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Abstract

Casual message-logging protocols have several attractive properties: they introduce no block-

ing, send no additional messages over those sent by the application, and never create orphans.

Causal message logging, however, does require the casual e�ects of the deliveries of messages

to be tracked. The information concerning causality tracking is piggybacked on application

messages, and the amount of such information can become large.

In this paper we study the cost of tracking causality in causal message-logging protocols. One

can track causality as accurately as possible, but to do so requires piggybacking a considerable

amount of additional information. One can reduce the amount of piggybacked information on

each message by reducing the accuracy of causality tracking. But then, causal message logging

may piggyback the reduced amount of information on more messages.

We specify six di�erent methods of tracking causality, each representing a natural choice

based on the speci�cation of causal message logging. We describe how these six methods can

be implemented and compare them in terms of how large of a piggyback load they impose.

This load depends on the application that is using causal message logging. We characterize

some applications for which a given method has the smallest piggyback load, and study using

simulation the size of the piggyback load for two di�erent models of applications.

1 Introduction

Message logging [9] is a common technique used to build systems that can tolerate process crash
failures. These protocols require that each process periodically record its local state and log the
messages received since recording that state. When a process crashes, a new process is created in its
place: the new process is given the appropriate recorded local state, and then it is sent the logged
messages in the order they were originally received. Thus, message-logging protocols implement an
abstraction of a resilient process in which the crash of a process is translated into an intermittent
unavailability of that process.

All message-logging protocols require that the state of a recovered process be consistent with
the states of the other processes. This consistency requirement is usually expressed in terms of
orphan processes, which are surviving processes whose state is inconsistent with the recovered state
of a crashed process. Thus, message logging protocols guarantee|either through careful logging or
through a somewhat complex recovery protocol|that after recovery no process is an orphan.
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Message logging protocols can be pessimistic (for example, [5, 11, 17, 24]), optimistic (for exam-
ple, [12, 22, 23, 26]), or causal [4]. Like pessimistic protocols, causal protocols [3, 10] never create
orphans, and, like optimistic protocols, they do not log synchronously to stable storage. They are
able to do this by piggybacking information onto the ambient message tra�c.

Causal message-logging protocols track the causal e�ects of message deliveries. Let f be the
number of concurrent crash failures that are to be tolerated. We have given [4] a generic causal
message-logging protocol that tracks causality to determine when information needed for recovery
has been delivered and recorded by at least f + 1 independently-failing processes.

In this paper we study the cost of tracking causality in causal message-logging protocols. This
is not an easy problem to address. One can track causality as accurately as possible, but to do so
requires piggybacking on the application messages a considerable amount of additional information.
One can reduce the amount of piggybacked information on each message by reducing the accuracy
of causality tracking. But then, causal message logging may piggyback the reduced amount of
information on more messages because the protocol may learn more slowly when the recovery
information has been replicated at least f + 1 times.

Understanding which method piggybacks the least information in a given situation is important
for several reasons. First, it is in itself an interesting question, because the tradeo� is complex
and there is a temptation either to be as accurate as possible or to use as little information as
possible to track causality. As this paper shows, there are times when neither is the best choice
in terms of message size. Second, there are environments, such as embedded systems or mobile
systems, in which bandwidth is limited. In such systems, limiting the size of messages is important.
Third, a signi�cant cost in any protocol is in assembling, processing, and disassembling a message.
Piggybacking less information in messages is one way to improve the performance of a causal
message-logging protocol.

We consider six di�erent methods of tracking causality. They represent natural choices based
on the speci�cation of causal message logging. All of the published causal message-logging pro-
tocols track causality using one of these methods. We describe how these six methods can be
implemented. We compare them in terms of how large a piggyback load they impose. This load is
application dependent: we characterize some applications for which a given method has the smallest
piggyback load, and study using simulation the size of the piggyback load for two di�erent models
of applications.

We do not consider the e�ect on the piggyback load when processes periodically checkpoint their
states. Frequent checkpointing can reduce the piggyback load because one doesn't need to track
causality for events prior to a checkpoint. But, frequent checkpointing imposes another kind of
overhead. The results here should be illustrative for executions in which checkpointing is relatively
infrequent.

We do not present the protocol that is run when a crashed process recovers. All six protocols
in this paper can use the same recovery protocol. A discussion on recovery as well as the actual
recovery protocol can be found in [18].

The paper proceeds as follows. In Section 2 we present the system model and in Section 3 we
specify causal message logging. Section 4 develops the six causal message-logging protocols and
identi�es two classes of applications for which the simplest protocol is also the most e�cient in
terms of piggyback overhead. In Section 5 we measure and compare the piggyback overheads using
a synthetic application. Section 6 concludes the paper.
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2 System Model

We assume a system N of n processes that can communicate only by exchanging messages. The
system is asynchronous: there exists no bound on the relative speeds of processes, no bound on
message transmission delays, and no global time source.

The execution of the system is represented by a run, which is an irre
exive partial ordering of
the send events, receive events and local events ordered by potential causality [13]. Delivery events
are local events that represent the delivery of a received message to the application or applications
running in that process. For any message m from process p to process q, q delivers m only if it has
received m, and q delivers m no more than once.

At any point in time, the state of a process is a mapping of program variables and implicit
variables (such as program counters) to their current values. We assume that the state of the
process does not include the state of the underlying communication system, such as the queue of
messages that have been received but not yet delivered to the process. Given the states sp and sq
of two processes p and q, p 6= q respectively, we say that sp and sq (or, more simply, p and q) are
mutually consistent if all of the messages from q that p has delivered during its execution up to sp
were sent by q during its execution up to sq, and vice versa. A collection of states, one from each
process, is a consistent global state if all pairs of states are mutually consistent [6]; otherwise it is
inconsistent.

We assume that processes are piecewise deterministic [24] in that the only nondeterminism in
a process arises from the nondeterministic order in which messages that have been received are
delivered. It is therefore natural to think of the execution of a process as being partitioned into
intervals, with the beginning of each interval being de�ned by the initial state of the process or the
delivery of a message. Such an interval is called a state interval. Thus, given the �rst state of a
state interval and the message whose delivery de�nes the beginning of the interval, the rest of the
states in the interval are uniquely determined by the process.

For any message m delivered by process p, the receive sequence number of m, denoted m.rsn,
represents the order in whichm was delivered: m.rsn = ` ifm is the `th message delivered by p [23].
The state interval that initiates with the delivery of m is denoted p[`] where `, the index of p[`], is
equal to m.rsn. The state interval p[0] is de�ned to be the interval of states of p from its initial
state to the state immediately before the delivery of the �rst message.

We further assume that:

� Processes fail independently according to the fail-stop model [19];

� The �xed set of processes that belong to the system is known by all of these processes;

� Channels are point-to-point, FIFO, and fail by intermittently losing messages.

3 Speci�cation of Causal Message Logging

With the assumption that processes are piecewise deterministic, the only non-deterministic choices
made during an execution concern the order in which messages are delivered to processes. To
recover a process's state, the nondeterministic choices the process makes during recovery should be
the same as it made before failing. Hence, we need to represent the order of message deliveries.

