
Engineering Fault-Tolerant TCP/IP Servers Using FT-TCP∗

Dmitrii Zagorodnov† Keith Marzullo† Lorenzo Alvisi‡ Thomas C. Bressoud§

University of California, San Diego†

Computer Science & Engineering
9500 Gilman Dr (MC 0114)

La Jolla, CA 92037 USA
{dzagorod,marzullo }@cs.ucsd.edu

The University of Texas at Austin‡

Department of Computer Science
1 University Station C0500

Austin, TX 78712 USA
lorenzo@cs.utexas.edu

Denison University§

225a Olin Hall
Granville, OH 43023 USA

bressoud@denison.edu

Abstract

In a recent paper [2] we have proposed FT-TCP: an ar-
chitecture that allows a replicated service to survive crashes
without breaking its TCP connections. FT-TCP is attrac-
tive in principle because it does not require modifications
to the TCP protocol and does not affect any of the software
running on the clients; however, its practicality for real-
world applications remains to be proven. In this paper, we
report on our experience in engineering FT-TCP for two
such applications—the Samba file server and a multime-
dia streaming server from Apple. We compare two imple-
mentations of FT-TCP, one based on primary-backup and
another based on message logging, focusing on scalabil-
ity, failover time, and application transparency. Our ex-
periments suggest that FT-TCP is a practicable approach
for replicating TCP/IP-based services that incurs low over-
head on throughput, scales well as the number of clients in-
creases, and allows recovery of the service in near-optimal
time.

1 Introduction

Consider a company that provides a TCP-based service
on a large intranet or the Internet. The service is important;

∗Alvisi was supported in part by the National Science Foundation (CA-
REER award CCR-9734185), an Alfred P. Sloan Fellowship, a grant from
the Texas Advanced Technology Program, and the AFRL/Cornell Informa-
tion Assurance Institute. Marzullo and Zagorodnov were supported in part
by the AFOSR MURI grant 411316865 and by the DARPA grant N66001-
01-1-8933. This paper appears in theProceedings of the 2003 Interna-
tional Conference on Dependable Systems and Networks (DSN 2003).

if it fails, then it needs to be restarted in a timely manner.
There are some constraints the company might face when
deciding how to provide service failover:

• If the client base is large and diverse, then the most
important constraint can be the lack of control over the
client host configuration and the applications running
on the host. This means that client applications can not
be expected to help in the failover of the service.

• While service outages can have a large impact on a
company’s business, service outages are rare. Hence,
the failover approach should incur a low cost in terms
of performance of the server during periods of time
when there are no failures.

• Deploying the failover approach should have a low im-
pact on the design and installation of the service, since
changes in server platforms, upgrading failover soft-
ware, and deploying new services can be costly. Since
this is an offline cost, though, it can be less important
than the first two constraints.

• Depending on the service, failover time might need to
be rapid. For example, a client playing a QuickTime
movie would experience visualization problems if the
failover lasts too long.

Many companies marketing high-end server hardware
these days—IBM, Sun, HP, Veritas, Integratus—offer fault-
tolerant solutions for TCP-based servers. They are usually
built using a cluster of servers interconnected with a fast
private network which is used for access to shared disks,
for coordination, and for failure detection. Clients notice

1



when a server they are connected to fails, but if they were to
open another connection they would reach a healthy server.

It is often desirable to hide server failures from the
clients. One reason is that the client may have state asso-
ciated with the open TCP connection to the server; losing
the connection may require the client to redo a significant
amount of work. For example, a client with a connection
to an Oracle server will abort all open transactions if the
server fails over. A similar case occurs with existing Samba
clients: when a Samba server fails, all transfers are aborted
and the user must explicitly restart the transaction.

We have previously shown that it is possible to hide
server failures from clients [2]. We did this by building
FT-TCP, which is a failover service based on message log-
ging [6]. We evaluated the performance of FT-TCP for a
synthetic application consisting of a single client having one
connection open to the server. In this paper, we argue that
FT-TCP can be made practicable. We show that:

• While it was necessary to modify the code of two ex-
isting services to have them be recoverable using FT-
TCP, the modifications were few.

• The failure-free overhead of FT-TCP is very low and
the system does not have inherent scalability problems.

• A primary-backup [4] version of FT-TCP performs al-
most indistinguishably from a message logging ver-
sion and has the benefit of a shorter failover time.

• The failover time of FT-TCP can be made very short,
but to do so requires the backup to capture the data sent
by the client immediately before the server failed.

We compare FT-TCP to other possible approaches and
already existing systems in Section2. Architecture of
the system—primary-backup as well as message-logging
versions—is presented in Section3. Our experience with
getting two popular applications to run under FT-TCP is de-
scribed in Section4. Performance during normal operation,
as well as behavior of FT-TCP during failover are presented
in Section5. Conclusions are drawn in Section6.

2 Related Work

One can categorize solutions to the problem of connec-
tion failover according to the level at which server failures
are masked. Withapplication-level recoverythe failures are
masked from the user by the client application that attempts
to reestablish broken connections. An FTP client that au-
tomatically restarts aborted transfers is an example of such
recovery. NFS and Samba clients also fall in this category
because in many cases they can recover from short discon-
nections transparently. Since the client needs to be explic-
itly designed to support application-level recovery, this ap-
proach is inapplicable to the already deployed applications.

