Automatically Proving the Correctness of Compiler Optimizations

Sorin Lerner Todd Millstein Craig Chambers
Department of Computer Science and Engineering
University of Washington
{lerns,todd,chambers}@cs.washington.edu
Technical Report UW-CSE-02-11-02

Abstract

We describe a technique for automatically proving compiler optimizations sound, meaning that their transformations are always semantics-preserving. We first present a domain-specific language for implementing optimizations as guarded rewrite rules. Optimizations operate over a C-like intermediate representation including unstructured control flow, pointers to local variables and dynamically allocated memory, and recursive procedures. Then we describe a technique for automatically proving the soundness of optimizations implemented in this language. Our technique requires only a small set of optimization-specific proof obligations to be discharged for each optimization by an automatic theorem prover. We have written a variety of forward and backward intraprocedural dataflow optimizations in our language, including constant propagation and folding, branch folding, (partial) redundancy elimination, (partial) dead assignment elimination, and simple forms of points-to analysis. We have implemented our proof strategy with the Simplify automatic theorem prover, and we have used this implementation to automatically prove our optimizations correct. Our system also found many subtle bugs during the course of developing our optimizations.

1 Introduction

Compilers are an important part of the infrastructure relied upon by programmers. If a compiler is faulty, then so are potentially all programs compiled with it. Unfortunately, compiler errors can be difficult for programmers to detect and debug. First, because the compiler’s output cannot be easily inspected, problems can often be found only by running a compiled program. Second, the compiler may appear to be correct over many runs, with a problem only manifesting itself when a particular compiled program is run with a particular input. Finally, when a problem does appear, it can be difficult to determine whether it is an error in the compiler or in the source program that was compiled.

For these and other reasons, it is very useful to develop tools and techniques that give compiler developers and programmers confidence in their compilers. One way to gain confidence in the correctness of a compiler is to run it on various programs and check that the optimized version of each input program produces correct results on various inputs. While this method can increase confidence, it cannot provide any guarantees: it does not guarantee the absence of bugs in the compiler, nor does it even guarantee that any one particular optimized program is correct on all inputs. It also can be tedious to assemble an extensive test suite of programs and program inputs.
Credible compilers [24, 23] and translation validation [17] improve on this testing approach by having the compiler automatically check whether or not the optimized version of an input program is semantically equivalent to the original program. The compiler can therefore guarantee the correctness of certain optimized programs, but the compiler itself is still not guaranteed to be bug-free: there may exist programs for which the compiler produces incorrect output. There is little recourse for a programmer if the compiler reports that it cannot validate the programmer’s compiled program. Furthermore, these approaches can have a substantial impact on the time to run an optimization. For example, Necula mentions that translation validation of an optimization pass takes about four times longer than the optimization pass itself [17].

The best solution would be to prove the compiler sound, meaning that for any input program, the compiler always produces an equivalent output program. Optimizations, and sometimes even complete compilers, have been proven sound by hand [1, 2, 13, 11, 6, 21, 3, 9]. However, manually proving large parts of a compiler sound requires a lot of effort and theoretical skill on the part of the compiler writer. In addition, these proofs are usually done for optimizations as written on paper, and bugs may still arise when the algorithms are implemented from the paper specification.

We present a new technique for proving the soundness of compiler optimizations that combines the benefits from the last two approaches: our approach is fully automated, as in credible compilers and translation validation, but it also proves optimizations correct once and for all, for any input program. We achieve this goal by providing the compiler writer with a domain-specific language for implementing optimizations that is both flexible enough to express a variety of optimizations and amenable to automated correctness reasoning.

The main contributions of this paper are as follows:

- We present a language for defining optimizations over programs expressed in a C-like intermediate language including unstructured control flow, pointers to local variables and dynamically allocated memory, and recursive procedures. To implement an optimization (i.e., an analysis plus a code transformation), users provide a rewrite rule along with a guard describing the conditions that must hold for the rule to be triggered at some node of an input program’s control-flow graph (CFG). The optimization also includes a small predicate over program states, which captures the key “insight” behind the optimization that justifies its correctness. Our language also allows users to express pure analyses, such as pointer analysis. Pure analyses can be used both to verify properties of interest about a program and to provide information to be consumed by later transformations. Optimizations and pure analyses written in our language are directly executable by a special dataflow analysis engine written for this purpose; they do not need to be reimplemented in a different language to be run.

- We have used our language to express a variety of intraprocedural forward and backward dataflow optimizations, including constant propagation and folding, copy propagation, common subexpression elimination, dead assignment elimination, branch folding, partial redundancy elimination, partial dead code elimination, and loop-invariant code motion. We have also used our language to express several simple intraprocedural pointer analyses, whose results we have exploited in the above optimizations.

- We present a strategy for automatically proving the soundness of optimizations and analyses expressed in our language. The strategy requires an automatic theorem prover to discharge a small set of proof obligations for each optimization. We have manually proven that if these obligations hold for any particular optimization, then that optimization is sound. The manual proof takes care of the necessary induction over program execution traces, which is difficult to automate. As a result, the automatic theorem prover is given only non-inductive theorems to prove about individual program states.

- We have implemented our correctness checking strategy using Simplify [25, 20], the automatic theorem prover used in the Extended Static Checker for Java [5]. We have written a general set of axioms that are used by Simplify to automatically discharge the optimization-specific proof obligations generated by our strategy. The axioms simply encode the semantics of programs in our intermediate language.
New optimization programs can be written and proven sound without requiring any modifications to Simplify’s axiom set.

- We have used our correctness checker to automatically prove correct all of the optimizations and pure analyses listed above. The correctness checker uncovered a number of subtle problems with earlier versions of our optimizations that might have eluded manual testing for a long time.

By providing greater confidence in the correctness of compiler optimizations, we hope to provide a foundation for extensible compilers. An extensible compiler would allow users to include new optimizations tailored to their applications or domains of interest. The extensible compiler can protect itself from buggy user optimizations by verifying their correctness using our strategy; any bugs in the resulting extended compiler can be blamed on other aspects of the compiler’s implementation, not on the user’s optimizations. Extensible compilers could also be a good vehicle for research into new compiler optimizations.

The next section introduces our language for expressing optimizations by example and sketches our strategy for automatically proving soundness of such optimizations. Sections 3 and 4 formally define our optimization language and automatic proof strategy, respectively. Section 5 evaluates our work. Section 6 discusses our current and future work, including an extension to support interprocedural optimizations. Section 7 discusses related work, and section 8 offers our conclusions. The optional appendices contain definitions of all the optimizations and analyses we have written in our language.

2 Overview

In this section, we informally describe our language for defining optimizations and our technique for proving those optimizations sound.

2.1 Forward Transformation Patterns

2.1.1 Semantics

The heart of an optimization program is its transformation pattern. For a forward optimization, a transformation pattern has the following form:

$$\psi_1 \text{ followed by } \psi_2 \text{ until } s \Rightarrow s' \text{ with witness } \mathcal{P}$$

A transformation pattern describes the conditions under which a statement s may be transformed to s'. The formulas ψ_1 and ψ_2, which are properties of a statement such as “x is defined and y is not used,” together act as the guard indicating when it is legal to perform this transformation: s can be transformed to s' if on all paths in the CFG from the start of the procedure being optimized to s, there exists a statement satisfying ψ_1, followed by zero or more statements satisfying ψ_2, followed by s. Figure 1 shows this scenario pictorially.

Forward transformation patterns codify a scenario common to many forward dataflow analyses: an enabling statement establishes the conditions necessary for a transformation to be performed downstream, and any intervening statements are innocuous, i.e., do not invalidate the conditions. The formula ψ_1 captures the properties that make a statement enabling, and ψ_2 captures the properties that make a statement innocuous. The witness \mathcal{P} captures the conditions established by the enabling statement that allow the transformation to be safely performed. Witnesses have no effect on the semantics of an optimization; they will be discussed more below in the context of our strategy for automatically proving optimizations sound.

Example 1 A simple form of constant propagation replaces statements of the form $X := Y$ with $X := C$ if there is an earlier (enabling) statement of the form $Y := C$ and no intervening (innocuous) statement...
Figure 1: CFG paths leading to a statement \(s \) which can be transformed to \(s' \) by the transformation pattern \(\psi_1 \) followed by \(\psi_2 \) until \(s \Rightarrow s' \) with witness \(\mathcal{P} \). The shaded region can only be entered through a statement satisfying \(\psi_1 \), and all statements within the region satisfy \(\psi_2 \). The statement \(s \) can only be reached by first passing through this shaded region.

 modifies \(Y \). The enabling statement ensures that variable \(Y \) holds the value \(C \), and this condition is not invalidated by the innocuous statements, thereby allowing the transformation to be safely performed downstream. The “pattern variables” \(X \) and \(Y \) may be instantiated with any variables of the procedure being optimized, while the pattern variable \(C \) may be instantiated with constants in the procedure. This sequence of events is expressed by the following transformation pattern (the witness is discussed in more detail in section 2.1.2):

\[
\begin{align*}
\text{stmt}(Y := C) & \\
\text{followed by} & \\
\neg\text{mayDef}(Y) & \\
\text{until} & \\
X := Y & \Rightarrow X := C \\
\text{with witness} & \\
\eta(Y) = C
\end{align*}
\]

2.1.2 Soundness

A transformation pattern is sound, i.e., correct, if all the transformations it allows are semantics-preserving. Forward transformation patterns have a natural approach for understanding their soundness. Consider a statement \(s \) transformed to \(s' \). Then any execution trace of the procedure that contains \(s' \) will at some point execute an enabling statement, then zero or more innocuous statements, before reaching \(s' \). As mentioned earlier, executing the enabling statement establishes some conditions at the subsequent state of execution. These conditions are then preserved by the innocuous statements. Finally, the conditions imply that \(s \) and \(s' \) have the same effect at the point where \(s' \) is executed. As a result, the original program and the transformed program have the same semantics.
Our automatic strategy for proving optimizations sound is based on the above intuition. As part of
the code for a forward transformation pattern, optimization writers provide a forward witness \(P \), which
is a (possibly first-order) predicate over an execution state, denoted \(\eta \). The witness plays the role of the
conditions mentioned in the previous paragraph and is the intuitive reason why the transformation pattern
is correct. Our strategy attempts to prove that the witness is established by the enabling statement and
preserved by the innocuous statements, and that it implies that \(s \) and \(s' \) have the same effect.\(^1\) We call the
region of an execution trace between the enabling statement and the transformed statement the \textit{witnessing
region}. In Figure 1, the part of a trace that is inside the shaded area is its witnessing region.

In example 1, the forward witness \(\eta(Y) = C \) denotes the fact that the value of \(Y \) in execution state \(\eta \)
is \(C \). Our implementation proves automatically that the witness \(\eta(Y) = C \) is established by the statement
\(Y := C \), preserved by statements that do not modify the contents of \(Y \), and implies that \(X := Y \) and \(X := C \) have the same effect. Therefore, the constant propagation transformation pattern is automatically proven
to be sound.

2.1.3 Labels

Each node (i.e., statement) in a procedure’s CFG is \textit{labeled} with properties that are true at that node,
such as \(\text{mayDef}(y) \) or \(\text{stmt}(x := 5) \). The formulas \(\psi_1 \) and \(\psi_2 \) in an optimization are propositional boolean
expressions over these labels, which may reference pattern variables like \(Y \) and \(C \). Our framework provides
a single pre-defined label, \(\text{stmt}(s) \), which is true at a node if and only if that node is the statement \(s \). Users
can then define their own labels in two ways: \textit{syntactic} labels and \textit{semantic} labels.

A syntactic label is defined only in terms of the \(\text{stmt} \) label and other syntactic labels of the current
statement. For example, \(\text{synDef}(Y) \), which stands for syntactic definition of \(Y \), can be defined as:

\[
synDef(Y) \overset{\Delta}{=} \text{stmt}(Y := \ldots)
\]

Then the syntactic (and conservative) version of the \(\text{mayDef}(Y) \) label from example 1 can be defined as:

\[
\text{mayDef}(Y) \overset{\Delta}{=} \text{synDef}(Y) \lor \text{stmt}(*X := \ldots) \lor \\
\text{stmt}(\ldots := P(\ldots))
\]

In other words, a statement may define variable \(Y \) if the statement is either a syntactic definition of \(Y \), a
pointer store (since our language allows taking the address of a local variable), or a procedure call (since the
procedure may be passed pointers from which the address of \(Y \) is reachable).

In contrast to syntactic labels, a semantic label of a node can incorporate information about the node’s
surrounding context in the CFG. For example, a \(\text{doesNotPointTo}(X, Y) \) label, which says that the contents
of \(X \) is definitely not the address of \(Y \), is a semantic label: its truth value at a node depends on the execution
paths leading to the node. Section 2.4 shows how semantic labels are defined and how they can be used to
make the \(\text{mayDef} \) label less conservative in the face of pointers.

2.2 Backward Transformation Patterns

A backward transformation pattern is similar to a forward one, except that the direction of the flow of
analysis is reversed:

\[\psi_1 \text{ preceded by } \psi_2 \text{ until } s \Rightarrow s' \text{ with witness } P \]

\(^1\)The correctness of our approach does not depend on the correctness of the witness, since our approach independently verifies
that the witness has the required properties.
The backward transformation pattern above says that \(s \) may be transformed to \(s' \) if on all paths in the CFG from \(s \) to the end of the procedure, there exists a statement satisfying \(\psi_1 \), preceded by zero or more statements satisfying \(\psi_2 \), preceded by \(s \). The witnessing region of a program execution trace consists of the states between the transformed statement and the statement satisfying \(\psi_1 \); \(P \) is called a backward witness.