For each message m delivered during a given run, let m:source and m:ssn denote, respectively,
the identity of the sender process and a unique identi�er assigned to m by the sender. The latter
may, for example, be a sequence number. Let deliverm:dest(m) denote the event that corresponds
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to the delivery of message m by process m:dest. The tuple hm:source;m:ssn;m:dest ;m:rsni un-
equivocally determines m and the order in which m was delivered by m.dest. We refer to this tuple
as the determinant of the event deliverm:dest(m) and we denote it as #m.

Let Depend(m) denote the set of processes whose state re
ects the delivery of message m.
Formally,

Depend(m)
def
=

(
j 2 N

����� _ ((j = m.dest) ^ j has delivered m)
_ (9m0: (deliverm:dest(m)! deliver j(m

0)))

)

where ! denotes the happens-before relationship [13]. Let Log(m) denote the set of processes that
maintain a copy of #m in their address space: in particular, process m:dest is a member of Log(m)
once it delivers m. In [4], we showed that the following property ensures that su�cient information
is available to avoid the creation of orphans:

8m : 2(Depend(m) � Log(m)) (1)

where 2 is the temporal \always" operator.
We say that #m is stable (denoted stable(m)) when #m cannot be lost because of crashes.

Property 1 need hold only for messages with a determinant that is not stable. In [4], we showed
that the following property ensures that no set of crashed processes can lead to the creation of
orphans:

8m : 2(:stable(m)) (Depend(m) � Log(m))) (2)

If determinants are kept in stable memory, then stable(m) holds when the write of #m to stable
memory completes. If determinants are kept in volatile memory, and we assume that no more than
f processes can fail concurrently, then stable(m) holds as long as f + 1 processes have a copy of
#m in their volatile memory. In the latter case, Property 2 can be written:

8m : 2((jLog(m)j � f)) (Depend(m) � Log(m))) (3)

Property 3 allows Log(m) to grow arbitrarily larger than Depend(m) and allows for protocols
that disseminate a large number of unnecessary copies of #m. As the number of delivery events
performed during a run increases, these extra copies may end up wasting a signi�cant portion of
the address spaces of the processes in the system. In order to address this problem, we consider
protocols that implement the following strengthening of Property 3:

8m : 2(jLog(m)j � f )

Depend(m) � Log(m) ^ 3(Depend(m) = Log(m)) (4)

where 3 is the temporal \eventually" operator. This characterization strongly couples logging with
causal dependency on deliver events. It requires that as long as jLog(m)j � f :

� All processes that delivered an application message sent causally after the delivery of m have
stored a copy of m's determinant.

� All processes that have stored a copy of m's determinant will eventually deliver an application
message sent causally after the delivery of m.

We call the protocols that implement Property 4 causal message-logging protocols.
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4 Family Based Logging

Family Based Logging (FBL) is a logging technique that implements Property 41. Conceptually,
each process p maintains in its volatile storage a set of determinants DLp called the determinant
log of p and de�ned as follows:

DLp
def
= f#m : p 2 Depend(m)g:

That is, DLp contains the determinant of all of the delivery events that causally precede p's current
state. We denote with UnstableDLp the subset of DLp that p does not know to be stable. Whenever
p sends a message m0 to some process q, process p piggybacks onto m0 all the determinants #m
in UnstableDLp for which q 62 Log(m). Hence, a fundamental issue of implementing FBL is how a
process p determines Log(m) for any determinant #m that p has received. In general, p may not
know the exact values of Log(m) and jLog(m)j, and so it must estimate these values. We denote
p's estimated values for Log(m) and jLog(m)j as Log(m)p and jLog(m)jp respectively.

4.1 Estimating Log(m) and jLog(m)j

To satisfy Property 4, p must never overestimate Log(m) or jLog(m)j. However, if p underesti-
mates jLog(m)j, it may then needlessly piggyback determinants that are already stable, making
the messages on average signi�cantly larger. By exchanging more information, processes can im-
prove the accuracy of their estimates and avoid piggybacking useless data; piggybacking this extra
information can in turn make the messages signi�cantly larger.

The most basic piece of information about jLog(m)j is gained when a process q delivers a message
m. Once q delivers m, q knows that q 2 Log(m). Further pieces of information about jLog(m)j are
piggybacked on messages. Three natural pieces of information are:

#m When q receives #m from p, process q can safely infer that Log(m) contains at least process
p, process m.dest (the original destination of message m) and process q itself.

jLog(m)jp Upon receipt of jLog(m)jp, q can safely infer that jLog(m)j is no smaller than jLog(m)jp.
When q receives #m for the �rst time, q can further safely infer that jLog(m)j must be at
least equal to jLog(m)jp + 1, since q itself could not be counted in jLog(m)jp. Note that
this scheme allows q to infer a value for jLog(m)j safely without knowing the identity of the
processes in Log(m).

Log(m)p Upon receipt of Log(m)p, process q can safely infer that Log(m)q must be at least equal
to the union of the current set Log(m)q and Log(m)p, and can update jLog(m)jq accordingly.
Using this scheme, when process p sends its estimate of Log(m) to process q, it is providing
q with the union of all the estimates relative to Log(m) computed by the processes along the
causal path that connects process m.dest to process p.

One can de�ne a protocol for each of these di�erent information-exchange schemes. Let

UnstableDLp(q)
def
= f#m 2 UnstableDLp : q 62 Log(m)pg:

That is, UnstableDLp(q) is the the set of determinants in UnstableDLp that p does not know q
already has. Let p send a message m0 to q. The three protocols piggyback as follows:

1It is conceptually simple, though somewhat cumbersome, to generalize our discussion of FBL so that it implements
a more general version of Property 4, i.e. one that uses the more general predicate :stable(m) instead of jLog(m)j � f .
We use the latter in this paper to simplify our exposition.
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�Det Process p piggybacks the determinants in UnstableDLp(q) on m0.

�jLogj For each determinant #m in UnstableDLp(q), process p piggybacks both #m and jLog(m)jp
on m0.

�Log For each determinant #m in UnstableDLp(q), process p piggybacks both #m and Log(m)p
on m0.

Furthermore, for each of these three protocols, when p receives an acknowledgment from q for
message m0, p adds q to Log(m) for each determinant #m piggybacked on m0.

The causal message-logging protocol Manetho [10] is essentially �Det with f = n. That is,
Manetho assumes that total failures are possible, which means that a determinant never becomes
stable 2.

Hence, a process piggybacks #m on a message m0 to q when p has a copy of #m and p does
not know that q has a copy of #m. [8]

In the three protocols de�ned above, a process piggybacks information to q only about deter-
minants that are in UnstableDLp(q). To disseminate more quickly that a determinant has become
stable, however, a process can piggyback additional information. The following three protocols,
which are analogous to �Det, �jLog j and �Log, piggyback such information. Suppose p sends a
message m0 to q. The three protocols piggyback as follows:

�+
Det Process p piggybacks the same data as in �Det. In addition, p informs q of which determinants

in DLp have become stable.