Several projects have explored the idea ofsocket-level re-
covery, where the failure is hidden from the client by some
lower layer that reestablishes connections when necessary
and provides a reliable socket to the application. One such
system [11] extends the TCP protocol with an option that
enables migration of connections from one host to another.
Among other things, this allows the service provider to ask
the client TCP stack to migrate a failed connection to a
backup. A similar approach was adopted by [12], but it re-
quires the server application to be aware of the replication.

The system described in [7] enables transparent recon-
nection in Windows NT without changing the TCP stack
by wrapping the socket standard library routines. This sys-
tem was designed to support process migration, but can be
used for fault tolerance as well. The system described in [8]
applied a similar wrapping technique to the standard C li-
brary on Linux to mask server failures. They evaluated the
feasibility of having the backup snoop on packets sent to
the primary and concluded that such a system would not
have significant overhead. Another system based on wrap-
ping is described in [13], although their goals were to mask
connection failures due to network problems rather than
server crashes. This last paper describes two approaches
to connection recovery, one of which relies on the intercep-
tion of packets, just like our system. The main drawback
of socket-level recovery is that it requires upgrading some
of the infrastructure—operating system, protocol stack, or
middleware—on the client host.

Server-side recoveryrestricts the fault-tolerance logic to
the server cluster. This is the easiest solution to deploy:
as soon as the servers are fault-tolerant, then any client can
benefit from greater reliability. Our earlier work [2] demon-
strated the feasibility of efficient server-side recovery. This
work expands on that by evaluating our approach with two
well-known replication techniques and for two real-life ap-
plications.

The authors of [1] share our philosophy of server-side re-
covery. They have developed a protocol similar to ours that
is specialized to HTTP request/reply pairs. In doing so, they
are able to avoid the problem of server nondeterminism.
Another TCP server-side recovery approach is described in
[10], which proposes using several router-level redirectors
scattered across the Internet to fan out packets to several
geographically-distributed replicas. While deploying redi-
rectors may be a costly endeavor, this system has the benefit
of tolerating WAN partitions in addition to failures that are
local to the server.

3 Architecture

In this section, we first introduce several concepts that
are relevant to discussion of server-side recovery. We then
describe the structure and operation of FT-TCP.

2



3.1 Replication Concepts

To enable recovery of a network service every connec-
tion must be backed by a number of server replicas: a pri-
mary server and at least one backup. Should the primary
fail, the backups must have all the information needed to
take over the connection. Several general approaches to
coordinating replicas have been considered by the research
community; FT-TCP supports two of them.

In the first approach, calledprimary-backup[4], every
replica processes client requests and when everyone is done
then one of them (the primary) replies. If the primary fails,
one of the backup replicas is chosen as the new primary. In
the second approach, calledmessage logging[6], only one
replica is active at a time and all requests from the client are
saved in a log that can survive failures. Just like in the first
approach, the primary does not reply until it knows that all
prior requests have been logged. If a failure occurs, another
replica replays messages from the log to bring it to the pre-
failure state of the primary.

To make the terms more consistent, we refer to these two
approaches ashot backupand cold backup, respectively.
In both approaches the primary waits before replying to a
client until it knows that the backup could be recovered to
the primary’s current state. This is commonly referred to
asoutput commitproblem [6]. We henceforth refer to these
forced waiting periods asoutput commit stalls. Note that,
when a backup takes over, it does not know whether the
primary failed before or after replying to the client. Fortu-
nately, TCP was designed to deal with duplicate packets, so
when in doubt the backup can safely resend the reply.

Another issue that comes up in the context of replicated
processes isnondeterministic execution. For both hot and
cold backups, the execution paths of the primary and the
backups must match. If they do not, a backup may never
reach the state of the primary and therefore will not be able
to take over the connection.

We discuss how we deal with sources of nondeterminism
that cause execution path diversions in the next two sec-
tions.

3.2 FT-TCP System

FT-TCP is implemented by “wrapping” the TCP/IP
stack. By this, we mean that it can intercept, modify, and
discard packets on their way in and out of the TCP/IP stack
using a component we call thesouth-side wrapor SSW. FT-
TCP can also intercept and change the semantics of system
calls made by the server application using a component we
call thenorth-side wrapor NSW. Both wraps on the primary
replica place some data into astable bufferthat is designed
to survive crashes.

In our case, the buffer is located in physical memory of
the backup machines, but other approaches—such as sav-
ing data on disk or in non-volatile memory—are possible.
In addition to saving data, a stable buffer can acknowledge

Server NSW SSWTCP/IP Client

Server NSW SSWTCP/IP

Primary

Backup

Packet & 
System call

Stable Buffer

Figure 1. FT-TCP Architecture

the pieces of data it receives, as well as send them back in
FIFO order. In the rest of the paper we will use a setup with
one backup (and therefore one stable buffer, located on that
backup), but our technique can be extended in a straightfor-
ward way to use any number of backup hosts. The setup is
shown in Figure1.

3.2.1 Normal Operation

During normal operation the SSW sends incoming pack-
ets to the backup and the NSW does the same with results
of system calls (syscalls) that the application makes. Ev-
ery attempt to send data to the client is suspended until all
syscalls have been acknowledged. Fortunately, it is not nec-
essary to wait for backup to acknowledge packets. Because
TCP buffers outgoing data on the sender until the receiver
acknowledges it, we can effectively have client store pack-
ets until the backup has them by never acknowledging to
the client more than was acknowledged by the backup. Our
earlier paper [2] discusses in detail how FT-TCP manipu-
lates TCP sequence numbers to achieve this. Any packets
lost in a failure will be resent through the standard TCP re-
transmission mechanism.