As with forward transformation patterns, the backward witness plays the role of an invariant in the witnessing region. However, in a backward transformation the witnessing region occurs after, rather than before, the point where the transformed statement has been executed. Therefore, in general a backward witness must be a predicate that relates two execution states \(\eta_{\text{old}} \) and \(\eta_{\text{new}} \), representing corresponding execution states in the witnessing region of traces in the original and transformed programs. Our automatic proof strategy attempts to prove that the backward witness is established by the transformation and preserved by the innocuous states. Finally, we prove that after the enabling statement is executed, the witness implies that the original and transformed execution states become identical, implying that the transformation is semantics-preserving.

Example 2 Dead assignment elimination may be implemented in our language by the following backward transformation pattern:

\[
(s\text{Def}(X) \lor \text{stmt}(\text{return}...)) \land \lnot \text{mayUse}(X) \\
\text{preceded by} \\
\lnot \text{mayUse}(X) \\
\text{until} \\
X := E \Rightarrow \text{skip} \\
\text{with witness} \\
\eta_{\text{old}}/X = \eta_{\text{new}}/X
\]

We express statement removal by replacement with a \text{skip} statement.\(^2\) The removal of \(X := E \) is enabled by either a later assignment to \(X \), indicated by \text{synDef}(X), or a \text{return} statement, which signals the end of the procedure. Preceding statements are innocuous if they don’t use the contents of \(X \).

The backward witness \(\eta_{\text{old}}/X = \eta_{\text{new}}/X \) says that \(\eta_{\text{old}} \) and \(\eta_{\text{new}} \) are equal “up to” \(X \): corresponding states in the witnessing region of the original and transformed programs are identical except for the contents of variable \(X \). This invariant is established by the removal of \(X := E \) and preserved throughout the region because \(X \) is not used. The witness implies that a re-definition of \(X \) or a \text{return} statement causes the execution states of the two traces to become identical.

2.3 Profitability Heuristics

If an optimization’s transformation pattern is proven sound, then all matching occurrences of that pattern are legal to be transformed. For some optimizations, including our two examples above, all legal transformations are also profitable. However, in more complex optimizations, such as code motion and optimizations that trade off time and space, many transformations may preserve program behavior while only a small subset of them improve the code. To address this distinction between legality and profitability, an optimization is written in two pieces. The transformation pattern defines only which transformations are legal. An optimization separately describes which of the legal transformations are also profitable and should be performed; we call this second piece of an optimization its profitability heuristic.

An optimization’s profitability heuristic is expressed via a \text{choose} function, which can be arbitrarily complex and written in a language of the user’s choice. Given the set \(\Delta \) of the legal transformations

\(^2\)An execution engine would not actually insert such \text{skips}.\)
determined by the transformation pattern and the procedure being optimized, choose returns the subset of the transformations in Δ that should actually be performed. A complete optimization in our language therefore has the following form, where O_{pat} is a transformation pattern:

$$O_{\text{pat}} \text{ filtered through } \text{choose}$$

This way of factoring optimizations into a transformation pattern and a profitability heuristic is critical to our ability to prove optimizations sound automatically, since only an optimization’s transformation pattern affects soundness. Transformation patterns tend to be simple even for complicated optimizations, with the bulk of an optimization’s complexity pertaining to profitability. Profitability heuristics can be written in any language, thereby removing any limitations on their expressiveness. Without profitability heuristics, the extra complexity added to guards to express profitability information would prevent automated correctness reasoning.

For the constant propagation and dead assignment elimination optimizations shown earlier, the choose function returns all instances: choose$_{\text{all}}(\Delta, p) = \Delta$. This profitability heuristic is the default if none is specified explicitly. Below we give an example of an optimization with a non-trivial choose function:

Example 3 Consider the implementation of partial redundancy elimination (PRE) [12, 8] in our optimization language. One way to perform PRE is to first insert copies of statements in well-chosen places in order to convert partial redundancies into full redundancies, and then to eliminate the full redundancies by running a standard common subexpression elimination (CSE) optimization expressible in our language. For example, in the following code fragment, the computation $x := a + b$ at the end is partially redundant, since it is redundant only when the true leg of the branch is executed:

```plaintext
b := ...;
if (...) {
    a := ...;
    x := a + b;
} else {
    ... // don't define a, b, or x, and don't use x.
}
x := a + b;
```

This partial redundancy can be eliminated by making a copy of the assignment $x := a + b$ in the false leg of the branch. Now the assignment after the branch is fully redundant and can be removed by running CSE followed by self-assignment removal (removing assignments of the form $x := x$).

The criterion that determines when it is legal to duplicate a statement is relatively simple. Most of the complexity in PRE involves determining which of the many legal duplications are profitable, so that partial redundancies will be converted to full redundancies at minimum cost. The first, “code duplication” pass of PRE can be expressed in our language as the following backward optimization:

$\text{stmt}(X := E) \land \text{unchanged}(E)$

preceded by

$\text{unchanged}(E) \land \neg \text{mayDef}(X) \land \neg \text{mayUse}(X)$

until

$\text{skip} \Rightarrow X := E$

with witness

$\eta_{\text{old}}/X = \eta_{\text{new}}/X$

filtered through

...
Analogous to statement removal, we express statement insertion as replacement of a `skip` statement. The label `unchanged(E)` is defined (by the optimization writer, as described in section 2.1.3) to be true at a statement `s` if `s` does not redefine the contents of any variable mentioned in `E`. The transformation pattern for code duplication allows the insertion if, on all paths in the CFG from the `skip`, `X := E` is preceded by statements that do not modify `E` and `X` and do not use `X`, which are preceded by the `skip`. In the code fragment above, the transformation pattern allows `x := a + b` to be duplicated in the `else` branch, as well as other (unprofitable) duplications. This optimization’s choose function is responsible for selecting those legal code insertions that also are the latest ones that turn all partial redundancies into full redundancies and do not introduce any partially dead computations. This condition is rather complicated, but it can be implemented in a language of the user’s choice and can be ignored when verifying the soundness of code duplication. A sample choose function for PRE is shown in appendix A.

2.4 Pure Analyses

In addition to optimizations, our language allows users to write pure analyses that do not perform transformations. These analyses can be used to compute or verify properties of interest about a procedure and to provide information to be consumed by later transformations. A pure analysis defines a new semantic label, and the result of the analysis is a labeling of the given CFG. For instance, the does-not-point-to analysis (a definition of which is shown in appendix A) results in nodes of the CFG being annotated with labels of the form `doesNotPointTo(X, Y)`. These labels can then be used by other optimizations in their guards.

A pure analysis is similar to a forward optimization, except that it does not contain a rewrite rule or a profitability heuristic. Instead, it has a `defines` clause that gives a name to the new semantic label. A pure analysis has the form

\[\psi_1 \text{ followed by } \psi_2 \text{ defines label with witness } P \]

The new label can be added to a statement `s` if on all paths to `s`, there exists an (enabling) statement satisfying `\psi_1`, followed by zero or more (innocuous) statements satisfying `\psi_2`, followed by `s`. The given forward witness should be established by the enabling statement and preserved by the innocuous statements. If so, the witness provides the new label’s meaning: if a statement `s` has semantic label `label`, then the corresponding witness `P` is true of the program state just before execution of `s`.

The following example shows how a pure analysis can be used to compute a simple form of pointer information:

Example 4 We say that a variable is tainted at a program point if its address may have been taken prior to that program point. The following analysis defines the `notTainted` label:

```
stmt(decl X)
followed by
~stmt(... := &X)
defines
notTainted(X)
with witness
notPointedTo(X, \eta)
```

3. An execution engine for optimizations would conceptually insert `skips` dynamically as needed to perform insertions.

4. Our language currently has no notion of backward analyses. In addition, we currently only allow the results of a forward analysis to be used in a forward optimization, or in another forward analysis.
The analysis says that a variable is not tainted at a statement if on all paths leading to that statement, the variable was declared, and then its address was never taken. The witness notPointedTo(X, η) is a first-order predicate defined by the user (and shown in appendix A) that ensures that no memory location in η contains a pointer to X.

The notTainted label can be used to define a more precise version of the mayDef label from earlier examples, which incorporates the fact that neither pointer stores nor procedure calls can affect variables that are untainted:

$$
\text{mayDef}(Y) \triangleq \text{synDef}(Y) \lor \\
(stmt(*X := \ldots) \land \lnot \text{notTainted}(Y)) \lor \\
(stmt(\ldots := P(\ldots)) \land \lnot \text{notTainted}(Y))
$$

With this new definition, optimizations using mayDef become less conservative in the face of pointer stores and calls.

3 Language for Defining Optimizations

This section provides a formal definition of our optimization language and the intermediate language that optimizations manipulate. The full formal details can be found in appendix B.

3.1 Intermediate Language

A program π in our (untyped) intermediate language is described by the following grammar:

$$
\text{Progs} \quad \pi \ ::= \ pr \ldots pr \\
\text{Procs} \quad pr \ ::= \ p(x) \{s; \ldots ; s;\} \\
\text{Stmts} \quad s \ ::= \ \text{decl } x | \text{skip } | \text{lhs } := e \mid x := \text{new } | \\
\text{ } \quad \text{return } x \\
\text{Exprs} \quad e \ ::= \ b \mid +x \mid \&x \mid \text{op } b \ldots b \\
\text{Locatables} \quad lhs \ ::= \ x \mid *x \\
\text{Base Exprs} \quad b \ ::= \ x \mid c \\
\text{Ops} \quad \text{op} \ ::= \ \text{various operators with arity } \geq 1 \\
\text{Vars} \quad x \ ::= \ x \mid y \mid z \mid \ldots \\
\text{Proc Names} \quad p \ ::= \ p \mid q \mid r \ldots \\
\text{Consts} \quad c \ ::= \ \text{constants} \\
\text{Indices} \quad \iota \ ::= \ 0 \mid 1 \mid 2 \ldots
$$

A program π is a sequence of procedures, and each procedure is a sequence of statements. We assume a distinguished procedure named main. Statements include local variable declarations, assignments to local variables and through pointers, heap memory allocation, procedure calls and returns, and conditional branches (unconditional branches can be simulated with conditional branches). We assume that each procedure ends with a return statement. Statements are indexed consecutively from 0, and $\text{stmtAt}(\pi, \iota)$ returns the statement with index ι in π. Expressions include constants, local variable references, pointer dereferences, taking the addresses of local variables, and n-ary operators over non-pointer values.

A state of execution of a program is a tuple $\eta = (\iota, \rho, \sigma, \xi, M)$. The index ι indicates which statement is about to be executed. The environment ρ is a map from variables in scope to their locations in memory, and the store σ describes the contents of memory by mapping locations to values (constants and locations).
The dynamic call chain is represented by a stack ξ, and M is the memory allocator, which returns fresh locations as needed.

The states of a program π transition according to the state transition function \rightarrow_{π}. We denote by $\eta \rightarrow_{\pi} \eta'$ the fact that η' is the program state that is “stepped to” when execution proceeds from state η. The definition of \rightarrow_{π} is standard and is given in appendix B. We also define an intraprocedural state transition function \leftarrow_{π}. This function acts like \rightarrow_{π} except when the statement to be executed is a procedure call. In that case, \leftarrow_{π} steps “over” the call, returning the program state that will eventually be reached when control returns to the calling procedure.

We model run-time errors through the absence of state transitions: if in some state η program execution would fail with a run-time error, there won’t be any η' such that $\eta \rightarrow_{\pi} \eta'$ is true. Likewise, if a procedure call does not return successfully, e.g., because of infinite recursion, there won’t be any η' such that $\eta \leftarrow_{\pi} \eta'$ is true.

3.2 Optimization Language

In this section, we first specify the syntax of a rewrite rule’s original and transformed statements s and s'. Then we define the language used for expressing ψ_1 and ψ_2. Finally, we provide the semantics of optimizations. The witness P does not affect the (dynamic) semantics of optimizations.

3.2.1 Syntax of s and s'

Statements s and s' are defined in the syntax of the extended intermediate language, which augments the intermediate language with a form of free variables called pattern variables. Each production in the grammar of the original intermediate language is extended with a case for a pattern variable. A few examples are shown below:

- \[\begin{align*}
\text{Exprs} & \quad e ::= \cdots | E \\
\text{Vars} & \quad x ::= \cdots | X | Y | Z | \cdots \\
\text{_consts} & \quad c ::= \cdots | C
\end{align*}\]

Statements in the extended intermediate language are instantiated by substituting for each pattern variable a program fragment of the appropriate kind from the intermediate-language program being optimized. For example, the statement $X := E$ in the extended intermediate language contains two pattern variables X and E, and this statement can be instantiated to form an intermediate-language statement assigning any expression occurring in the intermediate program to any variable occurring in the intermediate program.

3.2.2 Syntax and Semantics of ψ_1 and ψ_2

The syntax for ψ is described by the following grammar:

- $\psi ::= true \mid false \mid pr \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \psi_1 \land \psi_2$

In this grammar, pr stands for atomic predicates, each of which is formed from the pre-defined $stmt$ label or from any user-defined label, with parameters drawn from the extended intermediate language. For example, pr includes predicates such as $mayDef(X)$ and $unchanged(E)$, where X and E are pattern variables.

The semantics of a formula ψ is defined with respect to a labeled CFG. Each node n in the CFG for procedure p is labeled with a finite set $L_p(\iota)$, where ι is n’s index. $L_p(\iota)$ includes atomic predicates pr that do not contain pattern variables. For example, a node could be labeled with $stmt(x := 3)$ and $mayDef(x)$.

The meaning of a formula ψ at a node depends on a substitution θ mapping the pattern variables in ψ to fragments of p. We extend substitutions to formulas and program fragments containing pattern variables in the usual way. We write $\iota \models^p_\theta \psi$ to indicate that the node with index ι satisfies ψ in the
labeled CFG of \(p \) under substitution \(\theta \). The definition of \(\iota \models_\theta^p \psi \) is straightforward, with the base case being \(\iota \models_\theta^p \text{pr} \iff \theta(\text{pr}) \in L_p(\iota) \). The complete definition of \(\models_\theta^p \) is in appendix B.

