
Lecture 14

 An application of disjoint subsets

 Disjoint subset structures and union/find algorithms

 Union-by-size and union-by-height

 Find with path compression

 Amortized cost analysis

Reading: Weiss, Ch. 8
Page 1 of 24
CSE 100, UCSD: LEC 14

Computing with equivalence classes

 Consider this general problem situation:

 You are given a set S of items

 You are given some pairs of items in S that satisfy some equivalence relation E()

 Given that information, you want to do things like

• Determine how many equivalence classes there are in S, as defined by the pairs
of items satisfying E() that you have seen so far

• Given an item in S, determine which equivalence class is it in

• Given two items in S, determine whether they are in the same equivalence class

• Given a new pair of items in S that satisfy E(), update the system of equivalence
classes appropriately

 Problems of that kind come up often in computer applications. We will look at one
Page 2 of 24
CSE 100, UCSD: LEC 14

Building a random maze

 Suppose you want to construct a nice maze on a NxM grid

 One good way to approach the problem is to see it as a problem of computing with
equivalence classes

 Start with an array of NxM cells, each isolated from its neighbors by 4 ‘walls’.

 Consider the equivalence relation E(i,j) true iff you can get from cell i to cell j

 Initially each cell is in its own singleton equivalence class

 Pick a wall at random. If knocking it down would join two distinct equivalence
classes of cells, do so; otherwise leave it standing

 Continue until all the cells form one equivalence class, then stop

 The result is a connected undirected graph: there is a path between any two cells in the
maze. Pick one as entrance, another as exit, and find a path between them!

 Question: Given a NxM maze constructed in this way, how many distinct simple paths
are there from the “upper left corner” cell to the “lower right corner” cell?
Page 3 of 24
CSE 100, UCSD: LEC 14

A Disjoint Subset ADT

 An abstract data type designed for basic computations on equivalence classes is
sometimes called a “disjoint subset” structure (since equivalence classes are disjoint
subsets of their domain). It is sometimes also called a “union-find” structure because of
the names of its principal operations

 Typical Disjoint Subset ADT operations:

Create(int N)
Create a system of N items, each initially in its own singleton
equivalence class. These items are labelled with ints 0 up to N.
The equivalence classes are also labelled with ints 0 up to N.

int Find(int i)
Return the int label of the equivalence class containing item i.

int Union(int m, int n)
Perform a set union operation on the equivalence classes with
labels m and n; return the label of the result.

 (Common variant: perform a set union operation on the
 equivalence classes containing items with labels m and n;

return the label of the result.)
Page 4 of 24
CSE 100, UCSD: LEC 14

Implementing the disjoint subset structure

 There are many ways to implement a disjoint subset ADT

 For example, you could use linked lists to represent the subsets:

 Each list node represents an item, and holds that item’s integer label

 Initially, each singleton subset is a linked list with one element; pointers to these
lists are kept in an array

 To do a find operation on an item, you search all linked lists to find the one
containing that item’s label; return the index of that linked list, as the label of the
subset

 To do a union operation on two subsets, you move all the items from one subset’s
list into the other subset’s list

• (for Union(i,j), move j’s items into i’s list)
Page 5 of 24
CSE 100, UCSD: LEC 14

Disjoint subsets using linked lists

 Start with 4 items: 0, 1, 2, 3

 Perform these operations:
Union(2,3)
Union(1,2)
Find(0) =
Find(3) =
Union(0,1)
Find(1) =
Find(0) =

0

1

2

3

Page 6 of 24
CSE 100, UCSD: LEC 14

Cost of linked-list disjoint subsets operations

 The linked-list implementation is not very efficient:

 Suppose you start with N items

 Doing N-1 union operations (the maximum possible) and M find operations takes
time O(N2 + NM) worst case

 This can be made slightly better by being smarter about which list’s items to move
when doing a union operation...