�+

jLogj Process p piggybacks the same data as in �jLogj. In addition, if jLog(m)jp has increased

since the last time p piggybacked #m to q, then p piggybacks jLog(m)jp on m0.

�+
Log Process p piggybacks the same data as in �Log. In addition, if Log(m)p has increased since

the last time p piggybacked #m to q, then p piggybacks Log(m)p on m0.

4.2 Comparison of the Protocols

The six protocols piggyback di�erent amounts of information and estimate Log(m) and jLog(m)j
di�erently. We examine these di�erences below.

4.2.1 Accuracy of Log(m)p and jLog(m)jp

The execution shown in Figure 1 illustrates the di�erences between �Det, �jLogj and �Log with
respect to how accurately they estimate Log(m) and jLog(m)j. For each deliver event executed by
process pi and for each of the three protocols, we show Log(m)pi and jLog(m)jpi .

Through the receipt of message m3, the three protocols yield the same estimates of Log(m)
and jLog(m)j. Once p3 receives m4, however, the three protocols compute di�erent estimates for
Log(m) and jLog(m)j:

�Det Upon receipt of the copy of #m piggybacked on message m4, process p3 concludes that, in
addition to itself, Log(m) must include at least process p1 = m4.source and process p2 =
m.dest. Process p3 thus sets Log(m)p3 = fp1; p2; p3g, and jLog(m)jp3 = 3.

2This is because we equate stable(m) with jLog(m)j � f . In Manetho, as in any message logging protocol, a
determinant can always be made stable by writing it to any other suitable implementation of stable storage, e.g. a
disk.
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Figure 1: Log(m)pi and jLog(m)jpi for �Det, �jLogj and �Log.

�jLogj As in the previous case, process p3 sets Log(m)p3 to fp1; p2; p3g. However, since this is the
�rst time that p3 receives #m, p3 was not in Log(m) when p1 sent m4. Since jLog(m)jp1 = 3,
p3 can infer that jLog(m)j must be at least 4.

�Log Process p3 receives Log(m)p1 in addition to #m. It then concludes that Log(m) must include
at least p1; p2; p3, and p4 and that jLog(m)j � 4.

Figure 2: Comparison of �Log and �+
Log for f = 3.

Although �Log provides a more accurate assessment of Log(m), both �jLogj and �Log allow
process p3 to conclude that jLog(m)j � 4. The bene�ts of the extra information exchanged by
protocol �Log become evident when process p5 receives message m5, at which point �Log has the
most accurate determination of jLog(m)j.

7



s

Figure 3: A parallel solution to the Synthetic Aperture Radar problem.

Protocols �+
Det, �

+

jLogj and �+
Log are similar to �Det, �jLog j and �Log, but can provide better

estimates of Log(m) and jLog(m)j. An example illustrating the di�erence between �Log and �+
Log

is given in Figure 2. Assume f = 3. Determinant #m becomes stable when p5 receives m3. With
Protocol �Log, when p5 subsequently sendsm4 to p3, #m is not piggybacked, and therefore message
m4 does not carry Log(m)p5 . With Protocol �+

Log instead, p5 piggybacks Log(m)p5 even if #m is
already stable. Hence, using Protocol �Log a messagem5 sent by p3 to p1 will contain a piggybacked
value of #m, while using Protocol �+

Log it will not. Similar scenarios can be constructed with the
other two pairs of protocols.

Consider again the execution shown in Figure 1. As long as jLog(m)j is small, the protocols
have the same estimates of Log(m). This suggests that for small values of f , one should use �Det

because it piggybacks the least possible amount of information per message. We examine this
hypothesis in Section 4.2.2. There are applications, however, with which �Det performs as well as
�Log even for large values of f . For example, Figure 3 shows an application for which �Det does
as well as �+

Log when f = n. The application is a parallel solution to the Synthetic Aperture Radar
problem (SAR) [15] in which radar echoes, collected by aircraft or spacecraft, are used to construct
terrain contours. The steps necessary for producing high-quality images from SAR data consist
of the following sequence of computations: two-dimensional discrete Fourier transform, binary
convolution, two-dimensional inverse discrete Fourier transform, and intensity level normalization
for visualization. For our purposes, however, the important property to note is that data 
ows in
a particular manner.

To characterize a set of applications for which �Det performs as well as �
+
Log, we represent an

application's pattern of communication with a channel graph. For a given application, its associated
channel graph is a directed graph. Nodes are used to represent processes as well as sources of
application messages received from the environment and destinations of application messages sent
to the environment, and edges are used to represent the direction that application messages are
sent.

De�nition 1 A channel graph is shortcut-free if it is acyclic and for all pairs of nodes i and j, all
paths from i to j have the same length.

The channel graph of Figure 3 is shortcut-free. The following theorem characterizes one set of
applications for which �Det performs as well as �

+
Log when f = n.
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Figure 4: The channel graph obtained assuming that �+
Log estimates Log(m)pi better than �Det.

Theorem 1 Let f = n. Given a shortcut-free channel graph, for any run �, Protocol �Det piggy-

backs on each message the same determinants as Protocol �+
Log.

Proof: When f = n the antecedent of Property 4 is trivially true, and so with any FBL protocol
a process p will piggyback a determinant #m when sending a message m0 to q if and only if
p 2 Depend(m) and q 62 Log(m)p. Whether or not p is in Depend(m) does not depend on the
speci�cs of a particular FBL protocol, but is determined solely by the application messages. Hence,
we can prove the theorem by showing that q 62 Log(m)p under �Det if and only if q 62 Log(m)p
under �+

Log.

Assume that q 62 Log(m)p under �+
Log. Since �+

Log piggybacks a superset of the information

piggybacked by �Det, p under �+
Log will estimate Log(m) at least as accurately as �Det: Log(m)p

under �Det is a subset of Log(m)p under �
+
Log. Hence, q 62 Log(m)p under �Det.

Assume that q 62 Log(m)p under �Det. For q 2 Log(m)p to hold under �+
Log, there must exist

a causal path from node q to node p carrying this information. This path cannot be made solely
of application messages, or the channel graph would contain a cycle and therefore would not be
shortcut-free. Hence, the dependency must have been carried by an acknowledgment from process
q to a third process r. Furthermore, r 6= p since �Det and �+

Log do not di�er in how they use
acknowledgments to estimate Log(m) and by assumption under �Det q 62 Log(m)p. Furthermore,
since q sent an acknowledgment to r, an application message was sent by r to q. We conclude that
in order for q to be a member of Log(m)p under �+

Logthe channel graph must contain (i) an edge
from r to q, (ii) a path from r to p, and (iii) an edge from p to q.

Figure 4 shows such a channel graph. To show that this graph cannot be shortcut-free, we
observe that there are two paths of di�erent length that connect r and q: the �rst consists only of
the edge from r to q while the second goes through p.