3.2.3 Semantics of Optimizations

We define the semantics of analyses and optimizations in several pieces. First, the meaning of a forward guard \(\psi_1 \) followed by \(\psi_2 \) is a function that takes a procedure and returns a set of matching indices with their corresponding substitutions:

Definition 1 The meaning of a forward guard \(O_{\text{guard}} \) of the form \(\psi_1 \) followed by \(\psi_2 \) is as follows:

\[
\boxed{O_{\text{guard}}}(p) = \{(\iota, \theta) \mid \\
\text{for all paths } \iota_1, \ldots, \iota_j, \iota \text{ in } p's \text{ CFG} \\
\quad \exists k.(1 \leq k \leq j \land \iota_k \models_\theta^p \psi_1 \land \forall i.(k < i \Rightarrow \iota_i \models_\theta^p \psi_2))\}
\]

The above definition formalizes the description of forward guards from Section 2. The meaning of a backward guard \(\psi_1 \) preceded by \(\psi_2 \) is identical, except that the guard is evaluated on CFG paths \(\iota, \iota_j, \ldots, \iota_1 \) that start, rather than end, at \(\iota_1 \) where \(\iota_1 \) is the index of the procedure’s exit node. Guards can be seen as a restricted form of temporal logic formula, expressible in variants of both LTL and CTL.

Next we define the semantics of transformation patterns. A (forward or backward) transformation pattern \(O_{\text{pat}} = O_{\text{guard}} \text{ until } s \Rightarrow s' \text{ with witness } P \) simply filters the set of nodes matching its guard to include only those nodes of the form \(s \):

\[
\boxed{O_{\text{pat}}}(p) = \{(\iota, \theta) \mid (\iota, \theta) \in [O_{\text{guard}}](p) \text{ and } n \models_\theta^p \text{stmt}(s)\}
\]

The meaning of an optimization is a function that takes a procedure \(p \) and returns the procedure produced by applying to \(p \) all transformations chosen by the \text{choose} function.

Definition 2 Given an optimization \(O \) of the form \(O_{\text{pat}} \text{ filtered through } \text{choose} \), where \(O_{\text{pat}} \) has rewrite rule \(s \Rightarrow s' \), the meaning of \(O \) is as follows:

\[
\boxed{[O](p) = \text{let } \Delta := [O_{\text{pat}}](p) \text{ in} \\
\text{app}(s', p, \text{choose}(\Delta, p) \cap \Delta)}
\]

where \(\text{app}(s', p, \Delta') \) returns the procedure identical to \(p \) but with the node with index \(\iota \) transformed to \(\theta(s') \), for each \((\iota, \theta) \) in \(\Delta' \).

Finally, the meaning of a pure analysis \(O_{\text{guard}} \) defines label with witness \(P \) applied to a procedure \(p \) is a new version of \(p \)'s CFG where for each pair \((\iota, \theta) \) in \([O_{\text{guard}}](p)\), the node with index \(\iota \) is additionally labeled with \(\theta(\text{label}) \).

4 Proving Soundness Automatically

In this section we describe in detail our technique for automatically proving soundness of optimizations. We say that an intermediate-language program \(\pi' \) is a semantically equivalent transformation of \(\pi \) if, whenever \(\text{main}(v_1) \) returns \(v_2 \) in \(\pi \), for some values \(v_1 \) and \(v_2 \), then it also does in \(\pi' \). Let \(\pi[p \mapsto p'] \) denote the program identical to \(\pi \) but with procedure \(p \) replaced by \(p' \). An optimization \(O \) is sound if for all intermediate-language programs \(\pi \) and procedures \(p \) in \(\pi \), \(\pi[p \mapsto [O](p)] \) is a semantically equivalent transformation of \(\pi \).

The first subsection describes our technique for proving optimizations sound, which requires an automatic theorem prover to discharge only a small set of simple proof obligations. The second subsection describes how these obligations are implemented and automatically discharged with the Simplify theorem prover.
4.1 Soundness of Optimizations

We say that a transformation pattern O_{pat} with rewrite rule $s \Rightarrow s'$ is sound if, for all intermediate-language programs π and procedures p in π, for all subsets $\Delta \subseteq [O_{\text{pat}}](p)$, $\pi[p \mapsto \text{app}(s', p, \Delta)]$ is a semantically equivalent transformation of π. If a transformation pattern is sound, then any optimization O with that transformation pattern is sound, since the optimization will select some subset of the transformation pattern’s suggested transformations, and each of these is known to be a semantically equivalent transformation of π. Therefore, we need not reason at all about an optimization’s profitability heuristic in order to prove that the optimization is sound.

4.1.1 Forward Transformation Patterns

Consider a forward transformation pattern of the following form:

ψ_1 followed by ψ_2 until $s \Rightarrow s'$ with witness P

As discussed in section 2, our proof strategy entails showing that the forward witness P holds throughout the witnessing region and that the witness implies s and s' have the same semantics in this context. This can naturally be shown by induction over the states in the witnessing region of an execution trace leading to a transformed statement. In general, it is difficult for an automatic theorem prover to determine when proof by induction is necessary and to perform such a proof with a strong enough inductive hypothesis. Therefore we instead require an automatic theorem prover to discharge only non-inductive obligations, which pertain to individual execution states rather than entire execution traces. We have proven (see Theorems 1 and 2 below) that if these obligations hold for any particular optimization, then that optimization is sound.

We use index as an accessor on states: $\text{index}(\langle i, p, \sigma, \xi, M \rangle) = i$. The optimization-specific obligations, to be discharged by an automatic theorem prover, are as follows, where $\theta(P)$ is the predicate formed by applying θ to each pattern variable in the definition of P:

- **F1.** If $\eta \vdash_{\pi} \eta'$ and $\text{index}(\eta) \models_{\theta} \psi_1$, then $\theta(P)(\eta')$.
- **F2.** If $\theta(P)(\eta)$ and $\eta \vdash_{\pi} \eta'$ and $\text{index}(\eta) \models_{\theta} \psi_2$, then $\theta(P)(\eta')$.
- **F3.** If $\theta(P)(\eta)$ and $\eta \vdash_{\pi} \eta'$ and $\iota = \text{index}(\eta)$ and $\text{stmtAt}(\pi, \iota) = \theta(s)$ and $\text{stmtAt}(\pi', \iota) = \theta(s')$, then $\eta \vdash_{\pi'} \eta'$.

Condition F1 ensures that the witness holds at any state following the execution of an enabling statement (one satisfying ψ_1). Condition F2 ensures that the witness is preserved by any innocuous statement (one satisfying ψ_2). Finally, condition F3 ensures that s and s' have the same semantics when executed from a state satisfying the witness.

As an example, consider condition F1 for the constant propagation optimization from example 1. The condition looks as follows: If $\eta \vdash_{\pi} \eta'$ and $\text{index}(\eta) \models_{\theta} \text{stmt}(Y := C)$, then $\theta(\eta')(Y) = C$. The condition is easily proven automatically from the semantics of assignments and the stmt label.

The following theorem validates the optimization-specific proof obligations.

Theorem 1 If O is a forward optimization satisfying conditions F1, F2, and F3, then O is sound.

The proof of this theorem, which is given in appendix B, uses conditions F1 and F2 as part of the base case and the inductive case, respectively, in an inductive argument that the witness holds throughout a witnessing region. Condition F3 is then used to show that s and s' have the same semantics in this context. Our proof also handles the case when multiple transformations, with possibly overlapping witnessing regions, are performed.
4.1.2 Backward Transformation Patterns

Consider a backward transformation pattern of the following form:

$$\psi_1 \textit{ preceded by } \psi_2 \textit{ until } s \Rightarrow s' \textit{ with witness } \mathcal{P}$$

The optimization-specific obligations are similar to those for a forward transformation pattern, except that the ordering of events in the witnessing region is reversed:

1. If \(\eta \leftarrow_\pi \eta_{\text{old}} \) and \(\eta \leftarrow_\pi \eta_{\text{new}} \) and \(\iota = \text{index}(\eta) \) and \(\text{stmtAt}(\pi, \iota) = \theta(s) \) and \(\text{stmtAt}(\pi', \iota) = \theta(s') \), then \(\theta(\mathcal{P})(\eta_{\text{old}}, \eta_{\text{new}}) \).

2. If \(\theta(\mathcal{P})(\eta_{\text{old}}, \eta_{\text{new}}) \) and \(\eta_{\text{old}} \leftarrow_\pi \eta'_{\text{old}} \) and \(\iota_{\text{old}} = \text{index}(\eta_{\text{old}}) \) and \(\iota_{\text{new}} = \text{index}(\eta_{\text{new}}) \) and \(\iota_{\text{old}} \models_\theta \psi_2 \) and \(\text{stmtAt}(\pi, \iota_{\text{old}}) = \text{stmtAt}(\pi', \iota_{\text{new}}) \), then there exists some \(\eta'_{\text{new}} \) such that \(\eta_{\text{new}} \leftarrow_\pi \eta'_{\text{new}} \) and \(\theta(\mathcal{P})(\eta'_{\text{old}}, \eta'_{\text{new}}) \).

3. If \(\theta(\mathcal{P})(\eta_{\text{old}}, \eta_{\text{new}}) \) and \(\eta_{\text{old}} \leftarrow_\pi \eta \) and \(\iota_{\text{old}} = \text{index}(\eta_{\text{old}}) \) and \(\iota_{\text{new}} = \text{index}(\eta_{\text{new}}) \) and \(\iota_{\text{old}} \models_\delta \psi_1 \) and \(\text{stmtAt}(\pi, \iota_{\text{old}}) = \text{stmtAt}(\pi', \iota_{\text{new}}) \), then \(\eta_{\text{new}} \leftarrow_\pi \eta \).

Condition B1 ensures that the backward witness holds between the original and transformed programs, after \(s \) and \(s' \) are respectively executed.\(^5\) Condition B2 ensures that the backward witness is preserved through the innocuous statements. Condition B3 ensures that the two traces become identical again after executing the enabling statement (and exiting the witnessing region).

Analogous to the forward case, the following theorem validates the optimization-specific proof obligations for backward optimizations.

Theorem 2 If \(O \) is a backward optimization satisfying conditions B1, B2, and B3, then \(O \) is sound.

4.2 Implementation with Simplify

We have implemented our proof strategy with the Simplify automatic theorem prover. For each optimization, we ask Simplify to prove the three associated optimization-specific obligations. To do so, Simplify requires background information in the form of a set of axioms. These axioms, which simply encode the semantics of our intermediate language and of the \(\text{stmt} \) label, are optimization-independent: they need not be modified in order to prove new optimizations sound.

We introduce function symbols to represent term constructors for each kind of expression and statement. For example, the term \(\text{assign}(\text{var}(x), \text{deref}(\text{var}(y))) \) represents the statement \(x := *y \). Next we formalize the representation of program states. Simplify has built-in axioms about a \textit{map} data structure, with associated functions \textit{select} and \textit{update} to access elements and (functionally) update the map. This is useful for representing many components of a state. For example, an environment is a map from variables to locations, and a store is a map from locations to values.

Given our representation for states, we define axioms for a function symbol \textit{evalExpr}, which evaluates an expression in a given state. The \textit{evalExpr} function represents the function \(\eta(\cdot) \) used in section 2. We also define axioms for a function \textit{evalLEexpr} which computes the location of a \textit{lhs} expression given a program state. Finally, we provide axioms for the \textit{stepIndex}, \textit{stepEnv}, \textit{stepStore}, \textit{stepStack}, and \textit{stepMem} functions, which together define the state transition function \(\rightarrow_\pi \) from section 3.1. These functions take a state and a program and return the new value of the state component being “stepped.” As an example, the axioms for stepping an index and a store through an assignment \(\text{lhs} := e \) are as follows:

\(^5\)This condition assumes that \(s' \) does not get “stack” by causing a run-time error. That assumption must actually be proven, but for simplicity we elide this issue here. It is addressed by requiring a few additional obligations to be discharged that imply that \(s' \) cannot get stuck if the original program does not get stuck. Details are in appendix B.
\[\forall \eta, \pi, \text{lhs}, e. \]
\[\text{stmtAt}(\pi, \text{index}(\eta)) = \text{assign}(\text{lhs}, e) \Rightarrow \]
\[\text{stepIndex}(\eta, \pi) = \text{index}(\eta) + 1 \]
\[\forall \eta, \pi, \text{lhs}, e. \]
\[\text{stmtAt}(\pi, \text{index}(\eta)) = \text{assign}(\text{lhs}, e) \Rightarrow \]
\[\text{stepStore}(\eta, \pi) = \text{update}(\text{store}(\eta), \text{evalLE}(\eta, \text{lhs}), \text{evalE}(\eta, e)) \]

The first axiom says that the new index is the current index incremented by one. The second axiom says that the new store is the same as the old one, but with the location of \(\text{lhs} \) updated to the value of \(e \). The \(\lraF \) function is then defined in terms of the \(\lraP \) function.

We have implemented and automatically proven sound a dozen optimizations and analyses in our language (which are given in appendix A). On a modern workstation, the time taken by Simplify to discharge the optimization-specific obligations for these optimizations ranges from 2 to 89 seconds, with an average of 22 seconds.

5 Discussion

In this section, we evaluate our system along three dimensions: expressiveness of our language, debugging value, and reduced trusted computing base.

Expressiveness. One of the key choices in our approach is to restrict the language in which optimizations can be written, in order to gain automatic reasoning about soundness. However, the restrictions of our optimization language are not as onerous as they may first appear. First, much of the complexity of an optimization can be factored out into the profitability heuristic, which is unrestricted. Second, the pattern of a witnessing region — beginning with a single enabling statement and passing through zero or more innocuous statements before reaching the statement to be transformed — is common to many forward intraprocedural dataflow analyses, and similarly for backward intraprocedural dataflow analyses. Third, optimizations that traditionally are expressed as having effects at multiple points in the program, such as various sorts of code motion and partial redundancy elimination, can in fact be decomposed into several simpler transformations, each of which fits our constraint of making a single transformation at the end of a witnessing region. The PRE example in section 2.3 illustrates all three of these points. PRE is a complex code-motion optimization [12, 8], and yet it can be expressed in our language using simple forward and backward passes with appropriate profitability heuristics. Our way of factoring complicated optimizations into smaller pieces, and separating the part that affects soundness from the part that doesn’t, allows users to write optimizations that are intricate and expressive yet still amenable to automated correctness reasoning.