With a cold backup, nothing besides saving incoming re-
quests in the stable buffer and acknowledging them is hap-
pening on the backup host. A hot backup, on the other hand,
runs its own copy of the server process and provides that
process with data that it removes from the stable buffer. To
establish a connection, FT-TCP on the backup removes a
buffered SYN packet, changes the destination address on
that packet to its own address and injects it into its TCP
stack. The stack replies with a SYN+ACK packet, which is
caught and acknowledged with an ACK packet by the SSW.
This 3-way handshake is not visible outside the backup
host, but its TCP thinks it just received a connection from
the client.

Up at the application level, the call toaccept() returns
and the server process (on both replicas) proceeds to service
the incoming connection. As the process on the primary
host makes syscalls, their results are sent to the backup.
When a backup process makes a syscall, FT-TCP uses the
corresponding syscall record from the primary to do one of
several things:

3



• For calls that query the environment – such as
gettimeofday() and getpid() – the backup
immediately returns the result that the primary got;

• For a send() , the backup ignores the actual data
passed by the server application and simply returns the
result that the primary got. For debugging, the buffers
returned by the backup and the primary (or their check-
sums) can be compared to flag any inconsistencies;

• For a recv() , the backup waits until all necessary
data packets are in the stable buffer, copies the same
number of bytes as the primary got, and returns the
same result;

• For the two calls that return socket status –select()
andpoll() – the backup returns the value from the
primary (if a timeout was specified, then the backup
invocation will block until the same call on the primary
times out);

• For all others, the backup executes the call and com-
pares its result to what the primary got. Any inconsis-
tencies are flagged as a potential diversion in execution
paths.

The first category of calls takes care of simple sources of
nondeterminism such as different clock values on the repli-
cas and different attributes of their process environments.
Special treatment ofsend() andrecv() allows us to ef-
ficiently pass client data from the stable buffer directly into
the application, without having to feed the packets through
the backup’s TCP. This means that as far as backup’s TCP
is concerned, the connection to the client during this period
is idle.

If an invocation on the primary returned an error code,
it is important to return the same code on the backup. In
particular, if a non-blockingread() returns an error indi-
cating the lack of any data to return, it is important to return
that error on the backup even if packets with new data have
arrived by the time this syscall is invoked on the backup.
As we’ll show in Section3.3, this is an important source of
nondeterminism.

The last category of syscalls can be quite complex in
their semantics and side-effects, which is why we consider
dealing with them a separate problem outside the scope of
this paper. For now we just allow them to execute on the
backup and assume that they will have the same effect and
will return the same results as the calls on the primary. This
assumption turned out to be valid for the two applications
that we considered.

3.2.2 Recovery

When the backup does not hear from the primary for a cer-
tain amount of time it assumes that the primary has crashed
and initiates failover (also see Section5.4 for more details

of failure detection and recovery). One of the key advan-
tages of the hot backup approach is speed; it only requires
bringing the backup process up to speed by processing any
packets and syscalls that the backup received before the pri-
mary failed, and then promoting the backup to be the pri-
mary.

A number of techniques can be used to reconcile the dif-
ference in IP addresses of the primary host and the pro-
moted backup. In the current implementation, the SSW
switches the backup’s real IP address for the old primary’s
address on all outgoing packets and performs the reverse
on all the incoming client packets, effectively functioning
as a NAT. To be able to see the incoming packets (that are
destined to a different MAC address), we place the network
interface card into promiscuous mode. If some technique
for permanently changing the IP address of the entire host
is used then using promiscuous mode is not necessary.

Another difference in TCP connection state between the
primary and the backup is in the sequence numbers that they
use. TCP connection on the backup is idle during normal
operation (since all the data are injected through the NSW),
so its sequence numbers stay at their initial values. After
failover the sequence numbers must be adjusted by the SSW
on all packets as follows: incoming sequence numbers are
shifted by the number of bytes the server read prior to fail-
ure and the outgoing ones are adjusted by the difference
between backup server’s initial sequence number and the
sequence number of the last byte sent to the client.

Recovery with a cold backup essentially consists of re-
doing the actions performed by a hot backup during nor-
mal operation followed by the actions performed by it dur-
ing failover. First, a new server process is started on the
backup host and a connection to it is spoofed by the SSW.
That process then consumes buffered packets and syscalls,
and eventually takes over the connection after the IP ad-
dress and sequence number adjustments that were described
in the paragraph above. Naturally, processing the buffered
data takes time, hence recovery with a cold backup is con-
siderably slower than with a hot backup.

3.3 Nondeterminism

To keep replicas running deterministically, it is not suf-
ficient to give applications identical input. Error conditions
and asynchronous events must be delivered consistently,
too.

In our earlier work [2] we considered the number of
bytes returned by aread() (which we called areadlength)
as a potential source of nondeterminism in real applications.
Indeed, one can imagine an application that would perform
a different action based on how many bytes were returned
by a read() . And yet, when we purposefully returned
different number of bytes on the primary and the backup,
the two replicas behaved identically under both DSS and
Samba. We believe that the reason is that both services ei-
ther only process messages of a known size—either proto-

4



col header messages or data-carrying messages whose size
is known from a preceding header message—or process a
stream of data until it is drained. If a server processes
messages of a known size and receives less than the ex-
pected number of bytes then it waits until more bytes are
available—it does not process the message until it is com-
plete.