 But much better performance is available by using a better data structure: trees instead
of lists
Page 7 of 24
CSE 100, UCSD: LEC 14

Disjoint subset using parent-pointer trees

 A better way of implementing a disjoint-subset structure is using trees to represent the
subsets

 Each tree node represents an item, and holds that item’s label, and a pointer to that
node’s parent (nodes can have any number of children... but at most one parent)

 Initially, each singleton subset is a tree with one node, containing the item’s label
and a null parent pointer

 To do a find operation on an item, go to the node for that item, and traverse parent
pointers to the root of the tree it’s in; return the label in the root node as the label of
the subset

 To do a union operation on two subsets, make the root of one subset’s tree point to
the root of the other subset’s tree

• (for now, assume Union(i,j), makes i the parent)
Page 8 of 24
CSE 100, UCSD: LEC 14

Disjoint subsets using trees (simple Union and Find)

 Start with 4 items: 0, 1, 2, 3

 Perform these operations:
Union(2,3)
Union(1,2)
Find(0) =
Find(3) =
Union(0,1)
Find(1) =
Find(0) =
Page 9 of 24
CSE 100, UCSD: LEC 14

Cost of parent-pointer tree disjoint subsets operations

 If you aren’t careful about how you join trees when doing Unions, and don’t do
anything clever when doing Finds, the tree implementation is almost as bad as the list
implementation in the worst case:

 Suppose you start with N items

 Doing N-1 union operations (the maximum possible) and M find operations takes
time O(N + NM) worst case

 The worst case happens when the trees constructed with the Union operation are
essentially linked lists:

 each Union operation just takes constant time, but each Find can take O(N) worst
case

 Find performance can be improved considerably with some changes to the Union
operation
Page 10 of 24
CSE 100, UCSD: LEC 14

Smarter Union operations

 In the Union operation, a tree becomes like a linked list if, when joining two trees, the
root of the smaller tree (e.g. a single node) always becomes the root of the new tree

 This can be prevented by making sure that in a Union operation, the larger of the two
trees’ roots becomes the root of the new tree (ties are broken arbitrarily)

 How to measure “larger”? Either of these ways will work:

 Union-by-size: In the root of each tree is stored the size (number of nodes) in the
tree. When doing a union, the root with the larger size becomes the parent (break
ties arbitrarily); its sored size is updated to be the sum of its former size and the size
of its new child.

 Union-by-height: In the root of each tree is stored the height of the tree. When
doing a union:

• If one root shows greater height than the other, it becomes the parent. Its stored
height doesn’t need to be updated.

• If the roots show equal height, pick either one as the parent. Its stored height
should be increased by one.
Page 11 of 24
CSE 100, UCSD: LEC 14

Disjoint subsets using trees (Union-by-height and simple Find)

 Start with 4 items: 0, 1, 2, 3

 Perform these operations:
Union(2,3)
Union(1,2)
Find(0) =
Find(3) =
Union(0,2)
Find(1) =
Find(0) =
Page 12 of 24
CSE 100, UCSD: LEC 14

Cost of disjoint subsets operations with smarter Union

 Either union-by-size or union-by-height will guarantee that the height of any tree is no
more than log2N, where N is the total number of nodes in all trees

 Each union still takes only O(1) time; but now each find operation takes worst-case
O(logN) time

 Therefore, doing N-1 union operations (the maximum possible) and M find operations
takes time O(N + M logN) worst case

 This is a big improvement; but we can do still better, by a slight change to the Find
operation: adding path compression
Page 13 of 24
CSE 100, UCSD: LEC 14

Path-compression Find

 In a disjoint subsets structure using parent-pointer trees, the basic Find operation is
implemented as:

 Go to the node corresponding to the item you want to Find the equivalence class for;
traverse parent pointers from that node to the root of its tree; return the label of the
root

 This has worst-case time cost O(log N). And the time cost of doing another Find
operation on the same item is the same

 The path-compression Find operation is implemented as:

 Go to the node corresponding to the item you want to Find the equivalence class for;
traverse parent pointers from that node to the root of its tree; return the label of the
root

 But as part of the traversal to the root, change the parent pointers of every node on
that path, to point to the root of the tree (they all become children of the root)

 This also has worst-case time cost O(log N). However, the time cost of doing
another Find operation on the same item, or on any item that was on the path to the
root, is now O(1) ...!
Page 14 of 24
CSE 100, UCSD: LEC 14

Disjoint subsets using trees (Union-by-height and path-
compression Find)

 Start with 4 items: 0, 1, 2, 3

 Perform these operations:
Union(2,3)
Union(0,1)
Find(0) =
Find(3) =
Union(0,2)
Find(1) =
Find(1) =
Page 15 of 24
CSE 100, UCSD: LEC 14

Self-adjusting data structures

 Path-compression Find for disjoint subset structures is an example of a self-adjusting
structure

 Other examples of self-adjusting data structures are splay trees, self-adjusting lists,
skew heaps, etc.