Even so, our current language does have limitations. For example, it cannot express interprocedural optimizations or one-to-many transformations. As mentioned in section 6, our ongoing work is addressing these limitations. Also, optimizations and analyses that build complex data structures to represent their dataflow facts may be difficult to express. Finally, it is possible for limitations in either our proof strategy or in the automatic theorem prover to cause a sound optimization expressible in our language to be rejected. In these cases, optimizations can be written outside of our framework, perhaps verified using translation validation. Optimizations written in our optimization language and proven correct can peacefully co-exist with optimizations written “the normal way.”

Debugging benefit. Writing correct optimizations is difficult because there are many corner cases to consider, and it is easy to miss one. Our system in fact found several subtle problems in previous versions of our optimizations. For example, we have implemented a form of common subexpression elimination (CSE) that eliminates not only redundant arithmetic expressions, but also redundant loads. In particular, this
optimization tries to eliminate a computation of \(\ast X \) if the result is already available from a previous load. Our initial version of the optimization precluded pointer stores from the witnessing region, to ensure that the value of \(\ast X \) was not modified. However, a failed soundness proof made us realize that even a direct assignment \(Y := \ldots \) can change the value of \(\ast X \), because \(X \) could point to \(Y \). Once we incorporated pointer information to make sure that direct assignments in the witnessing region were not changing the value of \(\ast X \), our implementation was able to automatically prove the optimization sound. Without the static checks to find the bug, it could have gone undetected for a long time, because that particular corner case may not occur in many programs.

Reduced trusted computing base. The trusted computing base (TCB) ordinarily includes the entire compiler. In our system we have moved the compiler’s optimization phase, one of the most intricate and error-prone portions, outside of the TCB. Instead, we have shifted the trust in this phase to three components: the automatic theorem prover, the manual proofs done as part of our framework, and the run-time engine that executes optimizations. Because all of these components are optimization-independent, new optimizations can be incorporated into the compiler without enlarging the TCB. Furthermore, as discussed in section 6, the run-time engine can be implemented as a single dataflow analysis common to all user-defined optimizations. This means that the trustworthiness of the run-time engine is akin to the trustworthiness of a single optimization pass in a traditional compiler.

Trust can be further enhanced in several ways. First, we could use an automatic theorem prover that generates proofs, such as the prover in the Touchstone compiler [19]. This would allow trust to be shifted from the theorem prover to a simpler proof checker. The manual proofs of our framework are made public for peer review in appendix B to increase confidence. We could also use an interactive theorem prover such as PVS [22] to validate these proofs.

6 Current and Future Work

Our current work is focused in two directions. First, we are implementing the dynamic semantics of our optimization language as an analysis in the Whirlwind compiler, a successor to Vortex [4]. This analysis stores at every program point a set of substitutions, each substitution representing a potential witnessing region. Consider a forward optimization:

\[
\psi_1 \text{ followed by } \psi_2 \text{ until } s \Rightarrow s'
\]

\(\text{with witness } P \text{ filtered through choose} \)

The flow function for our analysis works as follows. First, if the statement being processed satisfies \(\psi_1 \), then the flow function adds to the outgoing dataflow fact the substitution that caused \(\psi_1 \) to be true. Also, for each substitution \(\theta \) in the incoming dataflow fact, the flow function checks if \(\theta(\psi_2) \) is true at the current statement. If it is, then \(\theta \) is propagated to the outgoing dataflow fact, otherwise it is dropped. Finally merge nodes simply take the intersection of the incoming dataflow facts. After the analysis has reached a fixed point, if a statement has a substitution \(\theta \) in its incoming dataflow fact that makes \(\theta(\text{stmt}(s)) \) true, and the \text{choose} function selects this statement, then the statement is transformed to \(\theta(s') \).

For example, in constant propagation we have \(\psi_1 = \text{stmt}(Y := C) \) and \(\psi_2 = \neg \text{mayDef}(Y) \). The following program fragment shows the dataflow facts propagated after each statement:

\[
\begin{align*}
S1 & : a := 2; \ [Y \mapsto a, C \mapsto 2] \\
S2 & : b := 3; \ [Y \mapsto a, C \mapsto 2], [Y \mapsto b, C \mapsto 3] \\
S3 & : c := a;
\end{align*}
\]

\(S1 \) satisfies \(\psi_1 \), and so its outgoing dataflow fact contains the substitution \([Y \mapsto a, C \mapsto 2] \). \(S2 \) satisfies \(\psi_2 \) under this substitution, and so the substitution is propagated; \(S2 \) also satisfies \(\psi_1 \) and so \([Y \mapsto b, C \mapsto 3] \).
is added to the outgoing dataflow fact. In fact, the dataflow information after S_2 is very similar to the regular constant propagation dataflow fact $\{a \mapsto 2, b \mapsto 3\}$. At fixed point, the statement $c := a$ can be transformed to $c := 2$ because the incoming dataflow fact contains the map $[Y \mapsto a, C \mapsto 2]$. Note that this implementation evaluates all “instances” of the constant propagation optimization pattern simultaneously. (We also plan to explore potentially more efficient implementation techniques, such as generating specialized code to run each optimization [26].)

Our analysis is being implemented using our earlier framework for composing optimizations in Whirlwind [10]. This framework allows optimizations to be defined modularly and then automatically combines all-forward or all-backward optimizations in order to gain mutually beneficial interactions. Analyses and optimizations written in our language will therefore also be composable in this way. Furthermore, Whirlwind’s framework automatically composes an optimization with itself, allowing a recursively defined optimization to be solved in an optimistic, iterative manner; this property will likewise be conferred on optimizations written in our language. For example, a recursive version of dead-assignment elimination would allow $X := E$ to be removed even if X is used before being re-defined, as long as it is only used by other dead assignments (including itself).

The other direction of our current work is in extending the language to handle interprocedural optimizations. One approach would extend the scope of analysis from a single procedure to the whole program’s control-flow supergraph. One technical challenge here is the need to express the witness P in a way that makes sense across procedure calls. For example, the predicate $\eta(Y) = C$ does not make sense once a call is stepped into, because Y has gone out of scope. We intend to extend the syntax for the witness to be more precise about which variable is being talked about. A different approach to interprocedural analysis would use pure analyses to define summaries of procedures, which could be used in intraprocedural optimizations of callers.

There are also many directions for future work. First, the optimization language currently supports only transformations that replace a single statement with a single statement. It should be relatively straightforward to generalize the framework to handle one-to-many statement transformations, allowing optimizations like inlining to be expressed. Supporting many-to-many statement transformations would also be interesting.

We plan to try inferring the witnesses, which are currently provided by the user. It may be possible to use some simple heuristics to guess a witness from the given transformation pattern. As a simple example, in the constant propagation example of section 2, the appropriate witness, that Y has the value C, is simply the strongest postcondition of the enabling statement $Y := C$. Many of the other forward optimizations that we have written also have this property.

Finally, an important consideration that we have not addressed is the interface between the optimization writer and our automatic soundness prover. It will be critical to provide useful error messages when an optimization is unable to be proven sound. When Simplify cannot prove a given proposition, it returns a \textit{counterexample context}, which is a state of the world that violates the proposition. An interesting approach would be to use this counterexample context to synthesize a small intermediate-language program that illustrates a potential unsoundness of the given optimization.

7 Related Work

Our work is inspired by that of Lacey et al. [9]. Lacey describes a language for writing optimizations as guarded rewrite rules evaluated over a labeled CFG, and our transformation patterns are modeled on this language. Lacey’s intermediate language lacks several constructs found in realistic languages, including pointers, dynamic memory allocation, and procedures. Lacey describes a general strategy, based on relating execution traces of the original and transformed programs, for manually proving the soundness of optimizations in his language. Three example optimizations are shown and proven sound by hand using this strategy.
Unfortunately, the generality of this strategy makes it difficult to automate. Lacey’s guards may be arbitrary CTL formulas, while our guard language can be viewed as a strict subset of CTL that codifies a particularly common idiom. However, we are still able to express more precise versions of Lacey’s three example optimizations (as well as many others) and to prove them sound automatically. Further, Lacey’s optimization language has no notion of semantic labels nor of profitability heuristics. Therefore, expressing optimizations that employ pointer information (assuming Lacey’s language were augmented with pointers) or optimizations like PRE would instead require writing more complicated guards, and some optimizations that we support may not be expressible by Lacey.

As mentioned in the introduction, much other work has been done on manually proving optimizations correct [11, 13, 1, 2, 6, 21, 3]. Transformations have also been proven correct mechanically, but not automatically: the transformation is proven sound using an interactive theorem prover, which increases one’s confidence but requires user interaction. For example, Young [28] has proven a code generator correct using the Boyer-Moore theorem prover enhanced with an interactive interface [7].

Instead of proving that the compiler is always correct, credible compilation [24, 23] and translation validation [17] both attack the problem of checking the correctness of a given compilation run. Therefore, a bug in an optimization will only appear when the compiler is run on a program that triggers the bug. Our work allows optimizations to be proven correct before the compiler is even run once. However, to do so we require optimizations to be written in a special-purpose language, while credible compilation and translation validation typically do not.

Proof-carrying code [16], certified compilation [18], typed intermediate languages [27], and typed assembly languages [14, 15] have all been used to prove properties of programs generated by a compiler. However, the kind of properties that these approaches have typically guaranteed are type safety and memory safety. In our work, we prove the stronger property of semantic equivalence between the original and resulting programs.

8 Conclusion

We have presented an approach for automatically proving the correctness of compiler optimizations. Our technique provides the optimization writer with a domain-specific language for writing optimizations that is both reasonably expressive and amenable to automated correctness reasoning. Using our technique we have proven correct our implementations of several optimizations over a realistic intermediate language. We believe our approach is a promising step toward the goal of reliable and user-extensible compilers.

References

A Additional Optimizations

A.1 Optimizations

Copy propagation

\[
\text{stmt}(Y := Z) \\
\text{followed by} \\
\neg \text{mayDef}(Z) \land \neg \text{mayDef}(Y) \\
\text{until} \\
X := Y \Rightarrow X := Z \\
\text{with witness} \\
\eta(Y) = \eta(Z)
\]

Constant propagation

\[
\text{stmt}(Y := C) \\
\text{followed by} \\
\neg \text{mayDef}(Y) \\
\text{until} \\
X := Y \Rightarrow X := C \\
\text{with witness} \\
\eta(Y) = C
\]

\[
\text{stmt}(X := C) \\
\text{followed by} \\
\neg \text{mayDef}(X) \\
\text{until} \\
\text{if } X \text{ goto } P_1 \text{ else } P_2 \Rightarrow \text{ if } C \text{ goto } P_1 \text{ else } P_2 \\
\text{with witness} \\
\eta(X) = C
\]

\[
\text{stmt}(Y := C) \\
\text{followed by} \\
\neg \text{mayDef}(Y) \\
\text{until} \\
X := \text{op } B \ Y \Rightarrow X := \text{op } B \ C \\
\text{with witness} \\
\eta(Y) = C
\]

\[
\text{stmt}(Y := C) \\
\text{followed by} \\
\neg \text{mayDef}(Y) \\
\text{until} \\
X := \text{op } Y \ B \Rightarrow X := \text{op } C \ B \\
\text{with witness} \\
\eta(Y) = C
\]
Constant folding

true

followed by
true

until

\[X := \text{op } C_1 C_2 \Rightarrow X := C \quad (C = \text{op}(C_1, C_2)) \]

with witness
true

The above guard, true followed by true, holds at all nodes.