Although applications tend to behave the same way
while there are data to be received, they typically switch to
a different task when no data are available. Our experience
with DSS and Samba showed that capturing and replaying
the value of syscalls that returned the status of a socket—
namelyselect() andpoll() —was necessary for en-
suring deterministic execution. If, for example, apoll()
on the primary indicated that there were data to be read,
then it would go ahead and read those data; but if at the
same point the backup was told bypoll() that were no
data, it may yield the CPU to a different thread, leading the
backup process down a different execution path. Therefore,
poll() must return the same result on both replicas.

There are two other cases. Just likepoll() , a non-
blocking read() has the ability to indicate the lack of
data in a socket buffer (by returning -1 witherrno set to
EAGAIN), and that is why we consider readlengths of -1
as a source of nondeterminism. When a number of pro-
cesses compete for a file lock, there is a good chance they
won’t all acquire it in the same order on the primary and on
the backup. This means there will be processes for which
lock acquisition will succeed on the primary, but will fail on
the backup or vice versa. For some applications—the ones
written to retry lock acquisitions indefinitely—this may not
pose any problems. But for others, all lock requests must
return the same results on both replicas.

Thread scheduling and signal handling are both com-
monly identified as sources of nondeterminism, too. Nei-
ther proved to be problematic for the two services that we
evaluated. That is not to say that a service like Samba does
not use signals (in fact, we know that it does from looking
at its source code), but that they do not occur often enough
to warrant immediate attention. Someone building a com-
mercial fault-tolerant TCP system would certainly have to
capture and replay signals at the appropriate times in the
execution path using a technique similar to the one used by
the Hypervisor[3].

One source of nondeterminism we had to address was
introduced by the servers themselves. This happens when
a server generates a random value and then uses that value
in communications with the client. In the next section we
will show how we modified the server applications to en-
sure that identical random values are generated on the pri-
mary and on the backup. In the future, to avoid source code
modifications we are considering using a protocol-specific
“hook” to capture randomly generated values and make the
appropriate substitutions.

4 Applications

To see if FT-TCP could be used to replicate non-trivial
applications easily, we tested our system with two complex
and well-known TCP/IP services.

We chose theDarwin Streaming Server(DSS) that
serves multimedia content such as QuickTime movies and
the Sambaserver that implements Microsoft’s file and
printer sharing protocols. These two services differ in their
general structure—for example, Samba spawns a separate
process for each client connection while DSS handles all
connections in a single thread. We discuss such structural
details below in the two sections on the individual servers.
Besides their popularity, these applications were attractive
because they tend to have long-lived connections (which are
worth recovering) and their source code was publicly avail-
able.

We don’t wish to imply that by having run these two ser-
vices under FT-TCP, we have a complete understanding of
the impact of service structure on our approach. Both DSS
and Samba are relatively simple services. It does show,
though, that the approach can be used at least forsomere-
alistic services.

4.1 Darwin Streaming Server

DSS is currently available under an open source software
license fromApple Computer, Inc.Although it is gener-
ally considered better to stream multimedia over datagram-
based protocols like UDP, streaming is frequently done over
TCP to bypass firewalls. In both cases the stream is encap-
sulated inside the Real-Time Streaming Protocol (RTSP).

DSS runs as one process with at least three main threads:
one for doing all network communication, one for servicing
requests, and one auxiliary thread. The application is event-
driven and all I/O is done asynchronously. For each viewing
session there are at least two connections: one for control
of a stream and one for the stream itself. The streams live
at least as long as they are being played, and the connec-
tion state indicates the position in the stream. Hence, if a
failure causes the connection to fail, then the client needs to
re-open the connection and re-position the playback point in
the stream. Our viewer has application-level recovery: it re-
members where the playback of the stream left off and repo-
sitions for the client when “play” button is pressed again.

DSS is an interesting service to consider because it uses
multiple connections per client and also because it is a
multi-threaded application. It has some attributes that make
it less challenging. In particular, it only reads files, making
the output commit problem only an issue with the playback
of the stream. Additionally, it generates a large amount of
output data in response to small requests, thus reducing the
load on the buffering mechanism.

We ran an unmodified version of DSS on top of FT-TCP
to explore its sources of nondeterminism. NSW detected a
nondeterministic diversion between the primary and backup

5



almost immediately. This nondeterminism occurred when
the server generated a randomSession IDthat was sent to
the client in response to a SETUP request of the RTSP pro-
tocol. The ID is used for all further communication in a ses-
sion. If the primary and the backup generate different IDs,
then all requests from the client will be rejected because
of an invalid ID. To generate the same IDs while keeping
the protocol cryptographically secure, we retained the calls
to a pseudo-random number generator, but made sure that
the values used to compute the seed are derived from the
syscalls whose return values we insert on the backup, such
asgettimeofday() . After we changed the source code
of DSS to make sure identical IDs were generated, we saw
no further execution deviations between the primary and
backup servers.

4.2 Samba Server

Samba server implements Microsoft’s family of proto-
cols for sharing files and printers, such as SMB and the
newer CIFS. These protocols were originally designed to
run over LAN transport protocols, but these days they use
TCP/IP almost exclusively.

A new Samba process is spawned by theinetd dæmon
for each incoming connection. Connections typically last a
long time—for as long as a remote file system is mounted on
the client. Clients that we are familiar with mask connection
failures if they occur during idle periods (no outstanding
requests) by reconnecting to the service upon the next user
command. If, however, a connection is broken during an
active transfer, the transaction is abandoned and an error is
raised.