 In a self-adjusting structure, a find operation occasionally incurs high cost because it
does extra work to modify (adjust) the data structure, with the hope of making
subsequent operations much more efficient

 Does this strategy pay off? Amortized cost analysis is the key to the answering that
question...
Page 16 of 24
CSE 100, UCSD: LEC 14

Amortized cost analysis

 In ordinary algorithmic analysis, you look at the time or space cost of doing a single
operation in either the best case, average case, or worst case

 But it might be a good strategy in designing an algorithm to do extra work during one
operation, to make subsequent operations much faster (path compression Find for
disjoint subsets is one example)

 Ordinary worst-case analysis might make this strategy look bad: a single operation in
the worst case could take a lot of time

 Amortized analysis considers the time or space cost of doing a sequence of operations
(in either the best case, average case, or worst case)

 Some of these operations can individually be quite expensive; but amortized analysis
will show if there is a payoff for that extra work:

 The total cost of the entire sequence of operations might be less with that extra
work, than without!
Page 17 of 24
CSE 100, UCSD: LEC 14

Amortized cost analysis results for path compression Find

 It can be shown that with Union-by-size or Union-by-height, using path-compression
Find makes any combination of up to N-1 Union operations and M Find operations
have worst-case time cost O(N + M log* N)

 This is very good: it is almost constant time per operation, when amortized over the
N-1 + M operations!

 log* N (read: “log star of N”, also known as the “single variable inverse Ackerman
function”) is equal to the number of times you can take the log base-2 of N, before you
get a number less than or equal to 1

 log* 2 = 1

 log* 4 = 2 (note that 4 = 22)

 log* 16 = 3 (note that 16 =)

 log* 65536 = 4 (note that 65536 =)

 log* 265536 = 5 (note that 265536 = is a huge number)

 log* N grows extremely slowly as a function of N. It is not constant, but for all
practical purposes, log*N is never more than 5

2
22

2
22

2

2
22

2
2

Page 18 of 24
CSE 100, UCSD: LEC 14

Implementing parent-pointer trees using arrays

 A very compact and elegant implementation of disjoint subsets suitable for union-by-
height and path-compression find can be done by using arrays

 Create an array A of ints of length N, the number of items

 These items will have labels 0, 1, ..., N-1

 Array element indexed i represents the node with label i

 If an array element contains a negative int, then

 that element represents a tree root, and the value stored there is -1 times (the height
of the tree plus 1)

 If an array element contains a nonnegative int, then

 that element represents a non-root, and the value stored there is the index of its
parent
Page 19 of 24
CSE 100, UCSD: LEC 14

Using an array: example

 Write the forest of trees, showing parent pointers and node labels, represented by this
array:

0 1 2 3 4 5 6 7

-1 -1 -1 4 -3 4 4 6
Page 20 of 24
CSE 100, UCSD: LEC 14

Union/Find: C++ code

 Using the array representation for disjoint subsets, the code for implementing the
Disjoint Subset ADT’s methods is very compact

 (This code is too simple... it works, but it would be good to put in some error-checking)

 class DisjSets{
private:

 int * array;

public:
 /**
 * Construct the disjoint sets object,
 * given the initial number of disjoint sets.
 */
 DisjSets(int numElements) {
 array = new int [numElements];
 for(int i = 0; i < array.length; i++)
 array[i] = -1;
 }
Page 21 of 24
CSE 100, UCSD: LEC 14

Union-by-height

 /**
 * Union two disjoint sets using the height heuristic.
 * For simplicity, we assume root1 and root2 are distinct
 * and represent set labels.
 * @param root1 the root of set 1.
 * @param root2 the root of set 2.

* @return the root of the union.
 */

int union(int root1, int root2) {

if(array[root2] < array[root1]) { // root2 is higher
array[root1] = root2; // Make root2 new root
return root2;

} else {
if(array[root1] == array[root2])

array[root1]--; // Update height if same
array[root2] = root1; // Make root1 new root
return root1;

}
}

Page 22 of 24
CSE 100, UCSD: LEC 14

Find with path compression

 /**
 * Perform a find with path compression.
 * Error checks omitted again for simplicity.
 * @param x the label of the element being searched for.
 * @return the label of the set containing x.
 */
 int find(int x) {

 if(array[x] < 0)
 return x;
 else
 return array[x] = find(array[x]);
 }

 Note that this path-compression find method does not update the disjoint subset tree
heights; so the stored heights (called “ranks”) will be overestimates of the true heights

 Is this a problem for the cost analysis of the union-by-height method (which now is
properly called union-by-rank)? Why or why not?
Page 23 of 24
CSE 100, UCSD: LEC 14

Next time...

