Modeling Consumer Preferences and Price Sensitivities from Large-Scale Grocery Shopping Transaction Logs

Mengting Wan, Di Wang, Matt Goldman, Matt Taddy, Justin Rao, Jie Liu, Dimitrios Lymberopoulos, Julian McAuley
UC San Diego, Microsoft Corporation
WWW’17, Perth, Australia, April 2017
Right Products w. Right Coupons to Right Consumers!

Consumers

“Give me a discount then I’ll buy it!”

“I’m loyal to some products. Coupons won’t change my mind.”

CPGs

Optimizer

Product Recommendation; Personalized Promotion

Retailers

Revenue

Transaction Logs (with Price!); Product info.; Demographics etc.

Consumer Behavior Model
(preference & price sensitivity)

CPGs: consumer packaged goods companies
Preference & Price Sensitivity

Consumer Behavior Model
(preference & price sensitivity)

- Preference: what kind of products people would like to buy
 - Recommender System
 - Purchase Probability / Quantity

- Price-sensitivity: what kind of products people would be more likely to buy if the price drops
 - Demanding System

 \[
 \text{elasticity} = \frac{\Delta \text{Quantity}}{\text{Quantity}} / \frac{\Delta \text{Price}}{\text{Price}} \quad \text{or} \quad \text{elasticity} = \frac{\Delta \text{Probability}}{\text{Probability}} / \frac{\Delta \text{Price}}{\text{Price}}
 \]

- Price elasticity is usually negative, where larger absolute value -> more price sensitive
Challenges

- Recommender System
 - Price is barely considered
 - Interpretability

- Economics/Marketing
 - Scalability
 - Handcrafted consumer segmentation

- By connecting them ...
 - Interpretable, Scalable, Personalized
Modeling Grocery Shopping Behavior

- **INPUT**: User ID, Item/Category ID, Features (temporal/geo info., item info.— price!, user demographics, etc.)
- **OUTPUT**: preference prediction, price elasticity

Category Purchase

1. Buy or not?

Yes!

Product Choice

2. Which product?

Selected!

Purchase Quantity

3. How many?
A Unified Feature-Based Matrix Factorization (FMF): $\text{link}(Y(t)) = L(t) = \Phi(t)^T \Psi(t)$

$\logit(y_{i,u}(t)) = \langle w, \tilde{g}_{i,u}(t) \rangle + \langle \phi_{0}(o), \psi_{o}(i) \rangle + \langle \phi_{0}(u), \tilde{\psi}_{u}(i) \rangle + \langle \phi_{1}(o), \tilde{\psi}_{o}(i) \rangle$

1. Buy or not? (‘Logistic Regression’)
 - Yes!

2. Which product? (‘Multinomial Logistic’)
 - Selected!

3. How many? (‘Poisson Regression’)

Categories:
- Purchase
- Product Choice
- Purchase Quantity
Method (Advantages)

- Scalable
 - Inherit the scalability of Matrix Factorization

- Parallel
 - Three stages do not share parameters

- Flexible
 - Easy to adjust based on conditions

- Personalized
 - No need to do consumer segmentations beforehand

Category Purchase

1. Buy or not?

Product Choice

2. Which product?

Purchase Quantity

3. How many?
Experiments (Datasets)

- Dunnhumby (household-level data) [1]
 - 531,201 product transactions, 98,020 trips, 799 users, 4,247 products, 108 stores, 104 categories
 - Features: price, day-of-week, household demographics, product info etc.

- MSR-Grocery (individual, convenient store)
 - 152,021 products transactions, 53,075 trips, 1,288 users, 1,929 products, 55 categories
 - Features: price, day-of-week, product info etc.

Results (Preference)

Category Purchase (AUC)
- Dunnhumby
- MSR-Grocery

Product Choice (AUC)
- Dunnhumby
- MSR-Grocery

Product Quantity (Mean Absolute Error)
- Dunnhumby
- MSR-Grocery

proposed model without price
proposed model with price
Results (Price Elasticity)

- **Product choice** is the most price sensitive stage.
- Consumers in *Dunnhumby* (households) are less price sensitive in category purchase, but more price sensitive in product choice and quantity, than those in *MSR-Grocery* (convenient store).

Average Price Elasticity

<table>
<thead>
<tr>
<th>Category</th>
<th>Dunnhumby</th>
<th>MSR-Grocery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product choice</td>
<td>-0.196</td>
<td>-0.024</td>
</tr>
<tr>
<td>Purchase quantity</td>
<td>-0.842</td>
<td>-0.242</td>
</tr>
</tbody>
</table>

Coupons are primarily effective “within category”!
Case Study: Bacon

Different consumers may have different price sensitivities

- Do category promotions on popular products
Case Study: Bacon

Preference vs Price Elasticity

(a) Category Purchase
(b) Product Choice
(c) Purchase Quantity

less price sensitive
more price sensitive
Case Study: Bacon

Preference vs Price Elasticity

High preference
Price **insensitive**
(they like it no matter how expensive it is)

Low preference
Price **insensitive**
(they dislike it)

Low preference
Price **sensitive**
(price is too high to afford)

Mid preference
Price **sensitive**
(aggressive buyer)

High preference
Price **insensitive**
(budget limit)
Conclusion and Future

- Three purchase stages
 - category purchase, product choice, purchase quantity
- A nested feature-based matrix factorization model (FMF)
 - Personalized
- Lots of economic insights
 - Coupons are primarily effective “within category”

- Temporal-aware model – long-term purchase patterns
- Complementary and Substitutes
- Optimization strategy to generate personalized coupons so that utilities can be maximized
Thanks!

Mengting Wan (m5wan@eng.ucsd.edu)