 _int_fcntl
 _int_ioctl
_int_sync
_int_lseek

Operating
System

(via syscall)

RENAMED POSIX
 Layer

fopen
fread
fwrite
fclose
fgets

STDIO Layer

(via fn call)

Application

Motherboard
I/O

Disk

(via fn call
or macro)

fgetc
ferror
feof
fseek
fstat
...

INTERCEPT CODE

sync
lseek
 stat

 fstat

fopen
fread
fwrite
fclose
fgets

STDIO Layer

(via fn call)

Application

(via fn call
or macro)

fgetc
ferror
feof
fseek
fstat
...

sync
lseek
 stat

 fstat

dup
 dup2
 fcntl
 ioctl

open
read
write
 close

 access

PARTIALLY
 EVALUATED

ELIMINATED

open
read
write
 close

 access

dup
 dup2
 fcntl
 ioctl

P P POI M

_int_stat

Figure 1: The I/O abstraction layers of the initial input program PI , the intermediate program PM and the final output program PO.

