Reliably Erasing Data from Flash-Based Solid State Drives

Michael Wei*
Laura Grupp*, Fredrick E. Spada†, Steven Swanson*

*Non-Volatile Systems Laboratory
Department of Computer Science and Engineering
University of California, San Diego

†Center for Magnetic Recording Research
University of California, San Diego
Confidential Data

Sensitive information which...

- Limited to people with need
- Destroyed at end of life
YOU...

have confidential data on your computer right now!

<table>
<thead>
<tr>
<th>File</th>
<th>Location</th>
<th>Last Visit Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Accettura’s Fun With Wor...</td>
<td>http://robert.accettura.com/archives/200...</td>
<td>12/21/2005 02:35 PM</td>
</tr>
<tr>
<td>Robert Accettura’s Fun With Wor...</td>
<td>http://robert.accettura.com/archives/200...</td>
<td></td>
</tr>
<tr>
<td>Robert Accettura’s Fun With Wor...</td>
<td>http://robert.accettura.com/archives/200...</td>
<td></td>
</tr>
<tr>
<td>Robert Accettura’s Fun With Wor...</td>
<td>http://robert.accettura.com/archives/200...</td>
<td></td>
</tr>
<tr>
<td>Robert Accettura’s Fun With Wor...</td>
<td>http://robert.accettura.com/?s=intelligen...</td>
<td></td>
</tr>
<tr>
<td>Robert Accettura - Google Search</td>
<td>http://robert.accettura.com/</td>
<td></td>
</tr>
<tr>
<td>Firefox:2.0 Product Planning:Draf...</td>
<td>http://wiki.mozilla.org/Firefox:2.0_Product...</td>
<td>12/21/2005 02:33 PM</td>
</tr>
<tr>
<td>cbeard's mozilla blog: Mozilla Pr...</td>
<td>http://cbeard.typepad.com/mozilla/2005/...</td>
<td></td>
</tr>
<tr>
<td>djst’s improved nest » Interview ...</td>
<td>http://djst.org/blog/2005/12/19/interview...</td>
<td></td>
</tr>
</tbody>
</table>
CORPORATIONS...

must protect their own data as well as client’s data.

Source: Ponemon Institute and ID Experts, Benchmark Study on Patient Privacy and Data Security, November 2010. Question: In your opinion, what harms do patients actually suffer if their records are lost or stolen?
GOVERNMENTS...

must protect information to protect the state and lives of its citizens
Confidential Data

Sensitive information which...

- Limited to people with need
- Destroyed at end of life

How?
What we know comes from years of research on hard drives.
Solid State Disks (SSDs) next generation storage...

- Flash-based
- No moving parts
- Uses a complex controller (Flash Translation Layer)
SSDs are becoming quite popular...
You might have left confidential data and not even realized it.
Why is it hard to erase SSDs?

Current sanitization tools are designed for hard drives. But SSDs are very different!
SSD Differences

- Recovery process is cheap
- Wide space of manufacturers for poor implementation
- Easy Disassembly / Reassembly

Let’s see what’s on this SSD...

- Low cost compared to hard drives
- Someone could steal your data overnight!
Overview

• Motivation
• Sanitization Background
• Validating Sanitization and Results
• Single-File Sanitization Enhancement
Sanitization

Erasing data so that it is difficult or impossible to recover
For this talk, we’ll talk about the chip level.

- There’s leftover data
- It’s cheap
- The next level is much more complex
Writing Data

Operating System’s View

Hard Drive

Operating System’s View

Solid State Disk

Stale Data
Writing more data...

Operating System’s View

Hard Drive

Solid State Disk

Stale Data
Lots of stale data can be left over on the drive...
Overview

- Motivation
- Sanitization Background
- Validating Sanitization and Results
- Single-File Sanitization Enhancement
We now want to measure the stale data left over.
First, we constructed a “fingerprint” that was easily identifiable.
Second, We needed a way to see more than what the operating system sees.
Second, We needed a way to see more than what the operating system sees.