We conclude that for all shortcut-free channel graphs, if �Det estimates that p 62 Log(m)p, then

so does �+
Log . 2

4.2.2 Piggyback Overhead

Protocols like �Det that exchange less information may dramatically underestimate Log(m) and
jLog(m)j, possibly leading to excessive piggybacking of #m. On the other hand, by piggybacking
less information, the piggyback load per message may be smaller. Hence, there is a trade-o� between
the amount of information carried in each message versus the number of unnecessary piggybacks.
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This trade-o� is complex, since it depends both on the application's pattern of communication and
on the network's responsiveness in delivering acknowledgments: we explore it in detail in Section 5.
Even a simple qualitative analysis, however, shows that, while for �Det, �jLogj, and �Log the amount
of piggybacked information is proportional to the number D of determinants UnstableDLp(q), for
�+
Det, �

+

jLog j, and �+
Log this information may in the worst case be proportional to the number N of

determinants in DLp(q).
In the worst case, both D and N can only be bound by the total number of delivery events

that causally precede the sending of m. Thus, the extra information sent by �jLogj, �
+

jLogj, �Log

and �+
Log does not worsen the theoretical asymptotically worst case behavior of FBL protocols. In

practice, however, whenD is large, adding an extra piggyback proportional to D, as �jLogj and �Log

do, can result in signi�cant extra overhead. Furthermore, even when D is small, N is most likely
large, making �+

Det, �
+

jLogj and �+
Log appear even less practical. Hence, it could be advantageous

to represent the extra information using a data structure whose size is independent of D or N .
Protocol �jLogj can be easily modi�ed to achieve this goal by sorting the determinants #m0

piggybacked on m according to jLog(m0)j. One can then, for example, also piggyback an f element
array x where x[i] is the number of determinants that have jLog(m0)j. The array x can also be run
encoded should it be sparse. The resulting version of �jLog j piggybacks no more than f additional
words than �Det, an amount which is independent of D. A drawback of this approach, however,
is that determinants sorted in this manner are not suitable for some of the compression techniques
described in [2, 3], which can dramatically reduce the size of the piggyback. Furthermore, while
this this approach can also be applied to �+

jLog j, it can not be applied to �Log or �
+
Log.

In the next section we introduce a data structure, called a dependency matrix, that allows us
to implement �+

Det, �
+

jLogj, and �+
Log with an incremental cost over �Det that is independent of D

or N .

4.3 Dependency Tracking

We know from Property 4 that as long as jLog(m)j � f , each process ensures that Depend(m) �
Log(m). Hence, a process can use Depend(m) to estimate Log(m). We can take advantage of
techniques for tracking dependencies to compute Depend(m). The most widely-used technique is
based on vector clocks [16].

A vector clock is an n-element vector that counts the number of relevant events in the causal
past of a process for some de�nition of relevant. Let Vp be the vector clock associated with process
p. The value Vp[p] counts the number of relevant events that p has executed, and Vp[q]; q 6= p counts
the number of relevant events that p knows that q has executed. Hence, given two relevant events
ep of process p and eq of process q,

ep ! eq � Vp(ep)[p] � Vq(eq)[p] (5)

where Vp(ep) and Vq(eq) are the vector clocks of process p and q when they execute ep and eq
respectively.

Vector clocks are easy to implement. When a process p executes a relevant event, it incre-
ments Vp[p]. And, when a process p executes receivep(m), then for all r : 1 � r � n; r 6= p :
Vp(receivep(m))[r] is set to the maximum of p's previous value for Vp[r] and Vq(sendq(m) to p)[r].
This second rule requires the sending process q to piggyback the current value of its vector clock
on m.

Strom and Yemini [23] were the �rst to use vector clocks with message logging when they
introduced the notion of a dependency vector. A dependency vector DVp is a vector clock where
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the relevant events are delivery events. Speci�cally,

DVp(e)[p] is the index of the state interval that contains the event e. This is the same as the
receive sequence number of the last message delivered by p through the execution of e.

DVp(e)[q] is the highest index of any state interval of process q that process p depends upon
through the execution of event e.

Specializing Equation 5 to dependency vectors, we get:

deliverp(m)! deliver q(m
0) �

DVp(deliverp(m))[p] � DVq(deliver q(m
0))[p] (6)

Dependency vectors track arbitrary dependencies between delivery events. In the context of
FBL, we are interested in determining which processes depend on event deliverp(m) only when
jLog(m)j � f . We therefore de�ne an abstraction, which we call weak dependency vector WDV,
that satis�es the following weaker version of Condition 6:

deliverp(m)! deliver q(m
0) ^ jLog(m)j � f )

WDVp(deliverp(m))[p] �WDVq(deliver q(m
0))[p] (7.a)

WDVp(deliverp(m))[p] �WDVq(deliver q(m
0))[p])

deliverp(m)! deliver q(m
0) (7.b)

where WDVp and WDVq are the weak dependency vectors of process p and q respectively.
From Properties 7.a and 7.b, the de�nition of Depend(m), and the fact that Depend(m) �

Log(m) it follows that, for any given message m for which jDepend(m)j � f one can determine if q
is in Depend(m) from q's current weak dependency vector. In particular, the following conditions
hold:

q 2 Depend(m) ^ jDepend(m)j � f )

WDVq[m.dest] �m:rsn (8.a)

WDVq[m.dest] � m:rsn) q 2 Depend(m) (8.b)

One can de�ne useful vector clocks that are weaker than weak dependency vectors. For example,
it is useful to de�ne a vector clock PBC(m) that is constructed from the set of determinants
piggybacked on a message m. This vector clock, which only satis�es Condition 8.b, is constructed
as follows:

PBC(m)[p]
def
=

8>>>>><
>>>>>:

` where ` is the largest value of m0.rsn for all
determinants #m0 piggybacked on m such
that m0.dest = p

0 if there is no determinant #m0 piggybacked on m
such that m0.dest = p

An element PBC(m)[p] may be zero for three reasons: (1) there are no messages m0 for which
p 2 Depend(m0); (2) for all such messages jDepend(m0)j > f ; (3) for all such messages p knows
that q 2 Log(m0). If the �rst reason holds for all zero elements, then PBC(m) is a dependency
vector, and if either the �rst or second reason hold for all zero elements, then PBC(m) is a weak
dependency vector.
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Dependency tracking proceeds as follows. Each process p 2 N maintains an n� n dependency

matrix DMatp, de�ned as follows 3:

� DMatp[p; �] is the weak dependency vector of process p.

� DMatp[q; �] is process p's estimate of the weak dependency vector of process q.

for q 2 (N � fpg) and where DMatp[i; �] denotes the ith row of matrix DMatp.
A process p's estimate of the weak dependency vector of another process q will lag behind q's

actual weak dependency vector, and so DMatp[q; �] will not in general be able to satisfy Condi-
tion 8.a. However, it is straightforward to design update rules that satisfy Condition 8.b. Here is
one such set of rules:

1. When process p receives a message m from q:

(a) p generates #m. To do so, it increments DMatp[p; p] by one. DMatp[p; p] is now the
value of the receive sequence number of m. This is the vector clock update rule used
when a process executes a relevant event.