Branch folding

In the following optimizations, we use goto \(P_1 \) as sugar for if true goto \(P_1 \) else \(P_1 \).

true

followed by
true

until

if true goto \(P_1 \) else \(P_2 \) \Rightarrow goto \(P_1 \)

with witness
true

true

followed by
true

until

if \(C \) goto \(P_1 \) else \(P_2 \) \Rightarrow goto \(P_2 \) \quad (C \neq \text{true})

with witness
true

Common subexpression elimination

unchanged(\(E \)) \& stmt(\(Z := E \))

followed by

\neg \text{mayDef}(\(Z \)) \& \text{unchanged}(\(E \))

until

\(X := E \Rightarrow X := Z \)

with witness
\(\eta(Z) = \eta(E) \)

Load removal

stmt(\(Y := \& Z \))

followed by

\neg \text{mayDef}(\(Y \)) \& \neg \text{stmt}(\text{decl } Z)

until

\(X := * Y \Rightarrow X := Z \)

with witness
\(\eta(Y) = \eta(\& Z) \)
Dead assignment elimination

\[(synDef(X) \lor stmt(return\ldots)) \land \neg mayUse(X)\]

preceded by
\[\neg mayUse(X)\]

until
\[X := E \Rightarrow skip\]

with witness
\[\eta_{old}/X = \eta_{new}/X\]

Code hoisting (PRE)

This is the PRE optimization from section 2.3, with pseudocode for a sample choose function. The choose function shown here is Steen’s optimal computation placement condition [26], which intuitively tries to place duplicates as early as possible. A duplicate is placed at node \(n\) if placing the duplicate any earlier would either not be legal, or it would cover different redundancies from those covered by the placement at \(n\). This is just one possible choose function, given here for illustrative purposes.

\[stmt(X := E) \land unchanged(E)\]

preceded by
\[unchanged(E) \land \neg mayDef(X) \land \neg mayUse(X)\]

until
\[skip \Rightarrow X := E\]

with witness
\[\eta_{old}/X = \eta_{new}/X\]

filtered through
\[\text{let } \psi_1 = stmt(X := E) \land unchanged(E)\]
\[\text{let } \psi_2 = unchanged(E) \land \neg mayDef(X) \land \neg mayUse(X)\]
\[\text{let } \psi_3 = \neg unchanged(E) \lor mayUse(X) \lor\]
\[\quad (mayDef(X) \land \neg stmt(X := E))\]

in
\[\{(i, \theta) \in \Delta | \text{forall paths in the CFG leading to } i \text{ there exists a node at which } \psi_3 \text{ holds} \quad \text{followed by nodes at which } \neg legal \text{ holds} \quad \text{followed by the node with index } i\}\]

where legal holds at a node with index \(i'\) if
\[\text{forall paths in the CFG from } i' \text{ there exists a node at which } \psi_1 \text{ holds} \quad \text{preceded by nodes at which } \psi_2 \text{ holds} \quad \text{preceded by the node with index } i'\]

Code sinking (PDE)

We show a version of code sinking that performs partial dead code elimination. We perform code sinking by inserting copies of certain computations downstream of where they occur in the CFG, and then running dead-assignment elimination to remove the original computations. Our code sinking optimization is symmetrical to the code hoisting optimization described above, and the intuition for how it works is the same.
stmt($X := E$) \land unchanged(E)

followed by
unchanged(E) \land \negmayDef(X) \land \negmayUse(X)

until
skip \Rightarrow $X := E$

with witness
$\eta(X) = \eta(E)$

filtered through
let $\psi_1 = stmt(X := E) \land$ unchanged(E)
let $\psi_2 = unchanged(E) \land \neg$mayDef($X$) $\land \neg$mayUse(X)
let $\psi_3 = \neg$unchanged(E) \lor mayUse(X) \lor
\hspace{1cm} (mayDef(X) $\land \neg$stmt($X := E$))

in
\{(i, \theta) \in \Delta|\text{forall paths in the CFG from } i$
\hspace{1cm} \text{there exists a node at which } \psi_3 \text{ holds}$
\hspace{1cm} \text{preceded by nodes at which } \neg legal \text{ holds}$
\hspace{1cm} \text{preceded by the node with index } i\}$

where legal holds at a node with index i' if
forall paths in the CFG leading to i'
\hspace{1cm} there exists a node at which ψ_1 holds
\hspace{1cm} followed by nodes at which ψ_2 holds
\hspace{1cm} followed by the node with index i'
A.2 Analyses

Tainted-variable analysis

\[\text{stmt}(\text{decl } X) \]
\[\text{followed by } \neg \text{stmt}(\ldots := &X) \]
\[\text{defines } \text{notTainted}(X) \]
\[\text{with witness } \text{notPointedTo}(X, \eta) \]

where \(\text{notPointedTo} \) is defined as:

\[\text{notPointedTo}(X, \eta) \triangleq \forall l \in \text{domain}(\text{store}(\eta)).\eta(s l) \neq \eta(&X) \]

Simple points-to analysis

The following is a simple points-to analysis. In section A.3, we show how this label is combined with the \(\text{notTainted} \) label to define the \(\text{doesNotPointTo} \) label, which in turn is used to define labels such as \(\text{mayDef} \), \(\text{mayUse} \) and \(\text{unchanged} \). This optimization uses \(\text{npMayDef} \), which is a version of \(\text{mayDef} \) that does not use pointer information.

\[\text{stmt}(X := &Z) \land \neg \text{synUse}(Y) \land \text{HasBeenDeclared}(Y) \]
\[\text{followed by } \neg \text{npMayDef}(X) \]
\[\text{defines } \text{simpleNotPntTo}(X, Y) \]
\[\text{with witness } \eta(X) \neq \eta(&Y) \]

Has-been-declared analysis

\[\text{stmt}(\text{decl } X) \]
\[\text{followed by } \text{true} \]
\[\text{defines } \text{HasBeenDeclared}(X) \]
\[\text{with witness } X \in \text{domain}(\text{env}(\eta)) \]
A.3 Label definitions

We now define the labels used in this paper. Labels that start with np (e.g., npMayDef, npMayUse, npUnchanged) are versions of the labels that don’t use pointer information (and thus are more conservative).

\[
\begin{align*}
synDef(Y) & \triangleq \text{stmt}(Y := \ldots) \\
synUse(Y) & \triangleq \text{stmt}(\ldots := \ldots Y \ldots) \lor \\
& \quad \text{stmt}(Y := \ldots) \lor \\
& \quad \text{stmt(\textbf{if} Y \ldots)} \\
npMayDef(Y) & \triangleq \text{synDef}(Y) \lor \\
& \quad \text{stmt(\ldots := X \ldots)} \lor \\
& \quad \text{stmt(\ldots := P(\ldots))} \\
npMayUse(Y) & \triangleq \text{synUse}(Y) \lor \\
& \quad \text{stmt(\ldots := *X \ldots)} \lor \\
& \quad \text{stmt(\ldots := P(\ldots))} \\
doesNotPointTo(X, Y) & \triangleq \text{simpleNotPntTo}(X, Y) \lor \\
& \quad \text{notTainted}(Y) \\
mayPointTo(X, Y) & \triangleq \neg \text{doesNotPointTo}(X, Y) \\
mayDef(Y) & \triangleq \text{synDef}(Y) \lor \\
& \quad (\text{stmt(\ldots := X \ldots)} \land \text{mayPointTo}(X, Y)) \lor \\
& \quad (\text{stmt(\ldots := P(\ldots))} \land \neg \text{notTainted}(Y)) \\
mayUse(Y) & \triangleq \text{synDef}(Y) \lor \\
& \quad (\text{stmt(\ldots := X \ldots)} \land \text{mayPointTo}(X, Y)) \lor \\
& \quad \text{stmt(\ldots := P(\ldots))} \\
\end{align*}
\]

The unchanged label is defined as follows. When \(E\) is not \(*X\), \(\text{unchanged}(E)\) is defined as the conjunction of \(\neg\text{mayDef}\) for all the variables in \(E\). For \(*X\), \(\text{unchanged}(\ast X)\) is defined as follows:

\[
\begin{align*}
\text{unchanged}(\ast X) & \triangleq \neg\text{mayDef}(X) \land \\
& \quad \neg\text{stmt}(Y := \ldots) \land \\
& \quad \neg\text{stmt(\ldots := P(\ldots))} \land \\
& \quad (\text{stmt}(Y := \ldots) \implies \text{doesNotPointTo}(X, Y)) \\
\end{align*}
\]

\(\text{npUnchanged}\) is a version of \(\text{unchanged}\) that does not use pointer information. For \(*X\), \(\text{npUnchanged}(\ast X)\) is false. When \(E\) is not \(*X\), it is defined as the conjunction of \(\neg\text{npMayDef}\) for all the variables in \(E\).
B Formalization

B.1 Semantics of the Intermediate Language

B.1.1 Preliminaries

The set of indices of program π is denoted Indices_π. The set of indices of procedure p is denoted Indices_p. The formal argument name of procedure p in program π is denoted $formal_p$. The index of the first statement in procedure p of program π is denoted start_p. We assume WLOG that no if statements in a procedure p refer to indices not in Indices_p, nor to the index start_p.\(^6\)

The arity of an operator op is denoted $\text{arity}(op)$. We assume a fixed interpretation function for each n-ary operator symbol op: $\{op\}: \text{Consts}^n \rightarrow \text{Consts}$.

We assume an infinite set Locations of memory locations, with metavariable l ranging over the set. We assume that the set Consts is disjoint from Locations and contains the distinguished elements true and uninit.

Then the set of values is defined as $\text{Values} = (\text{Locations} \cup \text{Consts})^\ast$.

An environment is a partial function $\rho: \text{Vars} \rightarrow \text{Locations}$; we denote by Environments the set of all environments. A store is a partial function $\sigma: \text{Locations} \rightarrow \text{Values}$; we denote by Stores the set of all stores.

The domain of an environment ρ is denoted $\text{dom}(\rho)$, and similarly for the domain of a store. The notation $\rho[x \mapsto l]$ denotes the environment identical to ρ but with variable x mapping to location l; if $x \in \text{dom}(\rho)$, the old mapping for x is shadowed by the new one. The notation $\sigma[l \mapsto v]$ is defined similarly. The notation $\sigma / \{i_1, \ldots, i_n\}$ denotes the store identical to σ except that all pairs $(l, v) \in \sigma$ such that $l \in \{i_1, \ldots, i_n\}$ are removed.

The current dynamic call chain is represented by a stack. A stack frame is a triple $f = (i, l, \rho): \text{Indices} \times \text{Locations} \times \text{Environments}$. Here i is the index of the first statement following the call currently being executed, l is the location in which to put the return value from the call, and ρ is the current lexical environment at the point of the call. We denote by Frames the set of all stack frames. A stack $\xi =< f_1 \ldots f_n >: \text{Frames}$ is a sequence of stack frames. The set of all stacks is denoted Stacks. Stacks support two operations defined as follows:

\[
\text{push} : (\text{Frames} \times \text{Stacks}) \rightarrow \text{Stacks} \\
\text{push}(f, < f_1 \ldots f_n >) = < f f_1 \ldots f_n > \\
\text{pop} : \text{Stacks} \rightarrow (\text{Frames} \times \text{Stacks}) \\
\text{pop}(< f_1 f_2 \ldots f_n >) = (f_1, < f_2 \ldots f_n >), \text{where } n > 0
\]

Finally, a memory allocator M is an infinite stream $< l_1, l_2, \ldots >$ of locations. We denote the set of all memory allocators as MemAllocs.

A state of execution of a program π is a quintuple $\eta = (i, \rho, \sigma, \xi, M)$ where $i \in \text{Indices}$, $\rho \in \text{Environments}$, $\sigma \in \text{Stores}$, $\xi \in \text{Stacks}$, and $M \in \text{MemAllocs}$. We denote the set of program states by States. We refer to the corresponding index of a state η as $\text{index}(\eta)$, and we similarly define accessors env, store, stack, and mem.

\(^6\)This last restriction ensures that the entry node of p’s CFG will have no incoming edges.
B.1.2 State Transition Functions

The evaluation of an expression e in a program state η, where $env(\eta) = \rho$ and $store(\sigma) = \rho$, is given by the function $\eta(e) : (States \times Exprs) \rightarrow Values$ defined by:

$$
\eta(x) = \sigma(\rho(x)) \\
\text{where } x \in dom(\rho), \rho(x) \in dom(\sigma)
$$

$$
\eta(c) = c \\
$$

$$
\eta(*) = \sigma(\rho(x)) \\
\text{where } x \in dom(\rho), \rho(x) \in dom(\sigma), \sigma(\rho(x)) \in dom(\sigma)
$$

$$
\eta(&) = \rho(x) \\
\text{where } x \in dom(\rho)
$$

$$
\eta(opb_1 \ldots b_n) = \left[\text{arity}(op) = n \right. \text{ and } \forall 1 \leq j \leq n. (\eta(b_j) \in \text{Consts})
$$

Similarly, the evaluation of a locatable expression lhs in a state η, where $env(\eta) = \rho$ and $store(\sigma) = \rho$, is given by the function $\eta'(lhs) : (States \times Locatables) \rightarrow Locations$ defined by:

$$
\eta'(x) = \rho(x) \\
\text{where } x \in dom(\rho)
$$

$$
\eta'(*) = \sigma(\rho(x)) \\
\text{where } x \in dom(\rho), \rho(x) \in dom(\sigma), \sigma(\rho(x)) \in Locations
$$

Definition 3 Given a program π, the state transition function $\rightarrow_\pi \subseteq \text{States} \times \text{States}$ is defined by:

- If stmtAt(π, i) = decl x then $(i, \rho, \sigma, \xi, < l_1, l_2, \ldots >) \rightarrow_\pi (i + 1, \rho[x \leftarrow l], \sigma[l \leftarrow \text{uninit}], \xi, < l_1, l_2, \ldots >)$
 where $l \notin dom(\sigma)$
- If stmtAt(π, i) = skip then $(i, \rho, \sigma, \xi, M) \rightarrow_\pi (i + 1, \rho, \sigma, \xi, M)$
- If stmtAt(π, i) = (lhs := e) then $(i, \rho, \sigma, \xi, M) \rightarrow_\pi (i + 1, \rho, \sigma[\eta'(lhs) \rightarrow \eta(e)], \xi, M)$
 where $\eta = (i, \rho, \sigma, \xi, M)$
- If stmtAt(π, i) = $x := \text{new}$ then $(i, \rho, \sigma, \xi, < l_1, l_2, \ldots >) \rightarrow_\pi (i + 1, \rho, \sigma[\rho(x) \rightarrow l][l \leftarrow \text{uninit}], \xi, < l_1, l_2, \ldots >)$
 where $x \in dom(\rho), l \notin dom(\sigma)$
- If stmtAt(π, i) = $x := p_0(b)$ then $(i, \rho, \sigma, \xi, < l_1, l_2, \ldots >) \rightarrow_\pi (i_0, \{(y, l)\}, \sigma[l \leftarrow \eta(b)], \text{push}(f, \xi), < l_1, l_2, \ldots >)$
 where $\eta = (i, \rho, \sigma, \xi, < l_1, l_2, \ldots >), i_0 = \text{start}_{p_0}, y = \text{form}_{p_0}, l \notin dom(\sigma), x \in dom(\rho), f = (i + 1, \rho(x), \rho)$
- If stmtAt(π, i) = (if b goto \i_1 else \i_2) then $(i, \rho, \sigma, \xi, M) \rightarrow_\pi (i_1, \rho, \sigma, \xi, M)$
 where $(i, \rho, \sigma, \xi, M)(b) = \text{true}$
- If stmtAt(π, i) = (if b goto \i_1 else \i_2) then $(i, \rho, \sigma, \xi, M) \rightarrow_\pi (i_2, \rho, \sigma, \xi, M)$
 where $(i, \rho, \sigma, \xi, M)(b) \neq \text{true}$
- If stmtAt(π, i) = return x then $(i, \rho, \sigma, \xi, M) \rightarrow_\pi (i_0, \rho_0, \sigma_0, \xi_0, M)$
 where $\text{pop}(\xi) = (i_0, \rho_0, \sigma_0, \xi_0, M), \text{dom}(\rho) = \{x_1, \ldots, x_i\}, \sigma_0 = (\sigma[\rho(x_1), \ldots, \rho(x_i)])[i_0 \leftarrow (i, \rho, \sigma, \xi, M)(x)]$
We denote the reflexive, transitive closure of \rightarrow as \rightarrow^*.