Operating System’s View

Stale Data

Solid State Disk (Flash Chips)
We built a custom hardware platform to extract data off the chips.
The drive is successfully sanitized if no stale data is left over.
Whole-disk sanitization

Erase the whole disk so that no old data remains.

• **Built-in Commands**
 • ATA Security “Erase Unit” (ATA-3), 1995
 • Cryptographic techniques

• **Software Overwrite**
 • Various Standards
Built-in commands

- ATA Security “Erase Unit”
ATA Security Erase Enhanced

Some drives tested supported and passed

<table>
<thead>
<tr>
<th>SSD Name</th>
<th>Controller</th>
<th>SECURITY ERASE UNIT (ATA-3)</th>
<th>SECURITY ERASE UNIT ENHANCED (ATA-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>No (Reports yes)</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>Partial (Bugged)</td>
<td>No</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>Partial (Bugged)</td>
<td>No</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>Crypto Scrambles</td>
<td>Crypto Scrambles</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
ATA Security Erase Unit

One drive reported success, even though all data remained.

<table>
<thead>
<tr>
<th>SSD Name</th>
<th>Controller</th>
<th>SECURITY ERASE UNIT (ATA-3)</th>
<th>SECURITY ERASE UNIT ENHANCED (ATA-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>No (Reports yes)</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>Partial (Bugged)</td>
<td>No</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>Partial (Bugged)</td>
<td>No</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>Crypto Scrambles</td>
<td>Crypto Scrambles</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
ATA Security Erase Unit

- Others only worked after the drive was reset

<table>
<thead>
<tr>
<th>SSD Name</th>
<th>Controller</th>
<th>SECURITY ERASE UNIT (ATA-3)</th>
<th>SECURITY ERASE UNIT ENHANCED (ATA-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>No (Reports yes)</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>Partial (Bugged)</td>
<td>No</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>Partial (Bugged)</td>
<td>No</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>Crypto Scrambles</td>
<td>Crypto Scrambles</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
ATA Security Erase Unit

- Some drives crypto-scrambled, so we could not verify them

<table>
<thead>
<tr>
<th>SSD Name</th>
<th>Controller</th>
<th>SECURITY ERASE UNIT (ATA-3)</th>
<th>SECURITY ERASE UNIT ENHANCED (ATA-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>No (Reports yes)</td>
<td>No</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>Partial (Bugged)</td>
<td>No</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>Partial (Bugged)</td>
<td>No</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>Crypto Scrambles</td>
<td>Crypto Scrambles</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>G</td>
<td>6</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>H</td>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I</td>
<td>8</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Crypto-Scramble

Works by deleting key

• Fast, but...
 – Encrypted data remains
 – Someone could “crack the code”
 – Not really sanitization

• Data isn’t erased

• Crypto scramble makes drives unverifiable
Software overwrite

• Various Government Standards
• According to NIST 800-88 (2006) “Studies today have shown that most of today’s media can be effectively cleared by one overwrite.”

Operating System’s View

Stale Data

Solid State Disk (Flash Chips)
Software overwrite

Operating System’s View

Stale Data

Solid State Disk (Flash Chips)

Operating System’s View

Stale Data

Solid State Disk (Flash Chips)
Software overwrite

Operating System’s View

Solid State Disk (Flash Chips)

Stale Data

Operating System’s View

Solid State Disk (Flash Chips)

Stale Data

Operating System’s View

Solid State Disk (Flash Chips)

Stale Data
How many times?

Our experiments show 2 passes are typically necessary.

But even on the same drive, the number of required passes varied between 2 to more than 20.

Unreliable - hardware commands are best, if they are correctly implemented.
Single-File Sanitization

Erasing single files while leaving other parts of the drive intact
We want to sanitize only part of the disk.