(b) p sets DMatp[p; �] to the component-wise maximum of the current value of DMatp[p; �]
and PBC(m). This is the vector clock update rule used when a process receives a
piggybacked vector clock.

Even though PBC(m) is weaker than a weak dependency vector, the resulting value of
DMatp[p; �] is still a weak dependency vector. As noted above, a component PBC(m)[q]
can be zero for three di�erent reasons. If one of the �rst two reasons hold, then for that
component PBC(m) is a weak dependency vector. If the third reason holds, then q has
already piggybacked the non-zero value of this component that would make it a weak
dependency vector.

(c) p sets DMatp[q; �] to be the component-wise maximum of the current value of DMatp[q; �]
and PBC(m). Doing so ensures that p's estimate of q's dependency vector is up to date.
As above, even though PBC(m) is not a weak dependency vector, the resulting value of
DMatp[q; �] is a weak dependency vector.

(d) For all values of i : 1 � i � n, p sets DMatp[i; i] to the maximum of DMatp[i; i] and
PBC(m)[i]. This is done because p may learn about some process i reaching a state
interval indirectly from q rather than directly from i.

2. When process q receives an acknowledgment for message m from p, it sets DMatq[p; �] to be
the component-wise maximum of the current value of DMatq[p; �] and PBC(m).

Given Condition 8.b, it is simple for p to estimate Depend(m) and therefore Log(m): Log(m)p
contains the processes q such that DMatp[q;m.dest] is at least m.rsn. And, process p can consider
#m to be stable when more than f entries of DMatp[�;m.dest] are greater than or equal to m.rsn.

The set of rules given above implements Protocol �Det. In the next section we describe three
more sets of rules that implement �+

Det, �
+

jLog j and �+
Log.

3Because the order of events executed by a processor is in fact a total order, it is also straightforward to construct
a dependency matrix that has size nP � nP where nP is the number of processors in the system [4].
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4.4 Piggybacking the Dependency Matrix

As it turns out, it is simpler to present the set of rules that implement �+
Det, �

+

jLogj and �+
Log by

starting from the last protocol and working our way backwards to the �rst. The reason lies in
the observation that the dependency matrix of process q can be used to compute Log(m)q for all

messages m for which q is a member of Depend(m). So, to implement �+
Log, q can simply piggyback

its dependency matrix on every message it sends.

4.4.1 Implementing �+
Log

The update rules for �+
Log are as follows:

1. When process p receives a message m from q:

(a) p generates #m. To do so, it increments DMatp[p; p] by one. DMatp[p; p] is now the
value of the receive sequence number of m.

(b) p sets DMatp[p; �] to the component-wise maximum of the current value of DMatp[p; �]
and DMatq[q; �].

(c) For all values of i : 1 � i � n, p sets DMatp[q; �] to the component-wise maximum of the
current value of DMatp[i; �] and the piggybacked DMatq[i; �].

2. When process q receives an acknowledgment for message m from p, it sets DMatq[p; �] to be
the component-wise maximum of the current value of DMatq[p; �] and PBC(m).

The resulting protocol implements �+
Log and piggybacks n2 additional data over �Det, which is

independent of the number of determinants in both DLp and UnstableDLp.

4.4.2 Implementing �+

jLog j

A second set of update rules can be used to derive an implementation of �+

jLogj that is analogous

to �jLog j and that piggybacks O(f � n) additional data per message. Consider the following data
structure that is extracted from the dependency matrix:

Stability Matrix: SMatp is a (f+1)�n matrix of integers. For all processes q in N , SMatp[i; q] is
the highest receive sequence number of any message m delivered by q for which jLog(m)jp = i.

The stability matrix is a compact way of representing jLog(m)jp. Speci�cally,

jLog(m)jp =

(
at least f + 1 when m.rsn � SMatp[f;m.dest]
i : 1 � i � f when SMatp[i+ 1;m.dest] < m.rsn � SMatp[i;m.dest]

The stability matrix can be computed directly from the dependency matrix. Consider the column
DMatp[�; q]. The values in this column are a multi-set4 of receive sequence numbers for messages
that were delivered by q. Let ` be the �rst largest value in this multi-set. ` is also the receive
sequence number of the last message that p knows q has delivered. Thus, for all messages m

4A multi-set S is a set in which the same value may occur more than once. The kth largest value in S is de�ned
recursively as follows: the �rst largest value in S is the largest value that occurs in S, and the kth largest value in
S is the (k � 1)st largest value of the multi-set of S with the �rst largest value removed. Thus, the �rst and second
largest values of f2; 1; 2g are both 2, and the third largest value is 1.
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delivered by q, if if m.rsn � ` then jLog(m)jp � 1 and if m.rsn > ` then jLog(m)jp = 0. Thus,

SMatp[1; q] = `. Generalizing this observation, SMatp[i; q] is the i
th largest value of DMatp[�; q].

In protocol �+

jLogj, all processes piggyback their stability matrix instead of their dependency
matrix. Doing so allows a process p to compute a more accurate value of SMatp. The set of update
rules is:

1. When process p receives a message m from q:

(a) p generates #m. To do so, it increments DMatp[p; p] by one. DMatp[p; p] is now the
value of the receive sequence number of m.

(b) Consider a determinant #m0 piggybacked on m. If m0.rsn > DMatp[p;m
0.dest] then p is

receiving #m0 for the �rst time. Call such a determinant new to p. For any determinant
#m0 new to p, p 62 Log(m0)q and so jLog(m

0)jp is set to jLog(m
0)jq+1. Process p computes

a new value SMatq
0 of SMatq that re
ects this fact. Speci�cally, p �rst sets SMatq

0 to
SMatq. Then, for each determinant #m0 new to p, let s be jLog(m0)jq as computed from
the piggybacked stability matrix, i.e., SMatq[s+1;m0.dest] < m0.rsn � SMatq[s;m

0.dest].
Process p sets SMatq

0[s+ 1;m0.dest] to max(SMatq
0[s+ 1;m0.dest];m0.rsn).

(c) p sets DMatp[p; �] to be the maximum of the current value of DMatp[p; �] and PBC(m).

(d) p sets DMatp[q; �] to the component-wise maximum of the current value of DMatp[q; �]
and PBC(m).

(e) For all values of i : 1 � i � n, p sets DMatp[q; i] to be the component-wise maximum
of the current value of DMatp[q; i] and PBC(m)[i]. This brings p's estimate of q's weak
dependency vector up to date.

(f) For all values of i : 1 � i � n, p sets DMatp[i; i] to the maximum value of DMatp[i; �].

(g) p sets SMatp[i; q] to the larger of its current value and of the ith largest value of
DMatp[r; q] for all r 2 N . This is the rule given above for generating a stability matrix
from a dependency matrix.

(h) Finally, for all values of i : 1 � i � n, p sets SMatp[i; �] to the component-wise maximum
of the current value of SMatp[i; �] and the modi�ed version of the piggybacked SMatq

0[i; �]
obtained from rule (b).