Definition 4 Given a program π, the intraprocedural state transition function \rightarrow_{π} is defined by:

- If $\text{stmtAt}(\pi, \iota)$ is not a procedure call, then $\eta \rightarrow_{\pi} \eta'$ where $\eta \rightarrow_{\pi} \eta'$
- If $\text{stmtAt}(\pi, \iota)$ is a procedure call, then $\eta \rightarrow_{\pi} \eta'$ where $\eta \rightarrow_{\pi} \eta'' \rightarrow_{\pi} \eta'$ and η' is the first state on the trace between η and η' such that $\text{stack}(\eta') = \text{stack}(\eta)$

We denote the reflexive, transitive closure of \rightarrow_{π} as \rightarrow_{π}^*. We say that $\eta \not\rightarrow_{\pi} \eta'$ if there does not exist some η'' such that $\eta \rightarrow_{\pi} \eta'' \rightarrow_{\pi} \eta'$.

B.1.3 Programs and Program Transformations

Definition 5 The semantic function of a program π is the partial function $\llbracket \pi \rrbracket : \text{Consts} \times \text{MemAllocs} \rightarrow \text{Values}$ defined by: $\llbracket \pi \rrbracket(c, l, \ell_1, \ell_2, \ldots >) = \sigma(l)$ where $(\iota, \{x, l\}, \{l, \text{uninit}\}, \langle \rangle, l, \ell_1, \ell_2, \ldots \rangle \rightarrow_{p}^* (\iota + 1, \{x, l\}, \sigma, \langle \rangle, \mathcal{M})$ and $\iota \notin \text{Indices}_\pi$ and $\text{stmtAt}(\pi, \iota)$ is defined to be $x := \text{main}(c)$.

Definition 6 We say that π' is a semantically equivalent transformation of π if for all c, \mathcal{M} such that $\llbracket \pi \rrbracket(c, \mathcal{M}) = v$, it is the case that $\llbracket \pi' \rrbracket(c, \mathcal{M}) = v$.

B.2 Semantics of Optimizations

Let $\text{stmtAt}(p, \iota)$ denote the statement at index ι of procedure p.

Definition 7 The control flow graph (CFG) of a procedure p is a graph $(\text{Indices}_p, \rightarrow_{cfg})$, where $\rightarrow_{cfg} \subseteq \text{Indices}_p \times \text{Indices}_p$ and $\iota_1 \rightarrow_{cfg} \iota_2$ if and only if:

$$ (\text{stmtAt}(p, \iota_1) \in \{\text{decl } x, \text{lhs} := e, \text{skip}, x := \text{new}, x := p(b), \text{return } x\} \land \iota_2 = \iota_1 + 1) $$

$$ \lor (\text{stmtAt}(p, \iota_1) = \text{if } b \text{ goto } \iota \text{ else } \iota' \land (\iota_2 = \iota \lor \iota_2 = \iota')) $$

Each node with index ι is annotated with the label $\text{stmt}(s)$, where $s = \text{stmtAt}(p, \iota)$.

The definition of $\iota \models^p_\theta \psi$, which evaluates a formula ψ at the node for index ι in the CFG of p, is as follows.

- $\iota \models^p_\theta \text{true}$ if $\iota \models^p_\theta \text{false}$
- $\iota \models^p_\theta \neg \psi$$\iff$$\iota \not\models^p_\theta \psi$
- $\iota \models^p_\theta \psi_1 \lor \psi_2$$\iff$$\iota \models^p_\theta \psi_1 \lor \iota \models^p_\theta \psi_2$
- $\iota \models^p_\theta \psi_1 \land \psi_2$$\iff$$\iota \models^p_\theta \psi_1 \land \iota \models^p_\theta \psi_2$
- $\iota \models^p_\theta \theta(pr)$$\iff$$\theta(pr) \in L_p(\iota)$
B.3 Proof Obligations

B.3.1 Forward Optimizations

Consider a forward transformation pattern of the following form:

\[\psi_1 \text{ followed by } \psi_2 \text{ until } s \Rightarrow s' \text{ with witness } \mathcal{P} \]

The optimization-specific obligations, to be discharged by an automatic theorem prover, are as follows:

F1. If \(\eta \xrightarrow{\pi} \eta' \) and \(\text{index}(\eta) \models_0 ^{\psi_1} \), then \(\theta(\mathcal{P})(\eta') \).

F2. If \(\theta(\mathcal{P})(\eta) \) and \(\eta \xrightarrow{\pi} \eta' \) and \(\text{index}(\eta) \models_0 ^{\psi_2} \), then \(\theta(\mathcal{P})(\eta') \).

F3. If \(\theta(\mathcal{P})(\eta) \) and \(\eta \xrightarrow{\pi} \eta' \) and \(\iota = \text{index}(\eta) \) and \(\text{stmtAt}(\pi, \iota) = \theta(s) \) and \(\text{stmtAt}(\pi', \iota) = \theta(s') \), then \(\eta \xrightarrow{\pi'} \eta' \).

B.3.2 Backward Optimizations

Consider a backward transformation pattern of the following form:

\[\psi_1 \text{ preceded by } \psi_2 \text{ until } s \Rightarrow s' \text{ with witness } \mathcal{P} \]

We require that the witness \(\mathcal{P} \) match program points in the original and transformed state, or in other words that \(\mathcal{P} \models (\text{index}(\eta_{\text{old}}) = \text{index}(\eta_{\text{new}})) \). The optimization-specific obligations, to be discharged by an automatic theorem prover, are as follows:

B1. If \(\eta \xrightarrow{\pi} \eta_{\text{old}} \) and \(\eta \xrightarrow{\pi'} \eta_{\text{new}} \) and \(\iota = \text{index}(\eta) \) and \(\text{stmtAt}(\pi, \iota) = \theta(s) \) and \(\text{stmtAt}(\pi', \iota) = \theta(s') \), then \(\theta(\mathcal{P})(\eta_{\text{old}}, \eta_{\text{new}}) \).

B2. If \(\theta(\mathcal{P})(\eta_{\text{old}}, \eta_{\text{new}}) \) and \(\eta_{\text{old}} \xrightarrow{\pi} \eta_{\text{old}}' \) and \(\iota_{\text{old}} = \text{index}(\eta_{\text{old}}) \) and \(\iota_{\text{new}} = \text{index}(\eta_{\text{new}}) \) and \(\iota_{\text{old}} \models_0 ^{\psi_2} \) and \(\text{stmtAt}(\pi, \iota_{\text{old}}) = \text{stmtAt}(\pi', \iota_{\text{new}}) \), then there exists some \(\eta_{\text{new}}' \) such that \(\eta_{\text{new}} \xrightarrow{\pi'} \eta_{\text{new}}' \).

B3. If \(\theta(\mathcal{P})(\eta_{\text{old}}, \eta_{\text{new}}) \) and \(\eta_{\text{old}} \xrightarrow{\pi} \eta \) and \(\iota_{\text{old}} = \text{index}(\eta_{\text{old}}) \) and \(\iota_{\text{new}} = \text{index}(\eta_{\text{new}}) \) and \(\iota_{\text{old}} \models_0 ^{\psi_1} \) and \(\text{stmtAt}(\pi, \iota_{\text{old}}) = \text{stmtAt}(\pi', \iota_{\text{new}}) \), then \(\eta_{\text{new}} \xrightarrow{\pi} \eta \).

In rule B1, we assume that both programs can step. However, we in fact need to prove that the transformed program steps if the original one does, in order to show that the transformed program is semantically equivalent to the original one. Unfortunately, it is not possible to prove this for B1 using only local knowledge. Therefore, we allow B1 to assume that the transformed program steps, and we separately prove the property using some additional obligations.

We introduce the notion of an error predicate \(\epsilon(\eta) \). Intuitively, the error predicate says what the state of the original program must look like at the point in the trace where a transformation is allowed, if that transformation would get stuck. We then show that the error predicate would continue to hold on the original program throughout the witnessing region, eventually implying that the original program itself will get stuck. So we will have shown that the transformed program gets stuck only if the original one does.

We currently infer the error predicate: it is simply a predicate stating the conditions under which the transformed statement \(s' \) is “stuck” — it cannot take a step. This inference has been sufficient to automatically prove soundness of all the backward optimizations we have written. However, in our obligations below, we allow an arbitrary error predicate to be specified.

B1'. If \(\eta \xrightarrow{\pi} \eta_{\text{old}} \) and \(\eta \not\xrightarrow{\pi'} \) and \(\iota = \text{index}(\eta) \) and \(\text{stmtAt}(\pi, \iota) = \theta(s) \) and \(\text{stmtAt}(\pi', \iota) = \theta(s') \), then \(\theta(\epsilon)(\eta_{\text{old}}) \).
B2'. If \(\theta(\psi)(\eta) \) and \(\eta \rightarrow_{\pi} \eta' \) and \(\iota = index(\eta) \) and \(\iota \models_\theta \psi_2 \), then \(\theta(\psi)(\eta') \).

B3'. If \(\theta(\psi)(\eta) \) and \(\iota = index(\eta) \) and \(\iota \models_\theta \psi_1 \), then \(\eta \not\rightarrow_{\pi} \).

B.3.3 Analyses

Consider a pure analysis of the following form:

\[\psi_1 \text{ followed by } \psi_2 \text{ defines } \text{ label with witness } P \]

The optimization-specific obligations, to be discharged by an automatic theorem prover, are as follows:

A1. If \(\eta \rightarrow_{\pi} \eta' \) and \(index(\eta) \models_\theta \psi_1 \), then \(\theta(P)(\eta') \).

A2. If \(\theta(P)(\eta) \) and \(\eta \rightarrow_{\pi} \eta' \) and \(index(\eta) \models_\theta \psi_2 \), then \(\theta(P)(\eta') \).

B.4 Metatheory

B.4.1 Forward Optimizations

Theorem 1 If \(O \) is a forward optimization with transformation pattern \(\psi_1 \) followed by \(\psi_2 \) until \(s \Rightarrow s' \) with witness \(P \) satisfying conditions F1, F2, and F3, then \(O \) is sound.

Proof:

Let \(\pi \) be an intermediate-language program, \(p \) be a procedure in \(\pi \), \(\Delta \subseteq [O_{pat}](p) \), and let \(\pi_\Delta \) be the program identical to \(\pi \) but with \(p \) replaced by \(app(s', p, \Delta) \). It suffices to show that \(\pi_\Delta \) is a semantically equivalent transformation of \(\pi \). Let \(c \) be a constant and \(M \) be a memory allocator such that \(\llbracket \pi \rrbracket(c, M) = v \).

By definition 6 we must show that also \(\llbracket \pi_\Delta \rrbracket(c, M) = v \).

Since \(\llbracket \pi \rrbracket(c, M) = v \), by definition 5 we have that \((i, \{(x, l)\}, \{(l, uninit)\}, <>, < l_1, l_2, \ldots > \) \(\rightarrow^* \pi \) \((i + 1, \{(x, l)\}, \sigma, <>, M') \) and \(stmtAt(\pi, i) \) is defined to be \(x := \text{main}(c) \) and \(i \not\in \text{Indices}_\pi \) and \(v = \sigma(l) \), where \(M = < l_1, l_2, \ldots > \). Define \(\rightarrow_\pi \) to act like \(\rightarrow_{\pi} \) ordinarily, but to act like \(\rightarrow_{\pi} \) when executing a state at some node with index \(\iota \) such that some \((\iota, \theta) \in \Delta \). Then we have that

\((i, \{(x, l)\}, \{(l, uninit)\}, <>, < l_1, l_2, \ldots >) \rightarrow_\pi \eta_1 \rightarrow_\pi \eta_2 \rightarrow_\pi \cdots \rightarrow_\pi \eta_{k-1} \rightarrow_\pi (i + 1, \{(x, l)\}, \sigma, <>, M') \)

for some \(\eta_1, \ldots, \eta_{k-1} \). To prove that \(\llbracket \pi_\Delta \rrbracket(c, M) = v \) we will show that also

\((i, \{(x, l)\}, \{(l, uninit)\}, <>, < l_1, l_2, \ldots >) \rightarrow_{\pi_\Delta} \eta_1 \rightarrow_{\pi_\Delta} \eta_2 \rightarrow_{\pi_\Delta} \cdots \rightarrow_{\pi_\Delta} \eta_{k-1} \rightarrow_{\pi_\Delta} (i + 1, \{(x, l)\}, \sigma, <>, M') \)

where \(stmtAt(\pi_\Delta, i) \) is defined to be \(x := \text{main}(c) \).

Let \(\eta_k = (i + 1, \{(x, l)\}, \sigma, <>, M') \). We show by induction on \(k \) that every prefix of the trace in \(\pi \) up to \(\eta_j \), for all \(1 \leq j \leq k \), is mirrored in \(\pi_\Delta \).

- **Case **\(j = 1 \). Since \(stmtAt(\pi, i) = stmtAt(\pi_\Delta, i) = x := \text{main}(c) \) and \((i, \{(x, l)\}, \{(l, uninit)\}, <>, < l_1, l_2, \ldots >) \rightarrow_{\pi} \eta_1 \), by definition of \(\rightarrow_{\pi} \) we have \((i, \{(x, l)\}, \{(l, uninit)\}, <>, < l_1, l_2, \ldots >) \rightarrow_{\pi_\Delta} \eta_1 \).