We found two sources of nondeterminism in Samba. The
first one has to do with the challenge-response authentica-
tion scheme used for access control, in which the server
generates a random challenge string that the client encrypts
with a password and passes back to the server for compar-
ison. Obviously, if the random challenges generated by the
replicas are different, then the response from the client will
only succeed in authentication on the primary, while the
backup will reject that connection. The second source of
nondeterminism, similar in principle to the Session ID in
DSS, was generation of a file handle for each file opened by
a client, who then uses it in all file operations. As with DSS,
we changed the code to make sure that the same challenges
and the same file handles were generated on the primary and
on the backup, taking care to preserve the cryptographic in-
tegrity of the protocol. After that we saw no further execu-
tion deviations in any of our experiments.

5 Performance

FT-TCP is implemented as a kernel module for ver-
sion 2.2.19 of Linux. We ran it on two identical 266MHz
Pentium II workstations with 512Kb cache and 256Mb of

RAM, while all clients ran under Linux 2.4.18 on a 2GHz
Pentium IV with 512Kb cache and 1Gb of RAM. The client
host was connected to the servers with a 10Mbps half-
duplex broadcast Ethernet segment, and the servers also
had a separate 100Mbps half-duplex Ethernet link between
them. This basic architecture is used by many commer-
cial fault-tolerant cluster systems and is therefore the most
likely setting for FT-TCP deployment. All network inter-
face cards wereIntel EtherExpress 10/100. Since it is com-
mon for clients to encounter a bandwidth bottleneck on the
link to the service, we consider our setup adequate for eval-
uation of FT-TCP performance from the point of view of a
typical client.

In the next section we present results obtained during
experiments without any failures and then discuss failure
and recovery process in Section5.4.

5.1 Failure-free Operation

As was discussed in Section3.2.1, during failure-free op-
eration FT-TCP on the primary buffers incoming packets
and syscall results (readlengths are treated separately from
other syscalls in the measurements that follow). To deter-
mine exactly how much overhead is introduced by inter-
ception of syscalls, by buffering of packets, and by output
commit stalls, we ran FT-TCP in three different modes:

• Immediate - Packets and readlengths are buffered, but
FT-TCP does not perform output commit stalls. In this
mode recovery cannot be guaranteed and it is only use-
ful for the purposes of evaluating the minimal over-
head imposed by FT-TCP’s interception and buffering
mechanisms.

• PR - (P)acket and (R)eadlengths are buffered and out-
put commit stalls take place, adding to the overhead.
If an application can run deterministically without in-
terception of syscalls then PR mode is sufficient for
correct operation.

• PRS - (P)ackets, (R)eadlengths and (S)yscalls are
buffered. This is the full-fledged mode of FT-TCP op-
eration that allows replication of arbitrary programs.
By comparing these results with PR we were hoping
to infer the additional overhead of intercepting syscalls
and stalling on output commit on their behalf.

All three modes are compared to performance of the ser-
vice without FT-TCP—labeledClean TCP—which is the
optimal performance in our case. Throughput values were
computed by timing large (4Mb) data transfers and averag-
ing the results over 20 runs. Care was taken to ensure that
each run started in the same initial state (i.e. a file transfer
started with a cold disk cache). Error bars in graphs rep-
resent confidence limits for the mean for a 95% confidence
interval.

6



ttcp in ttcp out Samba in Samba out DSS 
0

200

400

600

800

1000

T
hr

ou
gh

pu
t (

K
b/

s)

0

200

400

600

800

1000

T
hr

ou
gh

pu
t (

K
b/

s)

Clean TCP
Cold Backup
Hot Backup

1100.10
+/- 1.70

1101.56
+/- 1.75

1101.37
+/- 2.41 1013.11

+/- 2.69
996.06
+/- 4.46

996.28
+/- 4.49

1035.61
+/- 1.01

1016.39
+/- 1.21

1015.67
+/- 1.53

870.38
+/-13.10

859.66
+/- 8.82

866.05
+/- 6.58

20.13
+/- 0.00

20.12
+/- 0.00

20.12
+/- 0.00

Figure 2. Throughput of ttcp, Samba, and DSS with and without FT-TCP

5.2 Throughput

Throughput measurements for all applications that we
considered are shown in Figure2. Because of protocol over-
head in Samba and flow control performed by DSS, nei-
ther service completely saturates the client link; hence, we
also show results forttcp—a simple bandwidth testing tool
that sends fabricated data and is able to attain 97% of the
theoretical maximum throughput (1128Kb/s) on a 10Mbps
link with our specific TCP/IP configuration. Samba and
ttcp results are further divided intoincomingandoutgoing
transfers (from server’s point of view) because aggregate
throughputs in these two situations differ considerably. We
use “in” and “out” to denote the transfer direction from now
on.

The first thing to note is that the throughput of services
under FT-TCP is either statistically indistinguishable from
or only slightly lower than the throughput under clean TCP.
The worst relative overhead is about 1.8% forSamba in.
The overheads for cold and hot backups are statistically in-
distinguishable. We were expecting faster throughput with
a cold backup since a hot one does all the work that a cold
one does (i.e. buffers requests) and more, but apparently
the additional CPU load on the backup was not sufficient to
slow down the buffering process.

DSS connection is the least affected by FT-TCP because
it throttles itself down to a low throughput of about 20Kb/s
(appropriate for streaming media over a modem connec-
tion), leaving plenty of time betweensend() calls to ab-
sorb the extra latency of FT-TCP. On the other hand, Samba
is affected the most because it performs a larger number of
syscalls in general (e.g. for a 4Mb incoming transfer Samba
executes approximately 4,870 syscalls, while ttcp executes
approximately 2,940).