2. When process q receives an acknowledgment for message m from p, it sets DMatq[p; �] to be
the component-wise maximum of the current value of DMatq[p; �] and PBC(m).

4.4.3 Implementing �+
Det

Protocol �+
Det requires process p to inform q of which determinants have become stable. Recall that

for each process j, SMatp[f +1; j] is the highest receive sequence number of any message delivered
by j that p knows to be stable (i.e. that p knows to have been logged by at least f + 1 processes).
Hence, p can ful�ll its requirement simply by piggybacking row f + 1 of its stability matrix on the
messages it sends to q. We call the vector corresponding to SMatp[f + 1; �] process p's stability
vector, or SVp.

In addition to the steps (a)|(d) of �Det, in protocol �+
Det a process p that receives a message

m from q takes the following steps:

(e) For all values of i : 1 � i � n, p sets SVp[i] to the f + 1st largest value in DMatp[�; i], the
i-th column of p's dependency matrix.
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(f) For all values of i : 1 � i � n, p sets SVp[i] to the component-wise maximum of the current
value of SVp[i] and the piggybacked SVq[i].

�+
Det's management of acknowledgments is identical to that of �Det.
�+
Det uses the stability vector to get a more accurate estimate of which determinants should

be part of UnstableDLp. For a determinant #m to belong to UnstableDLp, both of the following
conditions must now hold: (1) f or fewer entries of DMatp[q;m.dest] are greater that m.rsn (just
as in �Det), and (2) m.rsn > SVp[m.dest].

5 Comparing Piggyback Overheads

We start our comparison of the di�erent protocols by examining their asymptotic piggyback over-
heads. These bounds are expressed in terms of the number D of determinants piggybacked on the
message and the size w of a determinant. These two values are not independent: w must be larger
than the log of D. In the worst case D can be as large as the number of receive events any process
can execute. Additionally, w must be larger than log(n) since the determinant encodes the source
and destination of a message, but it is not hard to imagine runs in which D is much larger than n.
(In any real implementation, w is most likely a constant, such as 64 bits.)

� �Det: only the determinants are added, and so the overhead is O(Dw).

� �jLogj: with each piggybacked determinant for some message m0 the estimate jLog(m0)j is
included. Since we can express this estimate in log(f) bits, the overhead is O(D(w+log(f))).

� �Log: with each piggybacked determinant for some message m0 the estimate Log(m0) is
included. This estimate cannot include more than f process ids, and so the overhead is
O(D(w + f log(n)).

� �+
Det: the stability vector is piggybacked on each message. A stability vector contains n

elements, where each element is a receive sequence number. If we use w bits to represent a
receive sequence number, then the overhead is O((D + n)w).

� �+

jLogj: the stability matrix is piggybacked on each message. Again, if we use w bits to

represent a receive sequence number, then the overhead is O((D + nf)w).

� �+
Log: the dependency matrix is piggybacked on each message. Again, if we use w bits to

represent a receive sequence number, then the overhead is O((D + n2)w).

At this level of abstraction one might tempted to conclude, for example, that �jLogj should be
a better choice than �Det because the former tracks causality better while piggybacking only a
logarithmic number of bits more per determinant than the latter. And, given that D can be huge,
the last three protocols appear attractive because the additional number of bits used to increase the
precision of causal tracking over than of �Det is independent of D. Whether these observations hold
in practice, though, depends strongly on the communication pattern exhibited by the application.

To understand the relative performance of the di�erent protocols, we developed a synthetic
application model that we call the BBL application model. This model speci�es how bursty com-
munication is (burstiness), what percentage of the total number of processes process communicates
with (branchiness), and how slowly acknowledgments return (latency). We construct synthetic ap-
plications for di�erent combinations of these three parameters. For each constructed application,
we measure the piggyback overhead for each protocol for di�erent values of f .
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We then construct three other synthetic applications not within the BBL model and again mea-
sure the piggyback overhead for the FBL protocols. These three applications have communication
structures that resemble speci�c system structures.

5.1 The BBL Model

The BBL communication model is similar to other models that have been proposed (for example, [3,
7, 21]). The model assumes that processes do not crash and that channels are reliable and maintain
FIFO ordering. Each process alternates between two stages of operation: a communication stage

during which the process sends messages, and a computation stage during which the process receives
and acknowledges messages. During any communication stage a process never sends more than one
message to any other process. The processes to which process p sends messages in a run are called
the neighbors of p for that run.

The model is parameterized by the �ve-tuple hn,M , bu, br; li where n is the number of processes
in the system andM is the total number of messages sent in the system. The value of br determines
the size of the set of neighbors. At the beginning of each run, each process p is assigned a random
set of neighbors. This size of this set is pulled from a restricted uniform distribution n � U(br).5

For example, if the random variable br = 0:1, then on average each process will have as neighbors
10% of the remaining processes.

The value of bu determines the number of messages a process sends in each communication
stage. Speci�cally, let bup;i be a random variable that indicates the fraction of neighbors to which
process p sends messages during the ith communication stage. The value of bup;i is pulled from the
restricted uniform distribution U(bu). For example, if br = 0:1 and bu = 0:5, then on average each
process will send messages to 5% of the other processes during each communications stage. The
message recipients are selected randomly without replacement from the process' neighbors.

The value of l models the speed of the underlying communication system. This parameter
determines how quickly, on average, acknowledgment are received by the sender. The time is
measured in terms of the number of events the sender executes between sending the message and
receiving the acknowledgment. Speci�cally, let lp;i be a random variable that determines the number
of events processed by p before it receives the acknowledgment for the ith message that it sent.
The value of this random variable is pulled from the restricted uniform distribution b2n � U(l)c.

Consider a point in the �ve-dimensional space that has coordinates n;M; bu; br; and l. Let
a communication graph be a run of a synthetic application, represented as a partial ordering of
events of the n processes and generated stochastically from a distribution de�ned by the tuple
hn;M; bu; br; li. By generating many communication graphs for di�erent points in this space, we
can evaluate the performance of the message-logging protocols as a function of the parameters of
the model.

We �xed the number of processes n at 10 and the number of messages M at 500. We found
that larger values of M did not signi�cantly change our evaluation. Thus, the space is reduced to

5The restricted uniform distribution U(m) is a uniform distribution that has an expected value of m and a
maximum value of 2m:

m = 0:5 : the uniform distribution from 0 to 1

0 < m < 0:5 : the uniform distribution from 0 to 2m

0:5 < m < 1 : the uniform distribution from 2m� 1 to 1
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a 3-dimensional subspace of the original model with axes bu, br, and l, whose values range from 0
to 1. We examine the 64 points (:2; :4; :6; :8) � (:2; :4; :6; :8) � (:2; :4; :6; :8) in this subspace.

We generated 21 communication graphs for each of these 64 points and ran each of the six
causal logging protocols with four values of f 2 f2; 3; 4; 9g. This resulted in over 32,000 runs.
The performance of the protocols at each point in the application space was averaged over the 21
communication graphs. The results presented are accurate to 95% con�dence. We use small values
of f since for real systems of ten processes the probability of having more than a few failures at
any time is very small. We include f = 9 since this allows recovery from total failures.