Therefore also \((i, \{(x, l)\}, \{(l, uninit)\}, <>, < l_1, l_2, \ldots >) \rightarrow_{\pi_\Delta} \eta_1 \), so \((i, \{(x, l)\}, \{(l, uninit)\}, <>, < l_1, l_2, \ldots >) \rightarrow_{\pi_\Delta} \eta_1 \).

- **Case **\(1 < j \leq k \). By induction we have that \((i, \{(x, l)\}, \{(l, uninit)\}, <>, < l_1, l_2, \ldots >) \rightarrow_{\pi_\Delta} \eta_1 \rightarrow_{\pi_\Delta} \cdots \rightarrow_{\pi_\Delta} \eta_{j-1} \). Let \(index(\eta_{j-1}) = \iota_{j-1} \). We have two sub-cases:

 - \(\neg \exists \theta((\iota_{j-1}, \theta) \in \Delta) \). Then by the definition of \(\pi_\Delta \) we have \(stmtAt(\pi, \iota_{j-1}) = stmtAt(\pi_\Delta, \iota_{j-1}) \).

 Therefore, since \(\eta_{j-1} \rightarrow_{\pi} \eta_j \), by definition of \(\rightarrow_{\pi} \) we have \(\eta_{j-1} \rightarrow_{\pi_\Delta} \eta_j \). Then also \(\eta_{j-1} \rightarrow_{\pi_\Delta} \eta_j \), so \(\eta_{j-1} \rightarrow_{\pi_\Delta} \eta_j \) and the result follows.
– $\exists \theta, (t_{j-1}, \theta) \in \Delta$. Then by the definition of π_Δ, there is some θ such that $\text{stmtAt}(\pi_\Delta, t_{j-1}) = \theta(s')$. Then also $(t_{j-1}, \theta) \in [O_{\text{pat}}](p)$, so we have $t_{j-1} \models^p \theta \text{stmt}(i)$, so $\text{stmtAt}(\pi, t_{j-1}) = \theta(s)$.

By definition of \leadsto_π we know that $(\ell, \{(l, x), (l, \text{uninit})\}, \langle r, < l_1, l_2, \ldots > \rangle) \leadsto_\pi \eta_{j-1}$, and we also have $\text{stmtAt}(\pi, i) = x := \text{main}(c)$ and $t_{j-1} \in \text{Indices}_p$. Assume

$$(l, \{(l, x), (l, \text{uninit})\}, \langle < r, l_1, l_2, \ldots > \rangle) \leadsto_\pi \eta'_1 \leadsto_\pi \cdots \leadsto_\pi \eta''_t,$$

where $\eta''_t = \eta_{j-1}$. Then there must be some t such that $1 \leq t < v$ and $\text{index}(\eta''_t) = \text{start}_p$, representing the first statement executed on the same invocation of p as in η_{j-1}. Then let $\eta''_{t_1}, \ldots, \eta''_{t_v}$ be identical to the sequence $\eta''_1, \ldots, \eta''_t$, but with all states that are not in the same invocation of p as in η_{j-1} removed. Let $\text{index}(\eta''_{t_v}) = \ell''$ for all $1 \leq x \leq w$. Then $\ell'' = t_{j-1}$. It is easy to show that $\eta''_{t_v} \leadsto_\pi \cdots \leadsto_\pi \eta''_{t_1}$. Also, by the definition of an intraprocedural CFG we have that $\eta''_{t_1}, \ldots, \eta''_{t_v}$ represents a backward path in the CFG of p to the entry node. Therefore, since $(t_{j-1}, \theta) \in [O_{\text{pat}}](p)$, it follows that there exists some r such that $1 \leq r < w$ and $\ell'' \models^p \psi_1$, and for all q such that $r < q < w$ we have $\ell'' \models^p \psi_2$.

First we prove $\forall q. (r < q \leq w) \Rightarrow \theta(p)(\eta''_{t_q})$. We prove it by induction on q:

* (base case) $q = r + 1$. So we have $\eta''_{t_q} \leadsto_\pi \eta'_{t_q}$ and $\text{index}(\eta''_{t_q}) \models^p \psi_1$, and the result follows from condition F1.

* (inductive case) $q > r + 1$. By the inductive hypothesis we have $\theta(p)(\eta''_{t_{q-1}})$. We also know that $\eta''_{t_{q-1}} \leadsto_\pi \eta'_{t_{q-1}}$ and, since $r < q - 1 < w$, $\text{index}(\eta''_{t_{q-1}}) \models^p \psi_2$. Then the result follows from condition F2.

So we have shown in particular that $\theta(p)(\eta_{j-1})$ holds. We saw above that $\eta_{j-1} \leadsto_\pi \eta_j$, and by definition of \leadsto_π that means $\eta_{j-1} \leadsto_\pi \cdots \leadsto_\pi \eta_k$. We also know that $\text{stmtAt}(\pi, t_{j-1}) = \theta(s)$ and $\text{stmtAt}(\pi_\Delta, t_{j-1}) = \theta(s')$. Then by condition F3 we have $\eta_{j-1} \leadsto_{\pi\Delta} \eta_j$, so also $\eta_{j-1} \leadsto_{\pi\Delta} \eta_j$ and the result follows.

B.4.2 Backward Optimizations

Lemma 1 Let O be a backward optimization with transformation pattern ψ_1 preceded by ψ_2 until $s \Rightarrow s'$ with witness p and error predicate ϵ such that B1'-B3' hold. Let p be a procedure, π be a program containing p, $s \in \text{Indices}_p$, and $\text{stmtAt}(\pi, i) = \theta(s)$. Let η be a state such that $\text{index}(\eta) = i$. Let π' be a program such that $\text{stmtAt}(\pi', i) = \theta(s')$ and $\eta \not\leadsto_{\pi'} \psi_1$. If

$$\eta \leadsto_{\pi} \eta_1 \leadsto_{\pi} \cdots \leadsto_{\pi} \eta_k$$

and for all $1 \leq j < k$ we have $\text{index}(\eta_j) \models^p \psi_2$ and $\text{index}(\eta_k) \models^p \psi_1$, then $\eta_k \not\leadsto_{\pi} \psi_1$.

Proof: We will first prove by induction on k that $\theta(\epsilon(\eta_j))$ holds for all $1 \leq j \leq k$.

- Case $j = 1$. Since $\eta \leadsto_{\pi} \eta_1$ and $\eta \not\leadsto_{\pi'} \psi_1$ and $\text{stmtAt}(\pi, i) = \theta(s)$ and $\text{stmtAt}(\pi', i) = \theta(s')$, the result follows from B1'.

- Case $1 < j \leq k$. By induction, assume that $\theta(\epsilon(\eta_{j-1}))$ holds. We are given that $\eta_{j-1} \leadsto_{\pi} \eta_j$, and since $(j - 1) \leq k$ we also have that $\text{index}(\eta_{j-1}) \models^p \psi_2$. Then the result follows from B2'.

So in particular we have shown that $\theta(\epsilon(\eta_k))$ holds. We are given that $\text{index}(\eta_k) \models^p \psi_1$, so by B3' we have $\eta_k \not\leadsto_{\pi} \psi_1$.

Theorem 2 If O is a backward optimization with transformation pattern ψ_1 preceded by ψ_2 until $s \Rightarrow s'$ with witness p and error predicate ϵ satisfying conditions B1, B2, B3, B1', B2', and B3', then O is sound.
\textbf{Proof:} Let \(\pi \) be an intermediate-language program, \(p \) be a procedure in \(\pi, \Delta \subseteq \llbracket O_{\text{pat}} \rrbracket(p) \), and let \(\pi_\Delta \) be the program identical to \(\pi \) but with \(p \) replaced by \(\text{app}(s', p, \Delta) \). It suffices to show that \(\pi_\Delta \) is a semantically equivalent transformation of \(\pi \).

We define an infinite family of generalized intermediate-language programs as follows. Let \(\pi^j_\Delta \) denote the program that acts like \(\pi_\Delta \) for the first \(j \) states but henceforth acts like \(\pi \). Formally, we define the transition relation of \(\pi^j_\Delta \) directly as a relation \(\rightarrow_{\pi^j_\Delta} \) on prefixes of execution traces, rather than as a relation on states.

Let \(T = [\eta_1 \cdots \eta_r] \) denote a partial trace of \(\pi_\Delta \) such that \(\text{index}(\eta_1) \notin \text{Indices}_{\pi_\Delta} \) and \(s^\pi_\Delta_{\text{index}(\eta_1)} \) is a call to \(\text{main} \). We say that \(T \rightarrow_{\pi^j_\Delta} T' \) if and only if \(T' = [\eta_1 \cdots \eta_{r+1}] \), where

- \(r \leq j \Rightarrow \eta_r \rightarrow_{\pi_\Delta} \eta_{r+1} \)
- \(r > j \Rightarrow \eta_r \rightarrow_{\pi} \eta_{r+1} \)

Let \(\rightarrow_{\pi_\Delta} \) denote the reflexive, transitive closure of \(\rightarrow_{\pi_\Delta} \). We also define an intraprocedural version \(\rightarrow_{\pi_\Delta} \) in the identical way that \(\rightarrow_{\pi} \) is defined for \(\rightarrow_{\pi} \). Finally, we define the semantic function of \(\pi_\Delta \) by the straightforward modification of Definition \(5 \).

We prove that for all \(j \geq 1 \), \(\pi^j_\Delta \) is a semantically equivalent transformation of \(\pi \). Since \(\pi_\Delta = \pi^\infty_\Delta \) and the semantic equivalence relation is transitive, it then follows easily that \(\pi_\Delta \) is a semantically equivalent transformation of \(\pi \). The proof proceeds by induction on \(j \).

For the base case, \(j = 1 \). Let \(c \) be a constant and \(\mathcal{M} = \langle l, l_1, l_2, \ldots \rangle \) such that \(\llbracket \pi \rrbracket(c, \mathcal{M}) = v \). By Definition \(6 \) we must show that \(\llbracket \pi^1_\Delta \rrbracket(c, \mathcal{M}) = v \). By Definition \(5 \) we have that \(v = \sigma(l) \) and \((l, \{(l, \text{uninit})\}, \langle l, \{l, l_1, l_2, \ldots \}, \ldots \rangle) \rightarrow^\pi_{s_\Delta^\pi} (v + 1, \{(l, l_1), \sigma, \langle l, \{l, l_2, \ldots \}, \ldots \rangle) \) and \(\text{stmtAt}(\pi, v) \) is defined to be \(x := \text{main}(c) \). Then I claim that

\[
\begin{align*}
[\eta_1] & \rightarrow_{\pi^1_\Delta} [\eta_1, \eta_2] \\
& \rightarrow_{\pi^1_\Delta} \cdots \\
& \rightarrow_{\pi^1_\Delta} [\eta_1, \ldots, \eta_k, \eta_{k+1}]
\end{align*}
\]

If we can prove this, then the result follows. We prove inductively that each transition in the above sequence of transitions holds.

- **Base Case.** We must show that \([\eta_1] \rightarrow_{\pi^1_\Delta} [\eta_1, \eta_2] \). We’ve given that \(\eta_1 \rightarrow_{\pi} \eta_2 \) and \(\text{stmtAt}(\pi, v) = \text{stmtAt}(\pi^1_\Delta, v) = x := \text{main}(c) \). Then \(\eta_1 \rightarrow_{\pi_\Delta} \eta_2 \), so by the definition of \(\rightarrow_{\pi^1_\Delta} \) the result follows.

- **Inductive Case.** By induction we have \([\eta_1] \rightarrow_{\pi^1_\Delta} [\eta_1, \eta_2] \rightarrow_{\pi^1_\Delta} \cdots \rightarrow_{\pi^1_\Delta} [\eta_1, \ldots, \eta_k, \eta_{k+1}] \), for some \(1 < q \leq k \). We’re given that \(\eta_q \rightarrow_{\pi} \eta_{q+1} \). Then by the definition of \(\rightarrow_{\pi^1_\Delta} \) we have that \([\eta_1, \ldots, \eta_q] \rightarrow_{\pi^1_\Delta} [\eta_1, \ldots, \eta_{q+1}] \).

For the inductive case, \(j > 1 \) and \(\pi^{j-1}_\Delta \) is a semantically equivalent transformation of \(\pi \). We will prove that \(\pi^1_\Delta \) is a semantically equivalent transformation of \(\pi^{j-1}_\Delta \). Let \(c \) be a constant and \(\mathcal{M} = \langle l, l_1, l_2, \ldots \rangle \) such that \(\llbracket \pi \rrbracket(c, \mathcal{M}) = v \). It suffices to show that \(\llbracket \pi^{j-1}_\Delta \rrbracket(c, \mathcal{M}) = v \). Since \(\pi^{j-1}_\Delta \) is a semantically equivalent transformation of \(\pi \), we know that \(\llbracket \pi^{j-1}_\Delta \rrbracket(c, \mathcal{M}) = v \). Then we have that \(v = \sigma(l) \) and \((l, \{(l, \text{uninit})\}, \langle l, \{l, l_1, l_2, \ldots \}, \ldots \rangle) \rightarrow^\pi_{s_\Delta^\pi} (l, \{(l, \{l, l_2, \ldots \}, \ldots \rangle, \eta_2, \ldots, \eta_k, (l + 1, \{(l, l_1), \sigma, \langle l, \{l, l_2, \ldots \}, \ldots \rangle) \) and \(\text{stmtAt}(\pi, v) = \text{stmtAt}(\pi^{j-1}_\Delta, v) \) is defined to be \(x := \text{main}(c) \) and \(v \notin \text{Indeces}_{\pi} \). Therefore assume that

\[
[\eta_1] \rightarrow_{\pi^{j-1}_\Delta} [\eta_1, \eta_2] \rightarrow_{\pi^{j-1}_\Delta} \cdots \rightarrow_{\pi^{j-1}_\Delta} [\eta_1, \ldots, \eta_{k+1}]
\]
where \(\eta_1 = (t, \{(x, l), \}(l, \text{uninit}), \prec, \prec, l_1, l_2, \ldots) \) and \(\eta_{k+1} = (t + 1, \{(x, l)\}, \sigma, \prec, \mathcal{M}) \).