Finally, there is a marked difference betweenin andout
throughput values for both ttcp and Samba. Much of the
difference is because one rarely gets identical performance
from TCP in both directions of the same physical link when
the endpoints don’t have the same configuration. Differ-
ences in hardware and operating systems affect the dynam-
ics of connections and lead to significant (in our case around
10% for ttcp and 17% for Samba) differences in perfor-
mance. The additional overhead in Samba out is probably
due to disk caching—with a cold cache every file read hits
the disk, but a series of writes can be absorbed by the cache.

Clean TCP

Cold im
m

.

Hot im
m

.

Cold PR

Hot PR

Cold PRS

Hot PRS

1010

1020

1030

1040

T
hr

ou
gh

pu
t (

K
b/

s)

1035.61
+/- 1.01

1026.84
+/- 1.14 1026.01

+/- 0.92
1024.48
+/- 2.12

1028.21
+/- 1.25

1016.39
+/- 1.21

1015.67
+/- 1.53

Figure 3. Incoming Samba throughput

To evaluate the overhead of interception and buffering
more precisely, we plotted all measuredSamba inthrough-
put values in Figure3 (note that the Y axis does not start
at 0 so as to make the comparison of values easier). Re-
sults from other experiments showed a similar pattern, but
the overhead differences of different modes were more ap-
parent in this data set. There are two things worth attention
on this graph. First, with the exception ofPR, throughputs
with cold and hot backups are statistically indistinguishable.
Second, once againHot PR aside, throughput values de-
crease as we go fromClean TCP, to immediate, to PR, and
to PRS. This was expected since with each step additional
work and buffering are performed by machines running FT-
TCP. The throughput ofHot PR was higher than we ex-
pected. We don’t have a good explanation for this, so the
matter requires further investigation. In any case, the dif-
ferences among all the modes are relatively small and our
main conclusion about FT-TCP overhead being small is un-
affected by this anomaly.

Concurrent client connections compete for access to in-
ternal FT-TCP data structures and to the private communi-
cation channel between replicas. To see whether this con-
tention was a significant source of overhead, we measured
per-client throughput while increasing the number of con-
current connections. We configured ttcp clients to perform
an incoming transfer at the rate of 50Kb/sec so we could run
at least 20 clients without saturating the 1Mbps link. With
both Clean TCPand with FT-TCP all clients were able to
maintain 50Kb/sec throughput until the number of clients
exceeded 20, at which point the link became the bottleneck
and the throughput seen by each client dropped.

7



5.3 Latency

For interactive services—such as a terminal
connection—responsiveness of the server may be more
important than its maximum bandwidth. To see how
FT-TCP affects latency characteristics of services, we
executed short requests to a Samba server and analyzed
client-side packet traces for these connections. Each
instance of the experiment (a directory listing request)
consisted of an 87-byte request, a 464-byte reply with the
directory contents, a 39-byte server status request and a
corresponding 49-byte reply. We definedSamba request
latencyas the time interval between the 87-byte request and
the 49-byte reply. We also measuredTCP packet latency
of all incoming data-carrying packets as the time between
the moment the packet left the client and the moment
the packet acknowledging that data arrived at the client.
Finally, for the runs done under FT-TCP, we measured
the internalbuffering latency, which is the time elapsed
between a buffering request and a reply as measured on the
primary.

Results of these latency experiments are shown in Ta-
ble1 with minimum, mean, and maximum values, as well as
their standard deviations. There were 30 Samba request la-
tency measurements, 68 packet latency measurements, and
230 buffering latency measurements (which include both
packet and syscall requests).

The average Samba request latency almost tripled (from
2.2 ms to 5.8 ms under cold PRS and 6.2 ms under hot
PRS) when FT-TCP was added. Although that may seem
like a significant increase in latency, the values are still low
enough that from the human perspective responsiveness is
not affected at all. Some of this can be attributed to the
increase in packet latency that is shown in the next column.
Keep in mind that our Samba request consists of two incom-
ing and two outgoing data packets along with some ACKs,
so it’s not directly comparable with TCP packet latency. It
also approximately tripled from 0.7 ms to around 2.3 ms
due to interception and buffering overhead. While such an
increase may be significant in some circumstances, such la-
tencies are comparable to connection latencies experienced
across a WAN. For transfers that saturated the link and used
mostly full-sized packets (1,460 data bytes)—such asttcp in
andSamba in—the latency of packets for both Clean TCP
and FT-TCP connections was around 6 ms, which is consis-
tent with the values we reported previously [2].

The values of FT-TCP buffering latencies in the third col-
umn are interesting for a couple of reasons. For one thing,
they offer us another way to quantify the difference between
a cold and a hot backup. As far as primary is concerned, the
only difference is the extra 30 microsecond buffering de-
lay on average. This is the reason cold throughput results
in the previous section are slightly higher than hot results.
The minimal buffering latencies are also useful for placing a
lower bound on the round-trip times for messages between
our replicas. The RTT is useful for determining reasonable

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

R
el

. s
eq

ue
nc

e 
nu

m
be

rs
 x

 1
0-6

Time (sec)

Client sent
Server acked

Figure 4. Behavior of FT-TCP for a long (2.5 sec)
promotion latency with no snooping

values for the failure detection mechanism described in the
next section.