 Simple vs. not-so-simple algorithm cost analysis

 The cost of accessing memory

 B-trees

 B-tree performance analysis

 B-tree find, insert, and delete operations

 B-tree example: a 2-3 tree

Reading: Weiss, Ch. 4 section 7
Page 24 of 24
CSE 100, UCSD: LEC 14

	Lecture 14
	An application of disjoint subsets
	Disjoint subset structures and union/find algorithms
	Union-by-size and union-by-height
	Find with path compression
	Amortized cost analysis Reading: Weiss, Ch. 8

	Computing with equivalence classes
	Consider this general problem situation:
	You are given a set S of items
	You are given some pairs of items in S that satisfy some equivalence relation E()
	Given that information, you want to do things like
	• Determine how many equivalence classes there are in S, as defined by the pairs of items satisfying E() that you have seen so far
	• Given an item in S, determine which equivalence class is it in
	• Given two items in S, determine whether they are in the same equivalence class
	• Given a new pair of items in S that satisfy E(), update the system of equivalence classes appropriately

	Problems of that kind come up often in computer applications. We will look at one

	Building a random maze
	Suppose you want to construct a nice maze on a NxM grid
	One good way to approach the problem is to see it as a problem of computing with equivalence classes
	Start with an array of NxM cells, each isolated from its neighbors by 4 ‘walls’.
	Consider the equivalence relation E(i,j) true iff you can get from cell i to cell j
	Initially each cell is in its own singleton equivalence class
	Pick a wall at random. If knocking it down would join two distinct equivalence classes of cells, do so; otherwise leave it standing
	Continue until all the cells form one equivalence class, then stop

	The result is a connected undirected graph: there is a path between any two cells in the maze. Pick one as entrance, another as exit, and find a path between them!
	Question: Given a NxM maze constructed in this way, how many distinct simple paths are there from the “upper left corner” cell to the “lower right corner” cell?

	A Disjoint Subset ADT
	An abstract data type designed for basic computations on equivalence classes is sometimes called a “disjoint subset” structure (since equivalence classes are disjoint subsets of their domain). It is sometimes also called a “union-find” struct...
	Typical Disjoint Subset ADT operations:
	Create(int N)
	Create a system of N items, each initially in its own singleton
	equivalence class. These items are labelled with ints 0 up to N.
	The equivalence classes are also labelled with ints 0 up to N.
	int Find(int i)
	Return the int label of the equivalence class containing item i.
	int Union(int m, int n)
	Perform a set union operation on the equivalence classes with
	labels m and n; return the label of the result.
	(Common variant: perform a set union operation on the
	equivalence classes containing items with labels m and n;
	return the label of the result.)

	Implementing the disjoint subset structure
	There are many ways to implement a disjoint subset ADT
	For example, you could use linked lists to represent the subsets:
	Each list node represents an item, and holds that item’s integer label
	Initially, each singleton subset is a linked list with one element; pointers to these lists are kept in an array
	To do a find operation on an item, you search all linked lists to find the one containing that item’s label; return the index of that linked list, as the label of the subset
	To do a union operation on two subsets, you move all the items from one subset’s list into the other subset’s list
	• (for Union(i,j), move j’s items into i’s list)

	Disjoint subsets using linked lists
	Start with 4 items: 0, 1, 2, 3
	Perform these operations:
	Union(2,3)
	Union(1,2)
	Find(0) =
	Find(3) =
	Union(0,1)
	Find(1) =
	Find(0) =

	Cost of linked-list disjoint subsets operations
	The linked-list implementation is not very efficient:
	Suppose you start with N items
	Doing N-1 union operations (the maximum possible) and M find operations takes time O(N2 + NM) worst case

	This can be made slightly better by being smarter about which list’s items to move when doing a union operation...
	But much better performance is available by using a better data structure: trees instead of lists