For each \(1 \leq t \leq k + 1 \), let \(\Phi(t, \theta) \) denote the following predicate:

\[
\begin{align*}
t > j & \quad \land \\
(\text{index}(\eta_j), \theta) & \in \Delta \land \\
\text{stmtAt}(\pi, \text{index}(\eta_j)) & = \theta(s) \land \\
\text{stmtAt}(\pi_\Delta, \text{index}(\eta_j)) & = \theta(s') \land \\
\forall m. (|j < m < t \land \eta_j \leftarrow_\pi^* \eta_m) & \Rightarrow \text{index}(\eta_m) \not\in_\theta \psi_1 \\
\end{align*}
\]

Define \(\rightsquigarrow_{\pi_\Delta} \) as a view on the above execution trace, in the following way: \(\rightsquigarrow_{\pi_\Delta} \) acts like \(\rightarrow_{\pi_\Delta} \) ordinarily, but it acts like \(\leftarrow_{\pi_\Delta} \) when it is either at a state \(\eta_k \) such that \(\Phi(t, \theta) \) for some \(\theta \), or it is at the state \(\eta_j \), where \((\text{index}(\eta_j), \theta) \in \Delta \). Then we have

\[
[\eta_1] \rightsquigarrow_{\pi_\Delta} [\eta_1', \eta_2'] \rightsquigarrow_{\pi_\Delta} \cdots \rightsquigarrow_{\pi_\Delta} [\eta_1', \ldots, \eta_z']
\]

where \(\eta_1 = \eta_1' \) and \(\eta_{k+1} = \eta_z' \).

Then I claim that

\[
[\eta_1''] \rightsquigarrow_{\pi_\Delta} [\eta_1'', \eta_2''] \rightsquigarrow_{\pi_\Delta} \cdots \rightsquigarrow_{\pi_\Delta} [\eta_1'', \eta_2'', \ldots, \eta_w']
\]

where \(\rightsquigarrow_{\pi_\Delta} \) acts like \(\rightarrow_{\pi_\Delta} \) ordinarily, but acts like \(\leftarrow_{\pi_\Delta} \) when it is either at a state \(\eta_k'' \) such that \(\eta_k'' = \eta_k \) and \(\Phi(t, \theta) \) for some \(\theta \), or it is at a state \(\eta_j'' \) such that \(\eta_j'' = \eta_j \), where \((\text{index}(\eta_j), \theta) \in \Delta \). Further, each \(\eta_j'' \) is defined as follows. For each \(1 \leq y \leq z \):

- If there exists \(\theta \) such that \(\Phi(t, \theta) \), where \(1 \leq t \leq k + 1 \) and \(\eta_y' = \eta_y \), then \(\theta(\mathcal{P})(\eta_y'', \eta_y'') \).
- Else \(\eta_y' = \eta_y'' \).

If we can prove this, then we have that \(\eta''_y = \eta'_{y+1} \), and the result follows.

We prove inductively that each of the partial traces in the sequence above exists.

- For the base case, \(y = 1 \). We saw above that \(\eta_1 = \eta_1' \). Since \(j > 1 \), we have \(1 \not\in j \), so \(\forall \theta. (\Phi(1, \theta) \).

Therefore we must prove that \(\eta_1' = \eta_1'' \). We're given that \(\eta_1 = (t, \{(x, l), \}(l, \text{uninit}), \prec, \prec, l_1, l_2, \ldots) \) and \(\text{stmtAt}(\pi, t) = x := \text{main}(c) \). Therefore \([\eta_1'] \) is a valid partial trace for \(\pi_\Delta \).

- For the inductive case, \(y > 1 \) and \([\eta_1'', \ldots, \eta_y'-1] \) is a valid partial trace for \(\pi_\Delta \) with each component state meeting the definition above. We must show that there exists \(\eta_y'' \) meeting the definition above such that \([\eta_1'', \ldots, \eta_y'] \) is a valid partial trace for \(\pi_\Delta \). Let \(t \) be the integer between \(1 \) and \(k + 1 \) such that \(\eta_{y-1}' = \eta_y' \). There are several cases

 - \(t < j \). Since \(t \in j \), by definition of \(\Phi \) we have that \(\eta_{y-1}' = \eta_{y-1}' \). By the definition of \(\rightsquigarrow_{\pi_\Delta} \), \(\eta_{y-1}' \rightarrow_{\pi_\Delta} \eta_y' \). Then by definition of \(\rightsquigarrow_{\pi_\Delta} \) we have \([\eta_1'', \ldots, \eta_y'-1] \rightarrow_{\pi_\Delta} [\eta_1'', \ldots, \eta_y'-1, \eta_y]' \). Since \(t + 1 \not\in j \), by definition of \(\Phi \) we must show that \(\eta_y'' = \eta_y' \), so the result follows.

 - \(t = j \). Then by definition of \(\Phi \) we have that \(\eta_{y-1}'' = \eta_{y-1}' \). There are two sub-cases.

 1. \(\exists \theta. (\text{index}(\eta_j), \theta) \in \Delta \). Then by definition of \(\rightsquigarrow_{\pi_\Delta} \), we have \(\eta_{y-1}' \rightarrow_{\pi} \eta_y' \). Also \(\text{stmtAt}(\pi, \text{index}(\eta_j)) = \text{stmtAt}(\pi_\Delta, \text{index}(\eta_j)) \), so we have \(\eta_{y-1}' \rightarrow_{\pi_\Delta} \eta_y' \). Therefore by definition of \(\rightsquigarrow_{\pi_\Delta} \) we have \([\eta_1'', \ldots, \eta_y'-1] \rightarrow_{\pi_\Delta} [\eta_1'', \ldots, \eta_y'-1, \eta_y]' \). Since \(\exists \theta. (\text{index}(\eta_j), \theta) \in \Delta \), by definition of \(\Phi \) we must show that \(\eta_y'' = \eta_y'' \), so the result follows.
* \(\exists \theta. (\text{index}(\eta_j), \theta) \in \Delta \). Then by definition of \(\pi_\Delta \), there is some \(\theta \) such that \((\text{index}(\eta_j), \theta) \in \Delta \) and \(\text{stmtAt}(\pi_\Delta, \text{index}(\eta_j)) = \theta(s') \). Then by definition of \(\rightsquigarrow_{\pi_\Delta} \), we have \(\eta'_{y-1} \rightsquigarrow_{\pi_\Delta} \eta'_y \).

Further, since \(\Delta \subseteq \text{[O\text{pat}]} \), we have \(\text{stmtAt}(\pi, \text{index}(\eta_j)) = \theta(s) \). Let \(\eta'_y = \eta_v \), for some \(j < t' \leq k + 1 \). Since \(\eta'_{y-1} \rightsquigarrow_{\pi_\Delta} \eta'_y \), we vacuously have that \(\forall \eta_m. (j < m < t' \wedge \eta_j \rightsquigarrow_{\pi_\Delta} \eta_m \Rightarrow \text{index}(\eta_m) \not\models_\theta \psi_1) \). Therefore we have shown \(\Phi(t', \theta) \), so by definition of \(\Phi \) and \(\rightsquigarrow_{\pi_\Delta} \) we have to show that there exists \(\eta''_y \) such that \(\eta''_{y-1} \rightsquigarrow_{\pi_\Delta} \eta''_y \) and \(\theta(P)(\eta''_y, \eta''_y) \).

We have two cases. Suppose there exists \(\eta''_y \) such that \(\eta''_{y-1} \rightsquigarrow_{\pi_\Delta} \eta''_y \). Then by condition B1 the result follows.

Now suppose there does not exist \(\eta''_y \) such that \(\eta''_{y-1} \rightsquigarrow_{\pi_\Delta} \eta''_y \), so that \(\eta''_{y-1} \not\rightsquigarrow_{\pi_\Delta} \). We are given that \((\text{index}(\eta_j), \theta) \in \Delta \). By definition of \(\pi^{j-1}_\Delta \) we know that \(\pi^{j-1}_\Delta \) acts like \(\pi \) from \(\eta_j \) on in the sequence \([\eta_1, \ldots, \eta_{k+1}] \). Further, \(\eta_{k+1} = ([i + 1, \{x, l\}, \sigma, <\sigma, \mathcal{M}] \), where \(i + 1 \notin \text{Indices}_\pi \). Therefore one of the states between \(\eta_j \) and \(\eta_{k+1} \) exclusive must represent the return node from the same invocation of \(p \) as \(\eta_j \). Therefore we have that there exists some \(j < r < k \) such that \(\text{index}(\eta_r) \models_\theta \psi_1 \) and for all \(t \leq q < r \) such that \(\eta_q \) is in the same invocation of \(p \) as \(\eta_i \), we have \(\text{index}(\eta_q) \models_\theta \psi_2 \). Then by Lemma 1 we have \(\eta_i \not\rightsquigarrow_{\pi_\Delta} \), and we have a contradiction.

\(- t > j \). There are two sub-cases.

* \(\neg \exists \theta. \Phi(t, \theta) \). By definition of \(\rightsquigarrow_{\pi^{j-1}_\Delta} \), we have \(\eta'_{y-1} \not\rightarrow_{\pi_\Delta} \eta'_y \). Therefore \(\eta''_{y-1} = \eta'_{y-1} \), and for all \(\theta \) we have that either \((\text{index}(\eta_j), \theta) \notin \Delta \) or \(\text{stmtAt}(\pi, \eta_j) \neq \theta(s) \) or \(\exists m. (j < m < t' \wedge \eta_j \not\rightarrow_{\pi_\Delta} \eta_m \wedge \text{index}(\eta_m) \not\models_\theta \psi_1) \). Then also \(\neg \exists \theta. \Phi(t', \theta) \), where \(\eta'_y = \eta_v \), so by the definition of \(\rightsquigarrow_{\pi_\Delta} \) we must show that \(\eta''_{y-1} \not\rightarrow_{\pi_\Delta} \eta''_y \), where \(\eta''_y = \eta''_y \). Since \(\eta''_{y-1} \not\rightarrow_{\pi_\Delta} \eta''_y \), the result follows.

* \(\exists \theta. \Phi(t, \theta) \). Therefore \(\theta(P)(\eta''_{y-1}, \eta''_{y-1}) \) and by definition of \(\rightsquigarrow_{\pi^{j-1}_\Delta} \), we have \(\eta''_{y-1} \not\rightarrow_{\pi_\Delta} \eta''_y \). We have two sub-cases.

 * \(\text{index}(\eta_k) \not\models_\theta \psi_1 \). Then since \(\eta''_{y-1} \not\rightarrow_{\pi_\Delta} \eta''_y \), we have \(\forall \eta_m. (j < m < t' \wedge \eta_j \not\rightarrow_{\pi_\Delta} \eta_m \Rightarrow \text{index}(\eta_m) \not\models_\theta \psi_1) \), where \(\eta'_y = \eta_v \), so \(\Phi(t', \theta) \). Then we must show that \(\eta''_{y-1} \not\rightarrow_{\pi_\Delta} \eta''_y \), where \(\theta(P)(\eta''_y, \eta''_y) \).

 Since \(\exists \theta. \Phi(t, \theta) \), we have \((\text{index}(\eta_j), \theta) \in \Delta \). We know that \(\eta_{j+1} \not\rightarrow_{\pi_\Delta} \cdots \rightarrow_{\pi_\Delta} \eta_k \). Therefore either \(\text{index}(\eta_j) \models_\theta \psi_2 \) for all \(j + 1 \leq w < t \) such that \(\eta_w \) is a state in the same invocation of \(p \) as \(\eta_j \), or there exists \(j + 1 \leq w < t \) such that \(\text{index}(\eta_w) \models_\theta \psi_1 \) and \(\eta_w \) is a state in the same invocation of \(p \) as \(\eta_j \). Since we saw above that \(\forall \eta_m. (j < m < t' \wedge \eta_j \not\rightarrow_{\pi_\Delta} \eta_m \Rightarrow \text{index}(\eta_m) \not\models_\theta \psi_1) \), it must be the case that \(\text{index}(\eta_j) \models_\theta \psi_2 \). Therefore the result follows from condition B2.

 * \(\text{index}(\eta_j) \models_\theta \psi_1 \). Then by the definition of \(\Phi \) we have \(\neg \Phi(t', \theta) \), where \(\eta'_y = \eta_v \). Since \(\theta \) is the unique substitution such that \(\text{stmtAt}(\pi, \text{index}(\eta_j)) = \theta(s) \) and \(\text{stmtAt}(\pi_\Delta, \text{index}(\eta_j)) = \theta(s') \), we have \(\neg \exists \theta. \Phi(t', \theta) \). Therefore by the definition of \(\rightsquigarrow_{\pi_\Delta} \) we must show that \(\eta''_{y-1} \not\rightarrow_{\pi_\Delta} \eta''_y \). The result follows from condition B3.

B.4.3 Pure Analyses

Let \(\psi_1 \) followed by \(\psi_2 \) defines label with witness \(P \) be a pure analysis. We say that the analysis is sound if for all programs \(\pi \), all procedures \(p \) in \(\pi \), all indices \(i \) in \(\text{Indices}_p \), and all substitutions \(\theta \), the following condition holds: If the analysis puts a label of the form \(\theta(\text{label}) \) on the node of \(p \)'s CFG with index \(i \), then \(\theta(P) \) holds at all program states \(\eta \) of all execution traces of \(\pi \) such that \(\text{index}(\eta) = i \).

Theorem 3 If \(\psi_1 \) followed by \(\psi_2 \) defines label with witness \(P \) is a pure analysis satisfying conditions A1 and A2, then the analysis is sound.
Proof: Identical to the argument used in the proof of Theorem 1 to show that $\theta(P)$ holds at any execution’s program state just before a transformed statement is executed. (Note that conditions A1 and A2 are the same as F1 and F2.)