5.4 Failure and Recovery

In our earlier feasibility work [2], we showed that re-
covery was possible. For this work, we decided to con-
centrate on understanding how we could minimize failover
time, where thefailover timeis the length of the period dur-
ing which a client’s data stream is stalled. For FT-TCP
the failover time is affected by the time it takes to (a) de-
tect the fault (thefailure detection latency), (b) bring the
backup into the state where it can take over the connection
(thepromotion latency), and (c) restart the flow of data on
the connection (theretransmission gap, more carefully de-
fined below). We’ve already reported [2] the failover time
for a cold backup—approximately 20 ms per megabyte of
buffered data—and that time is dominated by the promotion
latency. We found recovery of a hot backup considerably
more efficient than that. Hot backup failover time is domi-
nated by the failure detection latency and the retransmission
gap. Consider the following example.

Figure4 shows a portion of one connection by plotting
sequence number offsets (relative to the beginning of the
connection) of the data packets sent by the client or ac-
knowledgment packets sent by the server. About 1 sec into
the experiment the primary host crashes and acknowledg-
ments from the server cease, which soon causes the client
to also stop transmission of data when its TCP window fills
up. About 300 ms later the client’s retransmission timer
goes off and it attempts to resend the packet that follows the
last acknowledged packet (shown as a dip in the line). For
the purposes of analysis we forced the recovery to take a
very long time—2.5 seconds—and so retransmissions pro-
ceed unacknowledged at exponentially increasing intervals
for three more rounds. By the fourth round, 4.8 seconds into
the experiment, the backup is ready, so the retransmission
succeeds and the flow of data resumes.

The actual time when the backup recovered is indicated
by an ACK packet visible around 3.6 seconds. Unfortu-
nately, that ACK does not succeed in reviving the flow of
data because it acknowledges an older packet that client

8



Samba request lat. (µsec) TCP packet lat. (µsec) Buffering lat. (µsec)
Setup min. avg. max. σ min. avg. max. σ min. avg. max. σ

Clean TCP 2112 2181 2974 154 237 748 3475 593
Cold PRS 5394 5823 6989 299 827 2162 7759 1186 46 522 1617 244
Hot PRS 5801 6183 7327 260 745 2337 8417 1310 37 551 3689 416

Table 1. Breakdown of latencies for short Samba requests

1.00

1.05

1.10

1.15

1.20

1.25

0.95 1.00 1.05 1.10 1.15 1.20

R
el

. s
eq

ue
nc

e 
nu

m
be

rs
 x

 1
0-6

Time (sec)

Client sent
Server acked

Figure 5. Behavior of FT-TCP for a short (100 ms)
promotion latency with permanent snooping

TCP already considers acknowledged. The length of this
retransmission gapbetween the actual time of recovery and
the time when the flow of data revives depends on exactly
where in the retransmission cycle recovery happens to take
place: it can be very short if the next retransmission follows
soon after recovery, but it can also be very long (up to 64
seconds of maximum TCP retransmission period) if the ser-
vice recovers right after a retransmission. It is impossible
to avoid this gap if packets arriving immediately after the
crash are lost. In fact, a hot backup that can detect a failure
and recover well under the 200 ms will inevitably have to
wait that long for the first retransmission to restart the flow
of data. This effectively places a 200 ms lower limit—for
both hot and cold replication—on the guaranteed failover
time.

The only way to eliminate the retransmission gap is to
ensure that the backup receives all of the packets sent by
the client. That can be done by switching backup’s network
card into promiscuous mode at the beginning of the con-
nection and snooping packets off the network shared by the
client and the replicas. When the backup decides that the
primary failed it can process the snooped packets, acknowl-
edge them and thereby restart the flow of data immediately,
as shown in Figure5. With this method the failover time
is limited only by the failure detection delay. From Table1
we can see that the average RTT for messages between the
replicas is about 0.5 ms (although it can be much less for
shorter messages). So a reasonable value for a failure detec-
tion timeout might be 1-2 ms. Unfortunately, FT-TCP im-
plementation relies on Linux kernel timers that have gran-
ularity of 10 ms, making that the minimal failure-detection
latency and consequently the minimal failover time for our
hot backup.

Although snooping helps ensure fastest possible failover

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

1.00 1.50 2.00 2.50 3.00 3.50

R
el

. s
eq

ue
nc

e 
nu

m
be

rs
 x

 1
0-6

Time (sec)

Client sent
Server acked

Figure 6. Behavior of FT-TCP for a long (2.5 sec)
promotion latency with permanent or reactive snoop-
ing

time, looking at every packet on a busy network may place
too heavy of a load on the backup machine. Therefore it
is worthwhile to consider a third approach, in which the
network card operates normally during failure-free opera-
tion, but goes into promiscuous mode whenever a failure
is detected (in fact, there is no harm in starting to snoop
whenever a failure is onlysuspectedand not necessarily
confirmed). We call thisreactive snooping; the first two
schemes areno snoopingandpermanent snooping, respec-
tively. Reactive snooping makes sense when the failure de-
tection latency is shorter than the TCP retransmission de-
lay (200 ms), but the promotion latency is longer. Starting
to snoop before the first retransmission allows the backup
to collect all packets lost in the crash and restart the data
flow as soon as the promotion is complete, as, for exam-
ple, happens around 3.4 seconds in Figure6. There is no
point in reactive snooping with a backup that is promoted
quickly since it will get the first retransmissions itself. With
short promotion latency the question is whether to snoop
permanently or not at all, and that is a trade-off between
good failure-free performance (which would be affected by
snooping) and short failover time.