Table 1 summarizes the parameters of the BBL model.

parameter meaning values used

n number of processes 10

M number of messages sent in run 500

bu burstiness of communication 0.2, 0.4, 0.6, 0.8

br branchiness of communication 0.2, 0.4, 0.6, 0.8

l communication latency 0.2, 0.4, 0.6, 0.8

Table 1: Parameters of the BBL model

5.1.1 Exploring the BBL Space

�+
Det, �

+

jLogj, and �+
Log augment �Det, �jLogj, and �Log by sending information about stable deter-

minants. Two questions regarding these protocols are:

1. How much does information about stable determinants reduce the number of piggybacked
determinants?

2. Does this reduction in determinants, if any, lead to a reduction in the overall number of bits
piggybacked?

Figure 5 shows summary statistics for each protocol averaged over the sampled application
space. The �rst graph shows the average number of determinants piggybacked over the course of
the run. Protocols �+

Det, �
+

jLogj and �+
Log send 6.3%, 9.1% and 10.6% fewer determinants respec-

tively than the corresponding standard protocol. This shows that the extra information that these
protocols send is useful. However, as Figure 5.b shows, the cost of sending this extra information
can far exceed the bene�t. Protocol �+

Det sends 6.9% more bits than protocol �Det. Protocols
�+

jLogj and �+
Log send 59.8% and 100.1% more bits than their corresponding standard protocol.

Recall that protocols �+
Det, �

+

jLogj, and �+
Log add �xed sized data structures to each message.

For �+
Det this data structure is a vector of size n, for �

+

jLogj a matrix of size f � n, and for �+
Log a

matrix of size n2. Assuming n = 10 and 32 bit words, this overhead is between 320 and 3,200 bits.
Since 500 messages are sent in a run, the accumulated overhead is between 160,000 and 1,600,000
bits. The latter value, which is the overhead of �+

Log, accounts for 61.5% of the average number of
bits sent. This overhead is directly related to the O(n) size of vector clocks, which has been shown
to be a lower bound [20]. So, at least for the part of the BBL space that we consider, �+

jLogj and

�+
Log are not competitive.
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Figure 5: A comparison of the performance of the standard vs. \plus"' protocols

To understand the relative performance of the protocols we compared them as follows: for
each point sampled in the BBL space, we counted the number of times one protocol signi�cantly
outperformed the other. One protocol signi�cantly outperformed the other when it piggybacked
on average fewer bits and the 95% con�dence intervals did not overlap. Table 2 shows the pairwise
comparison of the six protocols. The values in the table represent the number of points in the
BBL space where the protocol in the column outperformed the protocol in the row. For example,
the value of 43 in the �rst column, second row, is the number of points at which protocol �Det

piggybacked on average signi�cantly fewer bit than protocol �+
Det.

�Det �+
Det �jLogj �+

jLogj �Log �+
Log

�Det - 0 0 0 0 0

�+
Det 43 - 25 0 25 0

�jLogj 0 0 - 0 0 0

�+

jLogj 256 256 256 - 256 24

�Log 59 20 56 0 - 0

�+
Log 256 256 256 192 256 -

Table 2: Pairwise comparison of the relative performance of the protocols as measured by the total
number of bits piggybacked.

These results again show that �+

jLogj and �+
Log are not competitive with the other protocols.

(The table also shows that, over most of the space, �+

jLogj outperforms �
+
Log. We expected this for

small f but not for f = 9). Because they are not competitive, we exclude protocols �+

jLogj and �
+
Log

from the rest of the discussion and concentrate on the performance of the four remaining protocols.

Protocol �Det Table 2 shows that over all the points sampled, no protocol ever piggybacks
signi�cantly fewer bits than �Det. This suggests that if no knowledge about the application's
characteristic is known then �Det is a good choice. We therefore use �Det as our baseline protocol.
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Figure 6: Piggyback overhead of �Det as function of f , normalized to Manetho's piggyback over-
head.

The regression equation for the number of bits piggybacked by �Det is:
6

number of bits = 237; 000 bu+ 481; 100 br � 4942 l + 860; 100 (f=10) + Cdet:

The R-Squared signi�cance test of this regression of 0.63.
This regression equation suggests that the performance of �Det is dominated by the value of

f for the protocol. Recall that Manetho is essentially �Det instantiated with f = n. Since there
is no di�erence in the number of piggybacked bits for f = n� 1 and f = n,7 �Det piggybacks for
f = 9 the same number of bits as Manetho. However, given the high sensitivity to f , �Det appears
to piggyback much fewer bits than Manetho when f is small.

Figure 6 examines this issue. In this �gure, we compare the number of piggybacked bits of �Det

and Manetho as a function of f . The �gure shows that for f = 2, protocol �Det sends 47% fewer
bits than Manetho. These performance gains decrease as f increases. As we show in Section 5.2,
this is an artifact of n being relatively small: with �Det's relative inaccuracy in tracking causality,
it does not take long for a determinant to be piggybacked to a substantial fraction of the ten
processes.

The regression equation also shows that �Det is relatively insensitive to the latency of the
underlying communication system, and moderately sensitive to the size of the communication
neighborhood and the burst frequency. This makes sense intuitively. When the neighborhood size
is small, processes send more messages to the same recipients, resulting in tighter synchronization
among them. Once a process has sent a determinant to its neighbor, it never needs to send
it to the same neighbor again. When the size of the neighborhood is small, the neighborhood
quickly becomes saturated with the determinant. The reasoning for the sensitivity to bu is similar.
When this parameter is high, processes broadcast messages to a high percentage of their neighbors,
therefore saturating their neighborhood.

6We write the equation in terms of (f=10) rather than f so that the ranges of all of the independent variables are
between 0 and 1.

7In both cases, a process p piggybacks a determinant #m to q when q 62 Log(m)p.

19



bu
0 0.2 0.4 0.6 0.8 1

0

20

40

60

br
0 0.2 0.4 0.6 0.8 1

0

20

40

60

l
0 0.2 0.4 0.6 0.8 1

0

20

40

60

f

2 4 6 8 10

0

20

40

60

Figure 7: Performance of �Log

Protocol �jLogj The performance of protocol �jLogj is statistically indistinguishable from our
baseline �Det. The extra integer per determinant piggybacked in �jLogj can reduce the number of
piggybacked determinants when the communication graph has long linear paths. In the sampled
applications there are few linear paths since each process sends messages in each round. Overall,
�jLogj is able to send only 1.2% fewer determinants than �Det, not enough to reduce the extra cost
associated with this protocol.

One might, in fact, argue from Table 2 that �Det is slightly better than �jLogj, since there are
59 points where �Det signi�cantly outperforms �Log and only 56 points where �jLogj signi�cantly

outperforms �Log. Similarly, �Det does better more often in comparison to �+
Det than �jLogj.