- **Document**
- **Other Data**
- **Stale Data**

Operating System’s View

Solid State Disk (Flash Chips)
Let’s try overwriting it…

![Diagram of Operating System’s View]

- **Document**
- **Other Data**
- **Stale Data**

![Diagram of Operating System’s View]

- **Hard Drive**
- **Solid State Disk (Flash Chips)**
And again...
It’s kind of like... Plinko.

Hopefully, the ball will land on your file.
We tested with a 1000MB file, and got pretty bad results…
We tried to augment the existing procedures to do better...

- Wipe the free space
- Defragment and wipe

...but that didn’t help at all.
We’d like a hardware command that would tell the controller...
Overview

• Motivation
• Sanitization Background
• Validating Sanitization and Results
• Single-File Sanitization Enhancement
Scrubbing

An enhancement to the FTL to sanitize single files
Unfortunately, it’s not that easy.

![Diagram of Solid State Disk (Flash Chips) and Controller with Operating System's View and Stale Data]
First, flash is arranged into areas we can write to called **pages**.
And pages are arranged into larger sections we can erase called **blocks**.
So... getting erasing one piece of data would get erase of everything else
One method to get around the limitation is to copy. But that’s slow!

Operating System’s View

Stale Data

Solid State Disk (Flash Chips)
We can overwrite individual pages

Operating System’s View

半导 Data

Overwrite

Solid State Disk (Flash Chips)
We can overwrite individual pages

Operating System’s View

Stale Data

Overwrite

Solid State Disk (Flash Chips)
We can overwrite individual pages

Operating System’s View

확연한 데이터

Overwrite

Solid State Disk (Flash Chips)
We can overwrite individual pages

Operating System’s View

- Stale Data

Solid State Disk (Flash Chips)
The datasheet says we have to program pages in order though...

Operating System’s View

Stale Data

Overwrite

Solid State Disk (Flash Chips)
Our research has shown that it’s okay, with specific restrictions.

Operating System’s View

☐ Stale Data

Overwrite

Solid State Disk (Flash Chips)

We call this a “scrub”.

Low density, high reliability SLC memory: No caveat.

MLC:
High Density MLC: We are limited by a "scrub budget"

Typical "Safe" BER
Sanitizing single files with scrub

- **When do we do it?**
 - *Immediate*: Right away
 - *Background*: When we’re free
 - *Scan*: When we’re told to

Operating System’s View

[Diagram showing the comparison between Without Scrubbing and With Scrubbing]
Immediate & Background

• Automatically scrubs stale data from SSD
• Immediate
 – Maximum Security
 – Writes don’t complete until scrub is done
• Background
 – Good Security
 – Better performance, writes finish immediately
Harm. Mean of Financial, Software Devel., Patch, OLTP, Berkeley–DB, BTreeSwap
Harm. Mean of Financial, Software Devel., Patch, OLTP, Berkeley–DB, BTreeSwap
Harm. Mean of Financial, Software Devel., Patch, OLTP, Berkeley–DB, BTreeSwap
Scan is what we wanted earlier: A built-in command to sanitize individual files.
In MLC, we still have to manage the scrub budget with copies.

Operating System’s View

- Stale Data

Solid State Disk (Flash Chips)
Scan Latency

Relative Latency (s)

Benchmark

- patch-multi
- oltp-regular
- postmark
- bdb-BTree
- Financial1
- build-multi
- trace2
- SwapSpace
- Average

- SLC
- MLC 0
- MLC 16
- MLC 32
- MLC 64
- MLC 128
Scrubbing

• The solution for single-file sanitization
• Sanitization level is selectable
• On-demand with scan mode
Conclusion

• Sanitizing storage media is essential for data security
• Need to verify sanitization effectiveness
 – Built-in mechanisms are reliable when implemented correctly
 – Hard-drive techniques don’t necessarily work
• Sanitizing single files (in place) is difficult
 – Software overwrite cannot reliably sanitize
 – Scrubbing allows us to sanitize files by modifying the SSD