The idea of using snooping to improve reliability at a
low cost has been around for a long time [9]. In [5] it was
used for primary-backup replication of a network file sys-
tem service. A fault-tolerant TCP system described in [8]
also relies on permanent snooping to obtain client packets
on the backup.

6 Conclusion

Our earlier work on FT-TCP [2] demonstrated the feasi-
bility of a server-side recovery approach to masking the fail-

9



ure of a TCP-based server from its clients. In this paper, we
addressed the question of how it performed in practice. To
do so, we applied FT-TCP to two existing services—Samba
and DSS—and determined its impact for both failure-free
execution and for executions with failures. We also exam-
ined how to reduce the failover time when recovering a TCP
connection. We chose as an embodiment a configuration in
which the network link between the primary server and its
backups was fast, since this is by far the most common con-
figuration used in practice. We found that:

• While it was necessary to modify the code of two
existing services to have them be recoverable using
FT-TCP, the modifications were few. For both ser-
vices, the nondeterminism was explicitly introduced
by the service: for Samba, nonces and file handles
are generated, and for DSS, session IDs are gener-
ated. This experience implies that adding a protocol-
specific “hook” might be useful for making it easier to
ensure that the backup makes the same nondeterminis-
tic choices that the primary does.

• The failure-free overhead of FT-TCP is very low and
the system does not impose any new scalability prob-
lems. The maximum throughput overhead that we
found was for large file transfers to a Samba server.
Such requests put a heavy load on the buffering mecha-
nism by sending it a large number of syscalls and pack-
ets. Even so, the overhead was under 2%.

• The performance of a hot backup with FT-TCP is
nearly indistinguishable from the performance of a
cold backup. For cold backups, we did not checkpoint
the service (meaning that it would be recovered from
its initial state); checkpointing could have a large im-
pact on server performance.

• The failover time of FT-TCP can be made very short,
but to do so requires the backup to capture the data sent
by the client immediately before the server failed. This
requires the backup to snoop on the incoming traffic by
setting its network interface to promiscuous mode. For
servers that have a large promotion latency, the backup
need only start snooping when it suspects that the pri-
mary has failed, while if the promotion latency is un-
der 200 ms then the backup should start snooping as
soon as it starts executing. The use of snooping, how-
ever, only enhances performance, and is not required
for server-side recovery.

We have only looked at two services, and they are similar
in that they do not impose a large computational overhead
on the server processor. We are interested in the case where
the server does have a large computational overhead, but
such services are less common in practice.

References

[1] N. Aghdaie and Y. Tamir. Implementation and evaluation of
transparent fault-tolerant web service with kernel-level sup-
port. In Proc. IEEE Intl. Conf. on Computer Communica-
tions and Networks, 2002.

[2] L. Alvisi, T. Bressoud, A. El-Khashab, K. Marzullo, and
D. Zagorodnov. Wrapping server-side TCP to mask connec-
tion failures. InProc. IEEE INFOCOM 2001, pages 329–
337, 2001.

[3] T. Bressoud and F. Schneider. Hypervisor-based fault tol-
erance. ACM Trans. on Computer Systems, 14(1):80–107,
1996.

[4] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg.
Primary–backup protocols: Lower bounds and optimal im-
plementations. InProc. 3rd IFIP Conf. on Dependable Com-
puting for Critical Applications, 1992.

[5] D. Dolev, D. Malki, and Y. Yarom. Warm backup using
snooping. InProc. 1st Intl. Workshop on Services in Dis-
tributed and Networked Environments (SDNE), pages 60–
65, 1994.

[6] E. Elnozahy, L. Alvisi, Y. Wang, and D. Johnson. A survey
of rollback-recovery protocols in message passing systems.
ACM Computing Surveys, 34(3):375–408, 2002.

[7] R. Nasika and P. Dasgupta. Transparent migration of dis-
tributed communicating processes. InProc. 13th ISCA
Intl. Conf. on Parallel and Distributed Computing Systems
(PDCS), 2000.

[8] M. Orgiyan and C. Fetzer. Tapping TCP streams. InProc.
IEEE Intl. Symp. on Network Computing and Applications
(NCA2001), 2002.

[9] M. Powell and D. Presotto. Publishing: a reliable broadcast
communication mechanism. InProc. Symp. on Operating
Systems Principles, pages 100–109, 1983.

[10] G. Shenoy, S. Satapati, and R. Bettati. HydraNet-FT: Net-
work support for dependable services. InProc. 20th Intl.
Conf. on Distributed Computing Systems, 2000.

[11] A. Snoeren, D. Andersen, and H. Balakrishnan. Fine-
grained failover using connection migration. InProc.
3rd USENIX Symp. on Internet Technologies and Systems
(USITS), pages 97–108, 2001.

[12] F. Sultan, K. Srinivasan, and L. Iftode. Transport layer sup-
port for highly-available network services. Technical Report
DCS-TR-429, Rutgers University, 2001.

[13] V. Zandy and B. Miller. Reliable network connections. In
Proc. ACM MobiCom, 2002.

10


	Introduction
	Related Work
	Architecture
	Replication Concepts
	FT-TCP System
	Normal Operation
	Recovery

	Nondeterminism

	Applications
	Darwin Streaming Server
	Samba Server

	Performance
	Failure-free Operation
	Throughput
	Latency
	Failure and Recovery

	Conclusion