	Disjoint subset using parent-pointer trees
	A better way of implementing a disjoint-subset structure is using trees to represent the subsets
	Each tree node represents an item, and holds that item’s label, and a pointer to that node’s parent (nodes can have any number of children... but at most one parent)
	Initially, each singleton subset is a tree with one node, containing the item’s label and a null parent pointer
	To do a find operation on an item, go to the node for that item, and traverse parent pointers to the root of the tree it’s in; return the label in the root node as the label of the subset
	To do a union operation on two subsets, make the root of one subset’s tree point to the root of the other subset’s tree
	• (for now, assume Union(i,j), makes i the parent)

	Disjoint subsets using trees (simple Union and Find)
	Start with 4 items: 0, 1, 2, 3
	Perform these operations:
	Union(2,3)
	Union(1,2)
	Find(0) =
	Find(3) =
	Union(0,1)
	Find(1) =
	Find(0) =

	Cost of parent-pointer tree disjoint subsets operations
	If you aren’t careful about how you join trees when doing Unions, and don’t do anything clever when doing Finds, the tree implementation is almost as bad as the list implementation in the worst case:
	Suppose you start with N items
	Doing N-1 union operations (the maximum possible) and M find operations takes time O(N + NM) worst case

	The worst case happens when the trees constructed with the Union operation are essentially linked lists:
	each Union operation just takes constant time, but each Find can take O(N) worst case

	Find performance can be improved considerably with some changes to the Union operation

	Smarter Union operations
	In the Union operation, a tree becomes like a linked list if, when joining two trees, the root of the smaller tree (e.g. a single node) always becomes the root of the new tree
	This can be prevented by making sure that in a Union operation, the larger of the two trees’ roots becomes the root of the new tree (ties are broken arbitrarily)
	How to measure “larger”? Either of these ways will work:
	Union-by-size: In the root of each tree is stored the size (number of nodes) in the tree. When doing a union, the root with the larger size becomes the parent (break ties arbitrarily); its sored size is updated to be the sum of its former size and th...
	Union-by-height: In the root of each tree is stored the height of the tree. When doing a union:
	• If one root shows greater height than the other, it becomes the parent. Its stored height doesn’t need to be updated.
	• If the roots show equal height, pick either one as the parent. Its stored height should be increased by one.

	Disjoint subsets using trees (Union-by-height and simple Find)
	Start with 4 items: 0, 1, 2, 3
	Perform these operations:
	Union(2,3)
	Union(1,2)
	Find(0) =
	Find(3) =
	Union(0,2)
	Find(1) =
	Find(0) =

	Cost of disjoint subsets operations with smarter Union
	Either union-by-size or union-by-height will guarantee that the height of any tree is no more than log2N, where N is the total number of nodes in all trees
	Each union still takes only O(1) time; but now each find operation takes worst-case O(logN) time
	Therefore, doing N-1 union operations (the maximum possible) and M find operations takes time O(N + M logN) worst case
	This is a big improvement; but we can do still better, by a slight change to the Find operation: adding path compression

	Path-compression Find
	In a disjoint subsets structure using parent-pointer trees, the basic Find operation is implemented as:
	Go to the node corresponding to the item you want to Find the equivalence class for; traverse parent pointers from that node to the root of its tree; return the label of the root
	This has worst-case time cost O(log N). And the time cost of doing another Find operation on the same item is the same

	The path-compression Find operation is implemented as:
	Go to the node corresponding to the item you want to Find the equivalence class for; traverse parent pointers from that node to the root of its tree; return the label of the root
	But as part of the traversal to the root, change the parent pointers of every node on that path, to point to the root of the tree (they all become children of the root)
	This also has worst-case time cost O(log N). However, the time cost of doing another Find operation on the same item, or on any item that was on the path to the root, is now O(1) ...!

	Disjoint subsets using trees (Union-by-height and path- compression Find)
	Start with 4 items: 0, 1, 2, 3
	Perform these operations:
	Union(2,3)
	Union(0,1)
	Find(0) =
	Find(3) =
	Union(0,2)
	Find(1) =
	Find(1) =

	Self-adjusting data structures
	Path-compression Find for disjoint subset structures is an example of a self-adjusting structure
	Other examples of self-adjusting data structures are splay trees, self-adjusting lists, skew heaps, etc.
	In a self-adjusting structure, a find operation occasionally incurs high cost because it does extra work to modify (adjust) the data structure, with the hope of making subsequent operations much more efficient
	Does this strategy pay off? Amortized cost analysis is the key to the answering that question...