Protocol �Log Figure 5 shows that overall, the extra information carried by �Log reduces the
number of piggybacked determinants by over 10% as compared with �Det. Looking at the pairwise
comparison between �Log and �Det, we see that at 197 points �Log is statistically indistinguishable
from �Det, and at 59 points �Log performs signi�cantly worse than �Det.

Figure 7 shows the breakdown of the 59 points where �Log performs poorly as a function of
f , br, bu and latency. This �gure shows that the performance of �Log as compared with �Det is
linearly correlated with br. As br increases, there are more cases where �Log performs poorly.

In addition, �Log is also a�ected by the value of f . We sampled 64 points for f = 2, and for 35
of these �Log performs worse than �Det.

Figure 7 also shows that the performance of �Log is independent of the latency, and indetermi-
nate with respect to bu.

Protocol �+
Det Overall, �+

Det is indistinguishable from �Det over most of the runs. In 43 of the
256 points, �+

Det does signi�cantly worse than �Det. Figure 8 shows how the relative performance
varies as a function of each of the dimensions.

Like protocol �Log, �
+
Det is inversely sensitive to br. Unlike �Log, �

+
Det seems to perform

relatively better for low values of f .

5.2 The Client/Server Model

The BBL model has the processes communicate asynchronously in a bursty manner. While this is
not unusual for many scienti�c applications, many other applications are more synchronous in their
communications. Hence, we construct three additional synthetic applications. Each application
uses 40 processes.

CS1 This application has a client-server-like communication structure. A process is chosen at
random without replacement from the 40 processes. The chosen process sends a message to
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Figure 8: Performance of �+
Det

another process, again chosen randomly without replacement. The message chain continues
until 20 processes are selected. The twentieth process sends a reply message to the nineteenth
process. This reply chain continues until the �rst process receives a reply message. This
process of generating request and reply chains of depth 20 is repeated 20 times.

CS3 This application also has a client-server-like communication structure. Instead of generating
chains of length 20, though, this application generates ternary trees of depth four (and hence,
containing 40 processes). A non-leaf process sends three messages, one each to three processes
chosen at random without replacement. A leaf process immediately sends a reply to its parent,
and a non-leaf process sends a reply to its parent once it receives the three replies from its
children. The application generates 20 of these trees.

SG This application has a group-based communication structure. A process is chosen at random
without replacement. The chosen process selects eight processes and sends each of them
a message without waiting for acknowledgments; thus, a degree-eight tree of depth one is
constructed. Each process sends a reply to the original process. When the original process
receives the eight replies, a new tree with a randomly-chosen process is constructed. The
application generates 20 of these trees.

All three applications repeatedly generate trees, which are trivially shortcut-free. Given this
simple pattern, one might be tempted to conclude that �Det would be the best protocol. However,
as Figures 9 and 10 show, �Log performs signi�cantly better than the other protocols for all but
the smallest values of f . Each �gure shows the piggyback overhead of the four protocols �Det,
�jLogj, �Log and �+

Det as a function of f for f 2 f2; 3; 10; 20; 30; 40g.
The reason for this behavior is that the communication graph is in fact not a tree: a process p

that receives a message from q in one iteration may in another iteration send a message to q. A
determinant may follow a very complex path, which, as we saw in the BBL model, is a situation
for which �Log performs well. In addition, Manetho performs relatively poorly both overall and in
comparison with �Det. It is not until f = 20 that �Det e�ectively piggybacks determinants to all
processes.

For SG, however, �Log (and �+
Det) do poorly. �jLogj and �Det have similar piggyback loads,

with �Det edging out �jLogj for larger values of f . In fact, by f = 10 the piggyback load for all
protocols has reached 80% of their piggyback load for f = n. In SG, the process at the root of
each tree quickly learns that the determinants it piggybacks are logged in at least nine di�erent
processes. For smaller values of f , the additional information provided by �jLogj is helpful in
spreading the fact that these determinant are stable, but for larger values of f determinants spread
quickly around the system, in which case �Det does best.
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Figure 9: Piggyback overhead for CS1 as a function of f .
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Figure 11: Piggyback overhead for SG as a function of f .

5.3 Discussion

The results of the simulations are speci�c to the application models in which they were run. Here,
we give some general intuition that could help application programmers choose among the protocols.

The \plus" protocols are theoretically attractive because they convey so much information
using a representation whose size is independent from the number of determinants piggybacked on
a message. The results from our simulations indicate, though, that there are no situations where
�+

jLogj and �+
Log are appropriate.

Protocol �jLogj performs very similarly to �Det, and is somewhat better when the average fanout
of messages is low and f is small. However, if it is known that the application fanout is low, then
�Log is a more logical choice since it does much better in this case and is less sensitive to f .

These recommendations would most likely change for larger values of n and for other patterns
of communications. Another issue worth studying is how the results change with the frequency of
checkpointing. The more frequent checkpointing occurs, the more determinants can become stable
via checkpointing. Frequent checkpointing, though, imposes an overhead both on storage and on
computation.

6 Conclusions

In causal message logging protocols, each process tracks causality to estimate both the number and
the identities of processes that store a copy of a determinant. We have shown that the tradeo�
between excess piggybacking due to inaccurate causality tracking and the extra piggybacked in-
formation to increase the accuracy of causality tracking is both complex and application speci�c.
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We have given some situations in which the simplest of the FBL protocols is the best choice with
respect to piggyback overhead, and then given some heuristics for when to use other protocols.
The choice almost always comes down between the simplest protocol, �Det, and one of the more
accurate protocols, �Log.

The piggyback overhead of causal logging can become large, and so understanding how to re-
duce the piggyback overhead is important. Further reduction can be accomplished by compressing
the information that is piggybacked (see, for example, [3]). We don't believe that such compres-
sion would change the relative rankings we have found for the various FBL protocols. If there is
considerable locality in the communications patterns, though, then large parts of the dependency
matrix may not change very frequently, and so compression of the dependency matrix based on
di�erence encoding might make �+

Log competitive. This question (and the related one concern-
ing compression of the stability matrix) would be best explored by considering real, rather than
synthetic, applications.

Piggyback overhead is not the only metric with which one could compare the di�erent FBL pro-
tocols. For example, the overhead of processing individual determinants may make protocols like
�+
Log advantageous. A more detailed comparison, however, would most likely depend on very spe-

ci�c environmental factors, such as the relative processor speed with respect to the communication
bandwidth and the overhead (and hence the frequency) of checkpointing.

Putting these results in a broader context, causal message logging protocols are related to causal
multicast [25] which in turn are related to global state detection [1, 14]. All of these protocols track
causal dependencies to implement some level of distributed knowledge about the execution history
of some application. For example, in [4] we showed how a causal message logging protocol can be
derived starting from causal multicast. And, if f = n then casual message logging ensures that
each process has stored locally all of the nondeterministic choices made in the causal past of that
process. A simple extension to causal message logging would allow a process to have locally all
\important" events in its causal past available for debugging or for global state detection purposes.
Hence, the tradeo�s explored in this paper should be useful to those studying other protocols that
build upon causality tracking.

The simulator and the data we generated for the analysis in this paper is available from the
authors upon request.
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