	Amortized cost analysis
	In ordinary algorithmic analysis, you look at the time or space cost of doing a single operation in either the best case, average case, or worst case
	But it might be a good strategy in designing an algorithm to do extra work during one operation, to make subsequent operations much faster (path compression Find for disjoint subsets is one example)
	Ordinary worst-case analysis might make this strategy look bad: a single operation in the worst case could take a lot of time
	Amortized analysis considers the time or space cost of doing a sequence of operations (in either the best case, average case, or worst case)
	Some of these operations can individually be quite expensive; but amortized analysis will show if there is a payoff for that extra work:
	The total cost of the entire sequence of operations might be less with that extra work, than without!

	Amortized cost analysis results for path compression Find
	It can be shown that with Union-by-size or Union-by-height, using path-compression Find makes any combination of up to N-1 Union operations and M Find operations have worst-case time cost O(N + M log* N)
	This is very good: it is almost constant time per operation, when amortized over the N-1 + M operations!
	log* N (read: “log star of N”, also known as the “single variable inverse Ackerman function”) is equal to the number of times you can take the log base-2 of N, before you get a number less than or equal to 1
	log* 2 = 1
	log* 4 = 2 (note that 4 = 22)
	log* 16 = 3 (note that 16 =)
	log* 65536 = 4 (note that 65536 =)
	log* 265536 = 5 (note that 265536 = is a huge number)

	log* N grows extremely slowly as a function of N. It is not constant, but for all practical purposes, log*N is never more than 5

	Implementing parent-pointer trees using arrays
	A very compact and elegant implementation of disjoint subsets suitable for union-by- height and path-compression find can be done by using arrays
	Create an array A of ints of length N, the number of items
	These items will have labels 0, 1, ..., N-1
	Array element indexed i represents the node with label i
	If an array element contains a negative int, then
	that element represents a tree root, and the value stored there is -1 times (the height of the tree plus 1)

	If an array element contains a nonnegative int, then
	that element represents a non-root, and the value stored there is the index of its parent

	Using an array: example
	Write the forest of trees, showing parent pointers and node labels, represented by this array:
	-1
	-1
	-1
	4
	-3
	4
	4
	6

	Union/Find: C++ code
	Using the array representation for disjoint subsets, the code for implementing the Disjoint Subset ADT’s methods is very compact
	(This code is too simple... it works, but it would be good to put in some error-checking)
	class DisjSets{
	private:
	int * array;
	public:
	/**
	* Construct the disjoint sets object,
	* given the initial number of disjoint sets.
	*/
	DisjSets(int numElements) {
	array = new int [numElements];
	for(int i = 0; i < array.length; i++)
	array[i] = -1;
	}

	Union-by-height
	/**
	* Union two disjoint sets using the height heuristic.
	* For simplicity, we assume root1 and root2 are distinct
	* and represent set labels.
	* @param root1 the root of set 1.
	* @param root2 the root of set 2.
	* @return the root of the union.
	*/
	int union(int root1, int root2) {
	if(array[root2] < array[root1]) { // root2 is higher
	array[root1] = root2; // Make root2 new root
	return root2;
	} else {
	if(array[root1] == array[root2])
	array[root1]--; // Update height if same
	array[root2] = root1; // Make root1 new root
	return root1;
	}
	}

	Find with path compression
	/**
	* Perform a find with path compression.
	* Error checks omitted again for simplicity.
	* @param x the label of the element being searched for.
	* @return the label of the set containing x.
	*/
	int find(int x) {
	if(array[x] < 0)
	return x;
	else
	return array[x] = find(array[x]);
	}
	Note that this path-compression find method does not update the disjoint subset tree heights; so the stored heights (called “ranks”) will be overestimates of the true heights
	Is this a problem for the cost analysis of the union-by-height method (which now is properly called union-by-rank)? Why or why not?

	Next time...
	Simple vs. not-so-simple algorithm cost analysis
	The cost of accessing memory
	B-trees
	B-tree performance analysis
	B-tree find, insert, and delete operations
	B-tree example: a 2-3 tree Reading: Weiss, Ch. 4 section 7

